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Abstract

A new, fault-tolerant, scalable, and modular virtual topology for lightwave networks employing wavelength division multiplexing is
proposed. The proposed architecture is based on a hypercube connected ring structure that enjoys the rich topological properties of a
hypercube, but it also overcomes one of its drawbacks. In a hypercube, the nodal degree increases with the number of nodes. Hence, the
per-node cost of the network increases as the network size grows. However, in a hypercube connected ring network (HCRNet) the nodal
degree is small and it remains constant, independent of the network population. A HCRNet, like a hypercube, is perfectly symmetric in the
sense that the average internodal distance in an N-node HCRNet is the same from any source node. Its average internodal distance is in the
order of log N and it is comparable to other regular structures such as the Trous and ShuffleNet. The HCRNet is based on the Cube Connected
Cycle (CCC) interconnection pattern proposed for multiprocessor architectures. However, the HCRNet improves on CCC by rearranging its
hypercube links, which results in a significantly lower average internodal distance. In this paper we present the structural properties of
HCRNet, and address the issues of scalability, and fast routing in complete as well as incomplete HCRNet. © 2001 Elsevier Science B.V. All
rights reserved.
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1. Introduction

Wavelength division multiplexing (WDM) is a proven
way of realizing a high level of concurrency in a single
optical fiber [1]. However, the use of parallel WDM chan-
nels in a traditional single-hop fashion suffers from two
major drawbacks: (a) requirement of expensive wave-
length-agile transceivers and (b) requirement of pretrans-
mission  coordination  between the  prospective
communicators. On the other hand, a multihop network, in
which a packet from one node to another may be routed via
intermediate nodes, does not need fast-tuning transceivers
or any pretransmission coordination. Recently, several
multihop network topologies have been proposed including
ShuffleNet [2], Two-Dimensional Torus (Manhattan Street
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Network (MSN) [3,4]), de Bruijn graph [5], GEMNet
[6,7], Hypercube [8], and TreeNet [9] (Fig. 1).

The design of a multihop network architecture should
meet the following important requirements: (a) Average
internodal distance should be small as it is inversely propor-
tional to the utilization of a multihop network. (b) Each node
in the network should employ only a small number of trans-
ceivers so that it is economically attractive. Also, the
number of transceivers required at a node should not depend
on the network population. (c¢) Physical embedding of the
logical network topology should require only a small set of
distinct wavelengths. (d) It should be possible to add or
remove nodes from the network, one at a time, with minimal
impact on network configuration and performance. (e) Rout-
ing procedure should be simple as each node may be
required to process hundreds of thousands of packets per
second. Regular multihop networks are often preferred to
irregular or random ones as they usually provide simple
routing schemes.

We propose a new regular multihop network architecture,
dubbed hypercube connected ring network, or HCRNet,
which satisfies the above requirements. This network
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Fig. 1. Various regular multihop virtual network topologies.

topology can be realized as a passive broadcast star network
in a local area environment or it can be conceived as a wide
area optical network via wavelength routers and converters.
As the name suggests, HCRNet is based on the hypercube
structure; however, it overcomes a serious limitation of a
hypercube as a virtual network topology. Unlike in a hyper-
cube, the nodal degree in HCRNet is independent of the
number of nodes in the network. On the other hand,
HCRNet enjoys most of the rich structural properties of a

hypercube [10]. HCRNet resembles the structure of Cube
Connected Cycles (CCC) which has been proposed for
processor interconnection for parallel computations
[11,12]. However, HCRNet improves on CCC by rearran-
ging its hypercube links, which results in a significantly
lower average internodal distance. HCRNet’s overall
performance is found to be superior to that of the existing
regular structures. It has a better average hop-distance than
three-dimensional torus and CCC. Although ShuffleNet
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and de Bruijn graph have slightly lower average hop-
distances than HCRNet, unlike HCRNet they are not scal-
able and modular. Adding nodes to or deleting nodes from
HCRNet involves redeployment of only a small and
constant number of existing links (i.e. retuning of the exist-
ing transceivers).

In the remainder of this section, several regular multihop
topologies have been reviewed. A description of HCRNet is
provided in Section 2, and its properties are discussed in
Section 3. Routing schemes in complete HCRNet are
presented in Section 4. Section 5 deals with its scalability
issues, and in Section 6 the routing strategy in incomplete
HCRNets is addressed.

1.1. Existing regular multihop networks

In this section we briefly review some of the existing
regular multihop networks, namely the hypercube, Shuffle-
Net, de Bruijn graph, GEMNet, Torus, and Ring. Table 1
summarizes some of their properties. A comprehensive
survey on regular and multihop network structures can be
found in Refs. [13-15,26-28].

1.1.1. Hypercube

An n-dimensional p-ary hypercube consists of p" nodes.
These nodes are labeled in base-p numbers, and two nodes i
and j are connected with a bidirectional link if their
labels differ in exactly one coordinate position, i.e. Node
(Xn—1>Xp—2>+++>Xis s X0)basep 18 connected to  Node
(xnflvxnfb cees Xy ~~-’x0)base—p if (xi ta Ei)s 0=i<n [10]
(Fig. 1a). Thus, the nodal degree of each node is n(p — 1).
The binary hypercube (i.e. p = 2) has been extensively
studied as multiprocessor interconnection architecture due
to its rich structural properties that naturally supports many
parallel algorithms. Several research and commercial hyper-
cube machines were also built (e.g. the cosmic cube,
NCUBE, and Intel iPSC). Various fault-tolerant routing
schemes have been proposed for injured hypercubes for
reliability-critical applications [16-20]. The hypercube
structure has also been considered as a virtual lightwave
network topology. However, it is not regarded as a practical
solution since its nodal degree increases with the network
size, which necessitates additional expensive nodal inter-
faces (including transceivers) and a larger set of distinct
WDM channels. The average hop-distance” in an n-dimen-
sional, p-ary hypercube is given by: n(l — p~ ") which
reduces to n/2 for binary hypercubes.

