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Problem
• Algorithms are expressed in real RAM model.
• Input is assumed in general position.
• Implementations must use computer arithmetic.
• Implementations must handle degenerate input.
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Geometric Predicates
• Main interface with real RAM model

(also geometric constructions).
• PredicateP (x) is true when polynomialf(x) is

positive.
• Unsafe predicate:|f(x)| near the rounding unit.
• Degenerate predicate:f(x) = 0.
• Singular predicate:f(x) = 0 andf ′(x) = 0.
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Exact Computational Geometry
• Implement predicates exactly using real algebraic

geometry.
• Symbolic perturbation of degenerate predicates.
• Technical Problems

• Running time grows rapidly with algebraic
degree.

• Bit complexity grows rapidly in iterated
computation.

• Large constant factors and programming
overhead.
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Conceptual Problem
• Scientific computing is approximate because

exact solutions are impractical and unnecessary.
• That is why rounding and numerical analysis

were invented.
• Why should computational geometry be exact?
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Approximate Comp. Geometry
• Implement predicates approximately using

floating point arithmetic and numerical solvers.
• Advantages:

• Running time grows modestly with degree.
• Constant bit complexity.
• Small constant factors.

• Challenge: generate consistent output.
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Consistency
• Error metric: distance from input to perturbed

input for which the computed output is correct.
• Inconsistent output: no such perturbation exists.
• Example: plane curves in cyclic vertical order.
• a < b beforepx, b < c beforerx, c < a afterqx.
• Numerical error causesqx < px.
• Inconsistency:a < b < c < a on (qx, px).
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Inconsistency Sensitive Strategy
• Adapt RAM algorithms to generate consistent

output despite computation error.
• Bound output error and extra cost in terms of

computation error and inconsistency count.
• Advantage: speed and accuracy.
• Disadvantage: lack of generality.
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Arrangement Algorithm
• Input: x-monotonic semi-algebraic curves,

crossing module.
• Step 1: Compute curve crossings andy-order.
• Step 2: Embed curve endpoints.
• Output:O(ǫ + knǫ) accurate arrangement forn

curves and anǫ-accurate crossing module withk
inconsistencies.

• Proving consistency is much easier than proving
an error bound!
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Crossing Module
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• Crossings computed with custom eigensolver.
• Accuracy,ǫ, of 12–16 decimal digits.

• Running timecd4 for degreed.
• c = 6 microseconds on 2.2 GHz processor.
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Step 1: Curvey-order
• Crossing module defines curvey-order,a <x b.
• k inconsistencies:a <x b <x c <x a on maximal

open interval.
• Bentley sweep with two modifications:

1. Don’t swap non-adjacent curves.
2. Immediately swap out-of-order curves.

• Sweep list defines outputy-order,a <′
x b.

• Error analysis: bound distance betweena, b atx
wherea <′

x b andb <x a.
• Key idea: there exists a sequence

a <x s1 <x · · · <x sp <x b with p ≤ k.
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Step 2: Endpoint Embedding
Inconsistency between endpoint and curvey-orders.
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Step 2: Endpoint Embedding
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Perturbation Methods
• Perturb input to avoid inconsistency and

degeneracy.
• Minimize perturbation size relative to success

probability.
• Advantage: general.
• Disadvantages of prior work

• inaccurate, especially for near-singular input.
• incompatible with equality constraints

(implicit parameters).
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Constrained Linear Perturb.
Strategy: assign signs to polynomials then compute
minimal perturbation that realizes these signs.

• No error or cost for safe polynomials.
• Accurate perturbation of singular polynomials.
• Implicit parameters handled.
• Signs can be set to zero.
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CLP Implementation Strategy
• Online algorithm: compute perturbation for both

signs of polynomial subject to prior signs; select
smaller perturbation.

