
Two Strategies for Approximate Computational
Geometry

Elisha Sacks, Purdue University

joint work with

Victor Milenkovic, University of Miami

Two Strategies for Approximate Computational Geometry – p.1/26

Problem
• Algorithms are expressed in real RAM model.
• Input is assumed in general position.
• Implementations must use computer arithmetic.
• Implementations must handle degenerate input.

Two Strategies for Approximate Computational Geometry – p.2/26

Geometric Predicates
• Main interface with real RAM model

(also geometric constructions).
• PredicateP (x) is true when polynomialf(x) is

positive.
• Unsafe predicate:|f(x)| near the rounding unit.
• Degenerate predicate:f(x) = 0.
• Singular predicate:f(x) = 0 andf ′(x) = 0.

Two Strategies for Approximate Computational Geometry – p.3/26

Exact Computational Geometry
• Implement predicates exactly using real algebraic

geometry.
• Symbolic perturbation of degenerate predicates.
• Technical Problems

• Running time grows rapidly with algebraic
degree.

• Bit complexity grows rapidly in iterated
computation.

• Large constant factors and programming
overhead.

Two Strategies for Approximate Computational Geometry – p.4/26

Conceptual Problem
• Scientific computing is approximate because

exact solutions are impractical and unnecessary.
• That is why rounding and numerical analysis

were invented.
• Why should computational geometry be exact?

Two Strategies for Approximate Computational Geometry – p.5/26

Approximate Comp. Geometry
• Implement predicates approximately using

floating point arithmetic and numerical solvers.
• Advantages:

• Running time grows modestly with degree.
• Constant bit complexity.
• Small constant factors.

• Challenge: generate consistent output.

Two Strategies for Approximate Computational Geometry – p.6/26

Consistency
• Error metric: distance from input to perturbed

input for which the computed output is correct.
• Inconsistent output: no such perturbation exists.
• Example: plane curves in cyclic vertical order.
• a < b beforepx, b < c beforerx, c < a afterqx.
• Numerical error causesqx < px.
• Inconsistency:a < b < c < a on (qx, px).

p

a

q
c

r
b

Two Strategies for Approximate Computational Geometry – p.7/26

Inconsistency Sensitive Strategy
• Adapt RAM algorithms to generate consistent

output despite computation error.
• Bound output error and extra cost in terms of

computation error and inconsistency count.
• Advantage: speed and accuracy.
• Disadvantage: lack of generality.

Two Strategies for Approximate Computational Geometry – p.8/26

Arrangement Algorithm
• Input: x-monotonic semi-algebraic curves,

crossing module.
• Step 1: Compute curve crossings andy-order.
• Step 2: Embed curve endpoints.
• Output:O(ǫ + knǫ) accurate arrangement forn

curves and anǫ-accurate crossing module withk
inconsistencies.

• Proving consistency is much easier than proving
an error bound!

Two Strategies for Approximate Computational Geometry – p.9/26

Crossing Module

xs xer1

f

g

r2 r3 r4
x

y

• Crossings computed with custom eigensolver.
• Accuracy,ǫ, of 12–16 decimal digits.

• Running timecd4 for degreed.
• c = 6 microseconds on 2.2 GHz processor.

Two Strategies for Approximate Computational Geometry – p.10/26

Step 1: Curvey-order
• Crossing module defines curvey-order,a <x b.
• k inconsistencies:a <x b <x c <x a on maximal

open interval.
• Bentley sweep with two modifications:

1. Don’t swap non-adjacent curves.
2. Immediately swap out-of-order curves.

• Sweep list defines outputy-order,a <′
x b.

• Error analysis: bound distance betweena, b atx
wherea <′

x b andb <x a.
• Key idea: there exists a sequence

a <x s1 <x · · · <x sp <x b with p ≤ k.

Two Strategies for Approximate Computational Geometry – p.11/26

Step 2: Endpoint Embedding
Inconsistency between endpoint and curvey-orders.

e

f

u

v

e

f

u

v

inconsistency fix

e

g

f

w

u,v

f

g

e

p w

u,v

inconsistency fix
Two Strategies for Approximate Computational Geometry – p.12/26

Step 2: Endpoint Embedding
g

ue

f
v

w

g

e u
p

f
v

w

inconsistency fix

Two Strategies for Approximate Computational Geometry – p.13/26

Perturbation Methods
• Perturb input to avoid inconsistency and

degeneracy.
• Minimize perturbation size relative to success

probability.
• Advantage: general.
• Disadvantages of prior work

• inaccurate, especially for near-singular input.
• incompatible with equality constraints

(implicit parameters).

Two Strategies for Approximate Computational Geometry – p.14/26

Constrained Linear Perturb.
Strategy: assign signs to polynomials then compute
minimal perturbation that realizes these signs.

• No error or cost for safe polynomials.
• Accurate perturbation of singular polynomials.
• Implicit parameters handled.
• Signs can be set to zero.

Two Strategies for Approximate Computational Geometry – p.15/26

CLP Implementation Strategy
• Online algorithm: compute perturbation for both

signs of polynomial subject to prior signs; select
smaller perturbation.

• Linear programming implementation.
• Linear Taylor series for regular polynomials.
• Replace a near-singular polynomial with a regular

proxy and constrain it to have the same sign.