1.1.2. GEMNet, ShuffleNet, and de Bruijn Graph

GEMNet is a recently proposed class of network archi-
tectures that includes ShuffleNet (Fig. 1b) and de Bruijn
graph (Fig. 1c) as its special members [6,7]. The modularity
of GEMNet is one, and it generally has comparable or better

1
2 Average hop-distance is defined as: — vaz 1 Z,N: | hij where h;; is the
minimum number of hops required to reach Node j from Node i.

properties than de Bruijn graph, ShuffleNet, and MSN. In a
(K, M, P) GEMNet, the N(= K-M) nodes, each with nodal
degree P, are arranged in K columns (K = 1) and M rows
(M = P) (Fig. 1d). Unlike in ShuffleNet, de Bruijn or Shuf-
fle exchange networks, the number of nodes, M, in a column
is not restricted to be of the form PX. Also, for a given N,
there exist as many different GEMNet configurations as
there are distinct ways of factoring N into two ordered inte-
gers, e.g., for N =12 and P = 2, we can have GEMNets
with one, three, or four columns and 12, four, or three rows,
respectively. GEMNet reduces to a (P,K)-ShuffleNet when
M = PX. GEMNet also reduces to a de Bruijn graph of
diameter D when M = PP , and K = 1. Hence, GEMNet,
which is based on a generalized shuffle exchange connec-
tivity pattern, has a much more flexible structure than that of
ShuffleNet or de Bruijn graph since the number of nodes is
not restricted to any form.

1.1.3. Torus (Manhattan Street Network)

The Manhattan Street Network (MSN), proposed by
Maxemchuck, is a regular, two-connected network, and is
logically equivalent to a two-dimensional torus [3,4]. The
arrangement of its links is similar to the one-way, alternat-
ing-direction streets and avenues in Manhattan. In an N; X
N, MSN, N(= N; X N,) nodes are arranged in N; rows and
N, columns. A 2 X 4 MSN is shown in Fig. le. A consider-
able amount of research has been conducted on this struc-
ture resulting in adaptive deflection routing schemes,
schemes for adding nodes to complete and incomplete
MSN, and routing in incomplete MSN. However, one draw-
back of MSN is that its average hop-distance increases at the
rate of /N, which is much faster compared to the corre-
sponding log, N rate for ShuffleNet-like structures. The
average internodal distance in an N; X N, MSN is given
as (N; + N, + 4)/4 — 4/N for even N; and N, [21]. The
MSN can be easily generalized to higher dimensional tori,
an example of a three-dimensional torus is shown in Fig. 2.
Recently, it has also been shown that the average internodal
distance in a three-dimensional N(= N; X N, X N3)-node
torus is given by (N; + N, + N3 +4)/4 — 4/N, for N;
1 =i = 3, divisible by 4 [22].

1.1.4. Ring

Ring topologies are attractive for their simple interfaces
and control. Token Ring and Fiber Distributed Data Inter-
face (FDDI) are two of the popular networks employing ring
topology. A uni-directional ring is minimal in the sense that
it uses minimum number of links to achieve full connectiv-
ity. A survey of bidirectional and other multiconnected ring
topologies can be found in Ref. [23]. In a class of two-
connected rings, dubbed forward loop backward hop
(FLBH), each node has a forward link connecting to its
neighbor and a backward link connecting to a node at
some skip distance a. Thus, in an (N,a)-FLBH network,
Node i is connected to Node (i + 1)y;(xx) = x mod k) via
the forward link and to Node (N +1i—a)y; via the
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(2,2,2)

Fig. 2. A three-dimensional 3 X 3 X 3 torous. (Note: some wraparound connections are not shown for clarity.)

backward link. A special member of FLBH class of
networks is the bi-directional ring network (Fig. 1f) in
which a is unity. However, an N-node FLBH is optimal,
in terms of average hop-distance and diameter, when a is
set to |/N| [24]. For the special case of N = a*, the shortest-
path route from Node x to Node y in an N-node FLBH
network is specified as two numbers f and b, where f =
[(N +x — y)w/al, is the number of forward hops (of
length 1) and b = (@ + ¥ — X)|4 is the number of backward
hops (of length a).” The forward and backward hops can be
taken in any order, and thus, there are f +bCf alternate
shortest paths from Node x to Node y. The diameter of a
(N,a)-FLBH network, 0=a<=,/N, is given by
[N/(a+ D] +a—1.

2. Description of HCRNet

Consider an n-dimensional binary hypercube with 2"
nodes. Let its nodes be labeled with binary representations
of decimal numbers from 0 to 2"~' such that the labels of
any two adjacent nodes differ in exactly one coordinate
position (Fig. 1a). Let B, = (x,,—1,X,—2, ..., Xo) be the binary
representation of x. Also, let coordinate i of a node’s label

3 For the more general case, 0 < a = /N, the shortest path from Node x
to Node y can be computed in constant time as follows. Let
bmax = [N/(a + 1)]. Then, b is given as [(N +x — y)w/al if b = by,
else b is set to 0. Also, f can be computed as (N +y — (N + x — ba)y) -

denote dimension i, 0 = i < n. Note that, if (x mod a) is
denoted as xi,, then x; can be written as: x; = (Xppi+1) —
x[z,-])/z’. Now, the link i of Node x (i.e., the link correspond-
ing to the dimension i), connects to Node (x + (1 — 2x;)2")
(= x D 2/, where @ is the bitwise exclusive or operator).
A Hypercube Connected Ring (HCR) network is obtained
by replacing each of the nodes of an n-dimensional hypercube
by a ring of n nodes. Thus, the network consists of N = n2"
nodes in 2" rings each of size n. These nodes are now labeled as
(xp, x,), where x;, 0 < x;, < 2", is the label of a ring which is
obtained from the corresponding node’s label in the original
hypercube, and x,, 0 = x, < n, is the xﬁh node in Ring x;
consisting of n nodes. Now, Node (x,x,) is connected to
Node (x;, © 27,x,) via the x,-dimension of the hypercube
(Fig. 3). Thus, the degree of each node is 3, and even for higher
dimensional HCRNets the nodal degree remains unchanged.
Note that, since the hypercube links are bidirectional, moving
from one dimension to its next one in HCRNet would always
involve an extra hop within a ring. For example, Node (000,0)
transmits on dimension 0 to Node (001,0), which again trans-
mits on dimension 0 to Node (000,0). Now, for transmitting a
packet in dimension O followed by a transmission on dimen-
sion 1, a hop within Ring 001 is needed to reach Node (001,1),
which transmits on dimension 1. Itis interesting to note that the
performance of HCRNet can be significantly improved by
staggering the hypercube links as follows: let Node (000,0)
transmit on dimension 0 to Node (001,1) and not to Node
(001,0). Then Node (001,1) transmits on dimension 1 to
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Fig. 3. A 24-node hypercube connected ring network with all bidirectional
links.