• Linear programming implementation.
• Linear Taylor series for regular polynomials.
• Replace a near-singular polynomial with a regular

proxy and constrain it to have the same sign.
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CLP Definition
• CLP defined for polynomialsf1, . . . , fm atx = a.
• fi safe:|fi(a)| > kiµ with µ the rounding unit.
• Perturbation:p = a + δv, δ ≥ 0, ||v|| = 1.
• CLP:p and signss1, . . . , sm with si = ±1.
• If fi is safe,si is the computed sign. If not,si is

the sign of the rate of change∇fi · v.
• sifi(p) ≥ kiµ for i = 1, . . . ,m.
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Core Algorithm
• Extend CLP fromf1, . . . , fm−1 to fm.
• If fm is safe, return the computed sign and the

prior p.
• Else assign the sign andv that maximize the

minimum of the rates,ri = si∇fi · v/ki, at which
the unsafefi become safe.

• Maximizer subject tori ≥ r andsm = ±1;
assignsm andv from the largerr value.

• Setδ = 2µ/r to makesi correct for the linearized
fi with margin2kiµ.

• Verify sifi(p) ≥ kiµ for all unsafefi.
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Sorting Example
• Sort four equal numbersxi = 0.
• Predicate polynomials arexi − xj with ki = 1.
• Six signs assigned during sorting.
• Perturbation direction constraints:−1 ≤ vi ≤ 1.
• Sign 1:x2 − x1 with casesv2 − v1 ≥ r and

v1 − v2 ≥ r; maximum ofr = 2 for both, so
s1 = 1 andx1 < x2.

x1 x4

x3
x2

−1 0 1
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Sorting Example
• Sign 2:x3 − x2

• s2 = 1: v3 − v2 ≥ r andv2 − v1 ≥ r with
maximumr = 1 atv = (−1, 0, 1, 0).

• s2 = −1: v2 − v3 ≥ r andv2 − v1 ≥ r with
maximumr = 2 atv = (−1, 1,−1, 0).

• Sets2 = −1 andx3 < x2.
x3
x1 x4 x2

−1 0 1

• Sign 6:x1 < x3 < x4 < x2.

x1 x3 x4 x2

11/3−1/3−1
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Pappus Example
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• Sortx coordinates of the intersection points of 9
lines with 9 near-triple intersection points.

• First 8 triples permit all signs; 254 of these
permit both signs for ninth triple.
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Full CLP algorithm
• Proxies for near-singular polynomials.

• Status: manual construction.
• Research: automated construction for

determinant polynomials.
• Implicit parameter definitions.

• Status: regular definitions.
• Research: singular definitions.

• Output simplification.
• Random perturbation direction.
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CLP versus controlled pert.
• Convex hull ofn identical points:δ = 121µ for

n = 100, δ = 238µ for n = 200, δ = 1619µ for
n = 1000.

• Controlled perturbations2 × 108 times larger.
• Delaunay triangulation ofn identical points:

δ = 399µ for n = 100, δ = 1767µ for n = 200,
δ = 14959µ for n = 1000.

• Controlled perturbations1011 times larger.
• Delaunay triangulation ofn points on unit line

segment:δ = 636µ for n = 100, δ = 2933µ for
n = 200, δ = 8479µ for n = 1000.

• Controlled perturbations2 × 106, 7 × 106,
2 × 109 times larger.
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CLP versus ECG
• Arrangement of 100 random degree-6 algebraic

curves: 22 seconds with CLP; 220 seconds with
ECG [Eigenwillig, 2008].

• Arrangement of 100 degenerate degree-6
semi-algebraic curves.
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CLP versus ECG
• Arrangement contains 1330 vertices, including 43

clusters of nearly equal vertices with an average
of 23 vertices per cluster and 55 vertices in the
largest cluster.

• 1.5 seconds with CLP; estimated 30,000 seconds
with ECG.

• Estimate based on measured root separation,ρ,
and on publishedlog2 ρ running time.
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Conclusion
• Approximate computational geometry is fast and

accurate.
• Consistency is the challenge.
• Consistency sensitivity works case by case.
• CLP is algorithm-independent.
• We aim for a black box CLP library.
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