Two Strategies for Approximate Computational Geometry – p.16/26

CLP Definition
• CLP defined for polynomialsf1, . . . , fm atx = a.
• fi safe:|fi(a)| > kiµ with µ the rounding unit.
• Perturbation:p = a + δv, δ ≥ 0, ||v|| = 1.
• CLP:p and signss1, . . . , sm with si = ±1.
• If fi is safe,si is the computed sign. If not,si is

the sign of the rate of change∇fi · v.
• sifi(p) ≥ kiµ for i = 1, . . . ,m.

Two Strategies for Approximate Computational Geometry – p.17/26

Core Algorithm
• Extend CLP fromf1, . . . , fm−1 to fm.
• If fm is safe, return the computed sign and the

prior p.
• Else assign the sign andv that maximize the

minimum of the rates,ri = si∇fi · v/ki, at which
the unsafefi become safe.

• Maximizer subject tori ≥ r andsm = ±1;
assignsm andv from the largerr value.

• Setδ = 2µ/r to makesi correct for the linearized
fi with margin2kiµ.

• Verify sifi(p) ≥ kiµ for all unsafefi.

Two Strategies for Approximate Computational Geometry – p.18/26

Sorting Example
• Sort four equal numbersxi = 0.
• Predicate polynomials arexi − xj with ki = 1.
• Six signs assigned during sorting.
• Perturbation direction constraints:−1 ≤ vi ≤ 1.
• Sign 1:x2 − x1 with casesv2 − v1 ≥ r and

v1 − v2 ≥ r; maximum ofr = 2 for both, so
s1 = 1 andx1 < x2.

x1 x4

x3
x2

−1 0 1

Two Strategies for Approximate Computational Geometry – p.19/26

Sorting Example
• Sign 2:x3 − x2

• s2 = 1: v3 − v2 ≥ r andv2 − v1 ≥ r with
maximumr = 1 atv = (−1, 0, 1, 0).

• s2 = −1: v2 − v3 ≥ r andv2 − v1 ≥ r with
maximumr = 2 atv = (−1, 1,−1, 0).

• Sets2 = −1 andx3 < x2.
x3
x1 x4 x2

−1 0 1

• Sign 6:x1 < x3 < x4 < x2.

x1 x3 x4 x2

11/3−1/3−1
Two Strategies for Approximate Computational Geometry – p.20/26

Pappus Example

5q

7q

1q

2q

3q

9q8q

4q
6q

8

1
2 3

5
6

7

4

9

• Sortx coordinates of the intersection points of 9
lines with 9 near-triple intersection points.

• First 8 triples permit all signs; 254 of these
permit both signs for ninth triple.

Two Strategies for Approximate Computational Geometry – p.21/26

Full CLP algorithm
• Proxies for near-singular polynomials.

• Status: manual construction.
• Research: automated construction for

determinant polynomials.
• Implicit parameter definitions.

• Status: regular definitions.
• Research: singular definitions.

• Output simplification.
• Random perturbation direction.

Two Strategies for Approximate Computational Geometry – p.22/26

CLP versus controlled pert.
• Convex hull ofn identical points:δ = 121µ for

n = 100, δ = 238µ for n = 200, δ = 1619µ for
n = 1000.

• Controlled perturbations2 × 108 times larger.
• Delaunay triangulation ofn identical points:

δ = 399µ for n = 100, δ = 1767µ for n = 200,
δ = 14959µ for n = 1000.

• Controlled perturbations1011 times larger.
• Delaunay triangulation ofn points on unit line

segment:δ = 636µ for n = 100, δ = 2933µ for
n = 200, δ = 8479µ for n = 1000.

• Controlled perturbations2 × 106, 7 × 106,
2 × 109 times larger.

Two Strategies for Approximate Computational Geometry – p.23/26

CLP versus ECG
• Arrangement of 100 random degree-6 algebraic

curves: 22 seconds with CLP; 220 seconds with
ECG [Eigenwillig, 2008].

• Arrangement of 100 degenerate degree-6
semi-algebraic curves.

Two Strategies for Approximate Computational Geometry – p.24/26

CLP versus ECG
• Arrangement contains 1330 vertices, including 43

clusters of nearly equal vertices with an average
of 23 vertices per cluster and 55 vertices in the
largest cluster.

• 1.5 seconds with CLP; estimated 30,000 seconds
with ECG.

• Estimate based on measured root separation,ρ,
and on publishedlog2 ρ running time.

Two Strategies for Approximate Computational Geometry – p.25/26

Conclusion
• Approximate computational geometry is fast and

accurate.
• Consistency is the challenge.
• Consistency sensitivity works case by case.
• CLP is algorithm-independent.
• We aim for a black box CLP library.

Two Strategies for Approximate Computational Geometry – p.26/26

	Problem
	Geometric Predicates
	Exact Computational Geometry
	Conceptual Problem
	Approximate Comp. Geometry
	Consistency
	Inconsistency Sensitive Strategy
	Arrangement Algorithm
	Crossing Module
	Step 1: Curve y-order
	Step 2: Endpoint Embedding
	Step 2: Endpoint Embedding
	Perturbation Methods
	Constrained Linear Perturb.
	CLP Implementation Strategy
	CLP Definition
	Core Algorithm
	Sorting Example
	Sorting Example
	Pappus Example
	Full CLP algorithm
	CLP versus controlled pert.
	CLP versus ECG
	CLP versus ECG
	Conclusion