node (011,2) and so on (see Figs. 4 and 5). This connectivity
pattern will eliminate the need of an extra hop for moving from
one dimension to its next one. Note that, an extra hop will still
be required for skipping a dimension. In the remainder of this
paper, HCRNet will refer to this modified hypercube
connected ring network whose connectivity pattern is formally
defined as follows:

expense of more complicated routing schemes. Since, n
increases in the logarithmic scale of the total number of
nodes N, n is expected to be small even for large networks,
in which case a bidirectional ring structure will be a reason-
able choice.

3. Properties of HCRNet

In this section some of the structural properties of
HCRNet are discussed. First, the diameter, D, of an n-
dimensional HCRNet is given by:

Ducg = n + HnJ (1)

This can be shown as follows. Since the network is
symmetric with respect to every node, without loss of general-
ity, consider Node (0,0) as the source node. Let (d;,d,) be a
destination node, and let B, = (x,_{,X,—2,...,X1,Xg) be the
binary representation of dj,. Also, let x; be the leftmost ‘1’ in
B, ie. k= max{i|x,- = 1; 0 =i < n}. Then, Ring d;, which
differsin k + 1 coordinates with respect to the source ring, can
be reached* in k + 1 hops from Node 0, since, for 0 = j =
k + 1, x; = O corresponds to traversal of aring’s link and x; =
1 corresponds to the traversal of a hypercube’s link. For exam-
ple, a node in Ring 001010 can be reached from Node
(000000,0) in four hops via the following path: (000000,0)
(000000,1) (000010,2) (000010,3) (001010,4). Thus, Ring
(2" — 1) is one of the farthest from Node 0, and it can be

Node (z, z,) connects to Nodes:

(@, (1 + @ — 1)), anticlockwise ring connection

(.’I)h‘, x'r)

~

(zh + (1 = 2xp, )2 (2, + 1) [n])s hypercube connection

-0 o

(h, (xr + D)), clockwise ring connection

(h,, is the = bit in the
binary representation of x).

A formal definition of HCRNet can be stated as follows: a
binary n-dimensional HCRNet is a graph ¥ = (¥, &) such
that v = {(i,j)li € [0,1,....,2" — 1];j € [0,1,...,n — 1]},
|7 |=N, and & = {((i,)),k, )i Dk=0and|j —I| €
(I,n—1]) or (P k=2andl=( + Dpp}. A directed
hypercube link in dimension j connects Node (i, /) to Node
(DY, G+ Dy

Note that, the bidirectional rings can be replaced by more
efficient structures such as the optimal FLBH ring or
GEMNet. However, this can be achieved only at the

reached in n hops. It can be easily verified that starting from
any given node, any ring in the network can be reached in n
hops. Now, reaching the farthest node in the destination ring
will take additional |n/2| hops. Hence, the diameter of the
network is given by n + |n/2].

Note that, routing from a source Node (sy,s,) to a destina-
tion Node (d;,d,) can be broken-up into three parts: (i)
routing within the ring of the source Node s to Node a

4 . . . .
Reaching a ring means reaching any one of its n nodes.
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Fig. 4. A 24-node modified HCRNet with unidirectional hypercube links. (Note: all ring-links are bidirectional.)

(say); (ii) routing from Node a to a node in the destination
node’s ring (say Node b) via nodes in intermediate rings;
and finally (iii) routing within the destination ring from
Node b to the destination node. Let C;, = B, ® B,,. Then
C,, represents the dimensions of the hypercube in which the
source and the destination nodes differ. Also, let C;, =
(Cp—1>Cp_2s-..,C1,Cp), and let |Cy| be the number of 1’s in
Cy, (i.e. Cy, is the Hamming distance between s, and d,,).
Then, the minimum number of hops required to reach
Ring d; from Ring s, is |C;| plus the number of hops in
the initial and intermediate rings to skip dimensions, if
any. For example, let s = (00000,0), and d = (10011, 4).
Then, if routing on the hypercube starts from dimension 0
at the source node, the destination ring will be reached in
five hops: (00000,0) (00001,1) (00011,2) (00011,3)
(00011,4) (10011,0); and the destination node will be
reached in one more hop: (10011,0) (10011,4). On the
other hand, if the routing on the hypercube starts from
dimension 4 at the source ring then the destination ring
can be reached in four hops: (00000,0) (00000,4)
(10000,0) (10001,1) (10011,2); and the destination node
can be reached in two more hops: (10011,2) (10011,3)
(10011,4). Thus, in the first case, two hops were ‘wasted’

for skipping dimensions 2 and 3 in ring 00011, whereas in the
second case one extra hop was required in each of the initial
and final rings. Although, in both the cases the destination
node is reached in six hops, this example shows the trade-
offs in choosing the dimension on which the source ring is
exited. Note, however, once the source ring is left on the
‘optimum’ dimension, the rest of the route becomes fixed.’
There exists a Hamiltonian circuit® in every HCRNet and it
can be constructed in a hierarchical way as follows. Since
HCRNet is perfectly symmetric, without loss of generality
let us consider Node (0,0) as the starting node. Note that, an
n-dimensional HCRNet can be partitioned, along any one of its
n dimensions into two identical parts. Each of these parts
resembles an n — 1-dimensional HCRNet, only with the
exception of having n nodes in each of its ring instead of
n — 1 nodes. We now show that there exists a Hamiltonian

5 Except for the case when the destination node can be reached in [n/2)
hops both in clockwise and anticlockwise directions from the first node
reached in the destination ring. (Clockwise direction is defined as
©012--n0).

® A Hamiltonian circuit in a connected graph % is a closed path that
transverses every vertex of % exactly once, except the starting vertex
which is visited twice.
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circuit in each of these two parts, which can be merged to form
a Hamiltonian circuit for the entire n-dimensional HCRNet.
We start by constructing the Hamiltonian circuit in two dimen-
sions as follows. Let Node (C3000,0) be one of the starting
node where Cj; represents the coordinates of dimensions 3 to
(n — 1). The Hamiltonian path for two-dimensional HCRNet
will cover all of its rings which differ only in the first two
dimensions with respect to Node (C;000,0) (Fig. 6). This
Hamiltonian Circuit can be constructed as follows:

1. Starting from Node (C3000,0) traverse the rings (C30,, ) in
the 2-bit gray code’ order till the last ring (Ring (C;010)) is

" Gray code is a special member of cyclic codes in which successive code
words differ in exactly one coordinate, e.g. 000, 001, 011, 010, 110, 111,
101, 100.

reached. This may require traversal within some of the
intermediate rings which is to be performed in clockwise
order.

2. Retrace path to the starting node by traversing the rings in
the reverse order, again taking clockwise link(s) within
intermediate rings whenever necessary.

3. Similarly, create a Hamiltonian circuit starting from Node
(C5100,0).

4. Merge the two Hamiltonian circuits as follows: removing
links (C5000,2) (C5000,3y,,)) and (C5100,2) (C3100,3,,;) from
the two Hamiltonian circuits; add links (C;000,2)
(C3100,3},7) and (C3100,2) (C5000,3,).

It can be easily verified that the above procedure
constructs a Hamiltonian circuit covering all the nodes
of all the eight rings that differ in the lower three
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Fig. 6. A Hamiltonian path in a three-dimensional HCRNet.

dimensions with higher n —3 dimensions remaining
fixed. Next, two Hamiltonian circuits can be obtained
in lower three dimensions, one for c; = 0, and the other
one for c3 =1 with the higher n—4 dimensions
remaining unchanged. In general, two Hamiltonian
paths starting at Node (C0c;—..,0) and at Node
(Cilci—...,»0), each of them covering n2'~" nodes of
the 217! rings for a given C; can be merged by (a)
removing the two links (C;00---0,i — 1) (C;00---0,7)
and (C;10---0,i — 1) (C;10---0,i), and (b) adding the
two links (C;00---0,i — 1) (C;10---0,7) and (C;10---0,i —
1) (C,00:---0,7). Thus, a Hamiltonian circuit for an n-
dimensional HCRNet can be constructed by merging
two Hamiltonian circuits obtained for (n — 1)-dimen-
sional HCRNet.

3.1. An upper bound on average hop-distance

Although the HCR network is symmetric with respect to
each node, so far we are unable to obtain a closed-form
expression for its exact average hop-distance. However,
we present an approximate analysis of its hop-distance,

which is later shown to provide a good estimate of the actual
average hop-distance. Also, as n increases, the estimated
average hop-distance is found to closely approximate the
actual average hop-distance.

In obtaining an approximation of average hop-distance
we assume that traversal within the source and intermediate
rings is allowed only in clockwise direction, i.e., (.,0) —
(., 1) = ---(-,n) (-, 0). This approximation is due to the fact
that some of the destination rings can be reached in fewer
hops if the shortest path from the source node to the node
that is transmitting in the optimum dimension in the source
ring, is via the anticlockwise direction. Now, since all the
nodes will have the same average hop-distance, we assume
that Node (0,0) is the source node. Then, assuming only
clockwise traversal in the source and intermediate rings, a
ring whose address is of the form (0001x;_» x;_3...x0) will
be reached in k hops irrespective of the values of x;, 0 =i =
k — 2; since x; = 0 would imply traversal within a ring
whereas x; = 1 would imply traversal of a hypercube-link.
Thus, the number of rings that can be reached in k hops is
251 which is the number of combinations of x,0=i=k—
2. Hence, the average hop-distance of a ring from the source
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Node (0,0) is given by:

5o 1 - k=1 __ -n

R—?];kZ =n—1+27" )
Now, consider a ring that is R hops away from the source

node. Then, all the n nodes in this ring can be reached in an
average of

1 n—1 n—1
;[R + 2(R + 1)~-2<R + T)] or R+

4n
3)
hops if 7 is odd or in
1 -1
—[R + 2R + 1)~--2<R + - ) + (R + ﬁ)] or
n 2 2
n
R+~
4
“)

hops if n is even. Combining (2)—(4) we get the following
expression for the approximate average hop-distance in
HCRNet:

) _ 1l nn Llnrn -
A =R+—| 5|5 [=r+[5|5|F+2" L
HCR pprox n [ 2 J[ 2—| " n [ 2 J[ 2—|

(5)
Note that, for large n, (5) reduces to
lim HHCRuppmx = %I’l —-1= O(IOg N) (6)

Also, for a cube connected cycle structure with bidirectional
hypercube links (see Fig. 2), the approximate average hop-
distance can be similarly obtained as:

= 3 1l n|n (1=n)
HHCRBidirecliona]appmx = En + ;lzJ[E] +2 -2 )

For large n, (7) reduces to

_— 7
r}l_»l’{.lo HHCRBidirectionalﬂpme - Zn —2. ®)
The performance of HCRNet is compared with some of
the other trivalent regular structures, including a three-

dimensional torus (Fig. 2), in Fig. 7.

4. Routing in complete HCR network

In this section two routing methods are described, first, a
shortest path scheme which takes O(n) time and then a near-
optimal and faster routing scheme (see Table 2).

4.1. Shortest path routing

Let R;; denote the shortest distance from Node i to Node j
in an n-Node bidirectional ring, i.e. R; = min{|j — i|,n —
li — i|}. Consider a source node (s;,s,), and a destination
node (d;.d,). Let C, = (c,—jc,—1-"cico) = By, D B, and
let |C,| = m, i.e., the source and destination rings differ in

m dimensions. Let A = (a,,_1, ..., a;,ap) such that a; > q; if
i>j, and a; =k if ¢, is the ith, ‘1’ in Cj; i.e., A is the
ordered set of the dimensions in which the source and the
destination rings differ. For example, let s, = (10100), d, =
(11001), then C, = (01101), m = 3, and A = (3, 2,0). Now,
if the routing starts by first correcting dimension q; at the
source ring, then the last dimension corrected will be the
predecessor of a;, i.e., l; = du+i-1),,, and hence the desti-
nation ring will be first reached at Node (d,, (I; + 1)j,)-
Thus, the total number of hops from the source to the desti-
nation node is given by:

plsd
%S ) = R0+ (n—a; = Iy T Ry 1)4, )]

Note that, the first term in (9) denotes the number of hops to
reach node (s,,a;) from the source node, the second term
refers to the number of hops required to reach the destina-
tion ring from node (s;,a;) via intermediate rings and the last
term denotes the number of hops required to reach the desti-
nation node from the initial node reached in the destination
ring. Obviously, the optimum dimension, a,y, for leaving
the source ring satisfies the expression: 7 Efdl) =
min{%gd) |0 =i < n}. Thus, finding the optimum dimen-
sion, duy, takes O(n) time. However, once aq, has been
found, computing the shortest route is straightforward and
can be obtained in constant time. The source node will
generate a binary routing string, %, of length (RMW + n)-
bit as follows. Rightmost R, , = bits in Z# are set to zeroes.
The remaining » bits are obtained by cyclically shifting the
bits of Cj, such that the a,y bit becomes the rightmost bit.
The source node then forwards the packet towards Node
(Sps@op:) via the shortest route (i.e. in clockwise or anticlock-
wise direction) along with the route information to reach the
destination ring. Once the message reaches the destination
ring at node (dj,,lop), it will again be forwarded to the desti-
nation node via the shortest path which is to be decided at
Node (dj.lop). The routing string 2 will be interpreted as
follows by all the intermediate nodes:

Until (destination ring is reached) do
If (message comes on a ring-link from the previous node)
if (next routing bit is 0) /* starting from the rightmost
bit in # */
Forward the message to the next downstream node
in the same direction
else /* i.e., next routing bit is 1 */
Forward the message onto the outgoing hypercube-
link
else /* i.e., message came on a hypercube-link*/
if (next routing bit is 0)
Forward the message to the next node in the same
ring in the clockwise direction
else /* i.e., next routing bit is 1 */
Forward the message onto the outgoing hypercube-
link

Example. Let s= (s;,s,)=(010110,3), and let d =
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Fig. 7. (a) Comparison of average hop-distances in various trivalent regular networks. (b) Comparison of diameters in various trivalent regular networks.

(dy,d,) = (110011, 2). Then, C;, = (100101), A = (5,2,0),
and agy = 5. Then, source Node (sj,3) will forward the
message to Node (s;,4) with the routing code £ =
(0010110). Node (sy,4), in response to the rightmost ‘0’ in
R, will forward the message to Node (s;,,5). Since the next

(i.e., second) routing bit is ‘1’, Node (s;,5), will forward the
message on its outgoing hypercube-link to Node
(110110,0). The third routing bit is also ‘1’, hence, the
message will be next routed to Node (110111,1). Now, the
fourth routing bit is ‘0’, therefore the message will be routed
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Procedure for scaling-up an n-dimensional HCRNet to an (n + 1)-dimensional HCRNet by adding one node at a time

Phase Location of the (i-2" + k)th new node (0 < k < 2") Retuning operations/new connections (new
connections are established as soon as the
nodes involved are added to the network)

i Location
1 0 Add the new node to Ring k& Node (k,n — 1) transmits to and receives from

2 1

3 2

4 3=i=
n+1 (in
increasing
order of i)

between Nodes (k,0) and
(kyn —1).

Label the new node as (k,n).
(Choose k in the order of
0,1,2,3,....2" = 1)

Add the new node the Ring k
between Nodes (k,0) and (k,n)
Label the new node as (k,n + 1)

(Choose k in the order of
0,2,1,3,4,6,..., i.e., in the order
of xp,xg + 2i,x1,x1 + 2i,... is
the smallest ring number not yet
visited in this phase)

Create a new ring with the
following 2 nodes and label it as
(k+2".

Move Node (k,n + 1) to location
(k + 2" n).

Add the new node at (k + 2",0).
Choose k in the order of xy,xy +
2i_2,x1,x1 + 2i_2, ... where x; is
the smallest ring number not yet
visited in this phase)

Add the new node at

(k + 2",i — 2) between Nodes
(k+2"i—3)and (k + 2",n)
(Choose k in the order of xg, xy +
2i_2,x1,x1 + 2i_2, ... where x; is
the smallest ring number not yet
visited in this phase)

Node (k,n) instead of Node (k,0).

Node (k,n — 1) transmits to Node (k ©
2" ).

New connections:

Node (k,n) transmits to and receives from Node
(k,0) on the wavelengths on which Node (k,0)
was transmitting to and receiving from Node
(kyn — 1).

Node (k,n) transmits to Node (k  2°,0).
Node (k,n) receives from

Node (k ® 2" ', n — 1).

Node (k,n) transmits to and receives from Node
(k,n + 1) instead of Node (k,0).
Node (k,n) transmits to Node (k © 200+ 1)

New connections:

Node (k,n + 1) transmits to and receives from
Node (k,0) on the wavelengths on which Node
(k,0) was receiving from and transmitting to
Node (k,n).

Node (k,n + 1) transmits to Node (k & 2!, 0).
Node (k,n + 1) receives from Node (k ©

2%, n).

Node (k,n) transmits to and receives from Node
(k,0) instead of Node (k,n + 1) on the
wavelengths on which Node (k,0) was
transmitting to and receiving from Node
(k,n + 1).

New connections:

Bi-directional ring connections involving
Nodes (k + 2",0) and (k + 2",n).

Node (k,n) transmits to Node (k + 2",0).
Node (k + 2",n) receives from Node (k ®
2"920 ).

Node (k,2",0) transmits to Node (k ©
2920 1.

Node (k + 2",i — 3) transmits to and receives
from Node (k + 2",i — 2) instead of Node

(k + 2" n).

Node (k @ 2",i — 3) transmits to Node (k ©
2" @23 i - 2).

New connections:

Node (k + 2",i — 2) transmits to and receives
from Node (k + 2",n) on the wavelengths on
which Node (k + 2",n) was receiving from and
transmitting to Node (k + 2",i — 3).

Node (k + 2",i — 2) transmits to Node
(k+2"+27%i—3).
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within the present ring (110111) in clockwise direction to
the next node (110111,2). Finally, since the last routing bit
is ‘1’, the message will be routed via hypercube-link to
Node (110011,3). Now, Node (110011,3) will recognize
that the message has reached the destination ring and it
will route the message to the destination node via the short-
est path.

4.2. Simple and faster routing

In this section we present an O(l) routing scheme.
Although this scheme does not always choose the shortest
path, its average performance is within 90% of that of the
optimal O(n) algorithm described above. Essentially, this
scheme is based on the way (5) was derived for approximate
average hop-distance. In this scheme, instead of computing
the optimum dimension, the source node s either sends the
message to the next node in clockwise direction or it trans-
mits the message on its hypercube-link if the s, € A. Now,
the routing code is simply given by %=
(Clnts,— 1)y Cis,+ 1)y Cs,) Which can be obtained by cycli-
cally shifting the bits of C;, such that the s,-bit of C;, becomes
the rightmost bit in Z. Note that, once the message reaches
the destination ring, any superfluous leading ‘0’s in # will
be discarded. This routing strategy can be summarized as
follows:

until (destination ring is reached) do
if (next routing bit is ‘1’) /* starting from the rightmost bit
in # */
Forward the message on the hypercube-link
else /* i.e., next routing bit is ‘0" */
Forward the message on the clockwise-ring-link

4.3. Broadcasting in HCRNet

In this section we describe an efficient broadcasting
scheme in HCRNet. The scheme is optimal in the sense
that all the rings are reached in shortest possible hops and
that the broadcast message reached every node only once.
We assume that the message contains a field that identifies it
as a broadcast message. We also assume that there exists a
simple mechanism to broadcast a message within a ring.

A node (x;x,...x,_1, k) initiating a broadcasting in an n-
dimensional HCRNet sets routing string, Z as all zero and
broadcasts the message within its ring x;x,...x,_;. For
broadcast messages the routing string indicates the dimen-
sions traveled by the message so far. Now any node, (¥,g),
receiving the broadcast message checks if the message has
already traveled any dimension greater than or equal to ¢g. If
not, it sets the (¢ + 1)th bit in Z to 1 and sends it along ifs
hypercube link (in dimension ¢g). Note that each node has
another responsibility of taking part in broadcasting the
message within its local ring. When a node forwards the
broadcast message to the next node in the local ring

the routing string remains unchanged. The following exam-
ple shows a broadcast from Node (0110,0) in a four-dimen-
sional HCRNet. A detailed study of broadcasting in
hypercubes can be found in Ref. [17].

4.4. Edge loading under the routing schemes

It is interesting to note that, under uniform traffic pattern,
both the routing schemes result in a perfectly balanced
distribution of loads among the hypercube edges. Assuming
a traffic of unity between every source—destination pairs, x
and y, x # y, the load on any hypercube link is given by
n*2"~! for both simple and shortest path routing. This is a
property of HCRNet, which it has inherited from hypercube.
However, the ring-edges carry a lower load and the excess
capacity in the these links can be utilized to bring heavily
communicating nodes ‘closer’ by logically placing them in
the same ring [25].

5. Scalability of HCRNet

In this section we describe how an n-dimensional
HCRNet can be systematically grown to an (n + 1)-dimen-
sional HCRNet. A procedure for adding nodes, one at a
time, to an existing HCRNet is presented in this section.
A routing scheme in such incomplete HCRNets is presented
in the following section.

5.1. Scaling up an n-dimensional HCRNet to an (n + 1)-
dimensional HCRNet

A systematic way of adding nodes in a complete
HCRNet, one at a time, can be exploited for efficient routing
in the resulting incomplete HCRNet. The sequence of
adding nodes is also important in reducing the number of
retunings required at the existing nodes. Note that, to form
an (n + 1)-dimensional HCRNet, the total number of nodes
to be added to an n-dimensional HCRNet is given by: [(n +
D! — 2" = (n + 2)-2". Given below is the outline of
the sequence in which these nodes are added followed by a
more formal description.

The first 2" nodes are added to the existing 2" rings in the
order of increasing ring numbers. The new node in Ring x,
0 = x < 2", placed between Nodes (x,0) and (x,n — 1) and
is labeled as (x,n). Each ring now consists of (n + 1) nodes.
Also, the wavelength assignments at the transceivers of
Nodes (x,n — 1), (x,n), (x D 2" ', n), and (x D 2°,0) are
set such that Node (x,n — 1) transmits to Node (x ©
2”_1, n) and Node (x,n) transmits to Node (x @ 20, 0)
(Fig. 8). The next 2" nodes are also added to the existing
2" rings, in the increasing order of ring numbers. Now, in
Ring x, this new node is placed between Nodes (x,0) and
(x,n) and is labeled as (x,n + 1). Again, transceivers at some
of the nodes are retuned such that Node (x,n) transmits to
Node (x © 20, n + 1) and Node (x,n + 1) transmits to Node
x D 21,0). Now, each ring consists of (n + 2) nodes, one
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Spanning tree in a hypercube

Fig. 8. Example of a broadcast from Node (011,0). Broadcasting within rings are not shown.

more than what it should have in (n + 1)-dimensional
HCRNet. However, while adding the next node (i.e., the
(22" + 1)th new node) to Ring 0, a new ring,® Ring 2", is
created and Node (n + 1) of Ring 0 is moved to Ring 2" and
is labeled as Node (2",n). The new node is also added to the
new ring and is labeled as Node (2",0). Node (2",n) is then
connected to Node (0,0) (i.e., Node (2" @ 2",0)) and Node
(0,n) is connected to Node (2",0) (Fig. 9). The next new ring
is created as Ring 2" & 2°. Now, since Node (2" @ 2°,1) is
not yet available, Node (2",0) transmits to Node (2" @ 2% n)
instead. Similarly, Node (2" & 20, 0) transmits to Node
(2",n). (Note that, since at least two nodes are required to
form a ring, a new ring is created only when three additional
nodes are available at an existing ring.) This process is
continued, until 2" new rings are created, each with two
nodes labeled (x,0) and (x,n). The next 2" nodes are added
as Node 1 in the new rings, next 2" nodes as Node 2, and so
on (Fig. 10). The last 2" nodes, added as Node (x,n),
completes the construction of (n + 1)-dimensional
HCRNet. An algorithmic description of the scaling-up
procedure is given in Table 3.

Note that the number of transmitters and receivers to be
retuned per additional node is three in Phase 1 and 2, four in
Phase 3 and 3 Phase 4 (Table 3, Fig. 11). For example, when

8 An old ring refers to one of the 2" rings in n-dimensional HCRNet. A
new ring refers to one of the additional 2" rings in (n + 1)-dimensional
HCRNet.

Node (x,n) is placed between Nodes (x,0) and (x,n — 1),
only Node (x,0) needs to retune its transmitters and receiver
to receive from the new node instead of from Node (x,n —
1). The new node also needs to tune its transceivers to
communicate with Node (x,n — 1) on the wavelengths on
which Node (x,n — 1) was communicating with Node (x,0).
However, tuning at a new node is not counted as a retuning
operation. Thus, adding a new node to HCRNet has a very
small effect on the existing links in the network.

6. Fault-tolerant routing in incomplete HCRNet

An HCRNet, constructed according to the scaling proce-
dure described in the previous section, and which has at
least one more node than an n-dimensional HCRNet but
has less nodes than an (n + 1)-dimensional HCRNet is an
incomplete (n + 1)-dimensional HCRNet. A HCRNet,
complete or incomplete, with faulty links or nodes is called
an injured HCRNet. In an incomplete HCRNet, the connec-
tivity pattern is deterministic, and it can be easily estab-
lished if the number of additional nodes, added as per the
scaling rule, is known. On the other hand, the connectivity
pattern in an injured HCRNet is non-deterministic since any
of its links and/or nodes can be flawed. In the following
subsection, we describe a simple yet efficient routing
scheme for incomplete HCRNet. This scheme can then be
modified, via a depth-first search approach, for routing in a
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Step 1: Node N is inserted in between

Nodes 0 and N-1. This involves retuning

of two wavelengths at Node 0 and Node N-1.
Node 0 now transmits and receives from Node N
instead of Node N-1, and Node N-1 now transmits
and receives from Node N instead of Node 0.

To Node(N, 1XX..X )

N

This was
Node N+1 in
Ring 0XX...X

To Node(1XX..X.1)

N

Ring 1XX..X

Ring 1XX...X

Step 2: Node N+1 is inserted in between Nodes 0 and N.

This again involves retunning of 2 wavelengths at
Node 0 and N.

Step 3: A new ring is created which differes with
its parent ring only in the N-dimension.
Note that at least 3 new nodes are required
to create a ring.

To Node(1XX...XX, N)

Step 4: New nodes are added to the new ring
until it becames complete, i.e., until it
contains N+1 nodes. Steps 1 through 4
are repeated again when the new ring
becones full.

Fig. 9. Steps in adding nodes, one at a time, to an exiting ring.

connected HCRNet with arbitrary number of faulty compo-
nents [16].

6.1. Routing in incomplete HCRNet

An important property of HCRNet is its hierarchical
abstraction. For example, an (n + 1)-dimensional HCRNet
can be viewed as two n-dimensional HCRNets connected
only via links in dimension n. Note that, according to our
scaling procedure, a ring in an incomplete HCRNet will
have an outgoing link in dimension k, only if it has an
outgoing link in dimension (k — 1). This is because, in a
new Ring x new nodes are labeled in increasing order.
Thus, if the last node added to a ring is labeled as k, then
all the rings must have nodes labeled as k — 1. This implies
that there is a hypercube-link in Ring x in dimension k — 1
from Node (x,k — 1) to Node (x ® 271, k) if Node (x ®

2k 71,k) is already added to the network; otherwise the
link in (k — 1)-dimension from Node (x, k — 1) is connected
to Node (x D 2k _1, n). Also, if any of the dimension remain-
ing to be corrected in order to reach the destination ring is
not available at the source or at an intermediate Ring x, then
the packet has to be forwarded to the complete n-dimen-
sional HCRNet via the link in dimension n from Node (x,n).
Now, if the source and the destination rings do not differ in
dimension n then the packet has to be routed once more
through dimension n. In such cases, this can be achieved
by simply adding » to the list of dimensions to be corrected.
From an incomplete Ring® x since only Node (x,n) connects
to a ring of the complete n-dimensional HCRNet, once a
packet reaches this node it has to determine whether the

° In an incomplete ring in an incomplete (n + 1)-dimensional HCRNet at
least one link in one of the n + 1 dimensions is missing.
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Fig. 10. Incomplete four-dimensional HCRNet (in Phase 4, i = 4, see Table 3), shaded rings are the new rings. Connections to parent rings are shown for Rings
1110, 1111, and 1101. Similar connections to parent rings for other new rings are NOT shown. Also, connections among the old rings are NOT shown.

packet needs to be routed out of the present ring to the
complete n-dimensional HCRNet.

In an incomplete HCRNet a packet from Node (s,,s,) to
Node (d},d,) is routed as follows. First the source node deci-
des, in constant time, if all the dimensions in which the
source and the destination rings differ are available in the

Table 4
Efficiency of the routing algorithm in incomplete six-dimensional HCRNet

Phase Number of Average hop-distance Efficiency of
nodes sfl simple routing
(%)
Shortest path  Simple routing
route
0 160 4.831 5.231 92.36
1 192 5.495 5.984 91.82
2 224 5.731 6.410 89.41
3 256 6.131 7.034 87.16
4 288 6.226 7.293 85.37
4 320 6.392 7.408 86.29
4 352 6.260 6.939 90.21
4 384 6.036 6.516 92.65

source ring. If so, the packet is forwarded onto the clockwise
direction until it reaches a node transmitting in one of the
target dimension (say dimension a); otherwise the packet it
sent to Node (sp,,n) via the shortest path. In the first case, a is
removed from the set of target dimensions and the packet is
simply routed onto dimension a. In the later case, Node
(sy,n) determines, in constant time, if the source and desti-
nation rings differ in dimension » and if all the remaining
target dimensions are available in the present ring. If a target
dimension is missing and if the source and the destination
ring differ in dimension n then the packet is simply routed to
Node (s, @ 2",0) in the parent'” ring in the complete n-
dimensional HCRNet. However, if a target dimension is
missing and if the source and the destination ring to not
differ in dimension n, then the packet is still routed to
Node (s, D 2",0) and dimension n is added to the list of
target dimensions. Once a packet reaches a node in the
complete n-dimensional HCRNet, it is routed according to
the simple routing procedure of a complete HCRNet. On the

" Parent of Ring
00---00a;-a;—»---a;ay.

00---01a;—a;—»---a ay is the Ring
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Let (sp,s,) be the source node and let (dy,d,) be the destination node.
Let C), = dn & sh.

Set present.ring, r = s;; Set present_dimension, ¢ = s,. Set present_node=(r,¢)

/* see if 3 a dimension not available in the present ring */
Let (r,n—1) denote the node immediately downstream of Node (r,7) in clockwise direction
/* since Node (r,n) is directly communicating with this node it can easily keep
track of 7i_1. Note that n_; is not equal to n — 1 in an incomplete ring
consisting of less than n + 1 nodes */
Then, dimensions 11 — 1,m-1,1-1+1,...,n — 1 are assumed unavailable in Ring r
/* Note that, according to scaling rules, dirnensions 0, 1,..., (n_; — 2) are
available in Ring r */
Let U be an n + 1 bit binary number with bits n_; — 1,n-1,n-1 4+ 1,...,n — 1 set to 1 and the

remaining bits set to 0
do

if (Ch AU) =0 /* i.e,, all the required dimensions are available */
If ((Ch A2°)#0)
Set Cp, = Cj, @ 2¢
Set r=r@2°
Forward the packet on dimension e
Set e =(e+1)if (n1 <e<n)set e =mn;
else
Set ¢ = (e + 1); if (n—1 < e <n) set e =n;

forward the packet in clockwise direction

else /* i.e., all the dimensions in C, are not availablé in Ring » */
forward the packet to Node (r,n) via the shortest path (by setting C), = 0)
/* i.e., either in clockwise or in anticlockwise direction */
When Node (r,n) is reached
Recompute Ch = dp ® sh
Set Cp, = ChrL ® 2™
Set r=rp2™
Forward the packet on dimension n
/* i.e., packet sent for routing in complete n-dimensional HCRNet */
Set U = 0; /* i.e., all the dimensions are available */
Set e =0

until (C), =0)

Once the destination Ring, dj,, is reached, the packet is routed to the destination node via the shorter of

clockwise and anticlockwise paths.

Fig. 11. Routing rules in an incomplete (n + 1)-dimensional HCRNet.

other hand, if all of the target dimensions are available in the
present ring then the packet is forwarded onto the clockwise
direction. Not that, although a slightly more efficient routing
is possible we preferred to keep our scheme simple, fast, and

easily implementable. It should also be noted that the rout-
ing scheme, formally described in Fig. 11, does not use any
global information. The performance of this routing method
is compared against shortest path routing in Table 4.
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6.2. Fault-tolerant routing in injured HCRNet

In this section we will consider routing in an injured
HCRNet in which one or more of the nodes and/or
links are faulty. The routing scheme is required to detect
such faults in the network and it should automatically
reroute the information via another fault-free route if one
exists. Fault-tolerant routing in HCRNet is based on the
depth-first search approach proposed for hypercubes in
Ref. [16]. In order to conserve space we point how the
scheme in Ref. [16] can be modified for HCRNet and we
refer the reader to Ref. [16] for the details.

In HCRNet, the failure of the ring-links can be dealt by
simply sending the message back in the direction from
which it came. Let the message enter the ring at node
(X,k) and reach Node (X,q) where the next ring-link has
failed. Obviously, the route string does not contain any of
the dimensions from k through g. However, as the message
travels towards the ‘other end’ of the ring there might be
some desired dimension from (g + 1)}, to kK — 1, in which
case the message will continue on an optimal path. Other-
wise, a detour has to be taken from the node which does not
appear in the path list (see Ref. [16]). Note that the failure of
a node (X,k) in HCRNet is equivalent to the failure of the
dimension k link from Node X in the corresponding hyper-
cube. Also, the failure of a hypercube link in HCRNet is
equivalent to the failure of the corresponding link in the
hypercube.

7. Conclusions

A new regular multihop architecture for logical light-
wave network topology is studied. The proposed archi-
tecture is based on a hypercube connected ring structure
that not only enjoys the rich and widely studied topolo-
gical properties of hypercube, but it also overcomes one
of its drawbacks. In a hypercube, the nodal degree
increases with the number of nodes, and hence the per-
node cost of the network increases as the network size
grows. However, in a hypercube connected ring network,
the nodal degree is small and it remains constant, inde-
pendent of the network population. Moreover, the
proposed architecture, HCRNet, satisfies the basic
requirements of a multihop network topology. HCRNet
is scalable, modular, and, it is perfectly symmetric. It
provides a simple and fast routing mechanism that
leads to balanced loads on the hypercube-links under
uniform traffic. Its average internodal distance is in the
logarithmic order of the network population and it is
comparable to other regular structures such as the
Trous and ShuffleNet. HCRNet resembles the Cube
Connected Cycle interconnection pattern proposed for
multiprocessor architectures. However, HCRNet improves
on CCC by rearranging its hypercube links, which results
in a significantly lower average internodal distance. In

this work, the structural properties of HCRNet, its scal-
ability, and fast routing schemes in complete and incom-
plete HCRNet are studied.

Future work will include the study of fault-tolerant rout-
ing schemes that can be based on depth-first search or other
techniques that are proposed for a hypercube. Also, it will be
interesting to extend this work to other forms of product
graphs, e.g. generalized hypercube interconnecting general-
ized multi-connected rings.
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