Two Strategies for Approximate Computational Geometry

Elisha Sacks, Purdue University joint work with Victor Milenkovic, University of Miami

Problem

- Algorithms are expressed in real RAM model.
- Input is assumed in general position.
- Implementations must use computer arithmetic.
- Implementations must handle degenerate input.

Geometric Predicates

- Main interface with real RAM model (also geometric constructions).
- Predicate P(x) is true when polynomial f(x) is positive.
- Unsafe predicate: |f(x)| near the rounding unit.
- Degenerate predicate: f(x) = 0.
- Singular predicate: f(x) = 0 and f'(x) = 0.

Exact Computational Geometry

- Implement predicates exactly using real algebraic geometry.
- Symbolic perturbation of degenerate predicates.
- Technical Problems
 - Running time grows rapidly with algebraic degree.
 - Bit complexity grows rapidly in iterated computation.
 - Large constant factors and programming overhead.

Conceptual Problem

- Scientific computing is approximate because exact solutions are impractical and unnecessary.
- That is why rounding and numerical analysis were invented.
- Why should computational geometry be exact?

Approximate Comp. Geometry

- Implement predicates approximately using floating point arithmetic and numerical solvers.
- Advantages:
 - Running time grows modestly with degree.
 - Constant bit complexity.
 - Small constant factors.
- Challenge: generate consistent output.

Consistency

- Error metric: distance from input to perturbed input for which the computed output is correct.
- Inconsistent output: no such perturbation exists.
- Example: plane curves in cyclic vertical order.
- a < b before p_x , b < c before r_x , c < a after q_x .
- Numerical error causes $q_x < p_x$.
- Inconsistency: a < b < c < a on (q_x, p_x) .

Inconsistency Sensitive Strategy

- Adapt RAM algorithms to generate consistent output despite computation error.
- Bound output error and extra cost in terms of computation error and inconsistency count.
- Advantage: speed and accuracy.
- Disadvantage: lack of generality.

Arrangement Algorithm

- Input: *x*-monotonic semi-algebraic curves, crossing module.
- Step 1: Compute curve crossings and *y*-order.
- Step 2: Embed curve endpoints.
- Output: O(ε + knε) accurate arrangement for n curves and an ε-accurate crossing module with k inconsistencies.
- Proving consistency is much easier than proving an error bound!

Crossing Module

- Crossings computed with custom eigensolver.
- Accuracy, ϵ , of 12–16 decimal digits.
- Running time cd^4 for degree d.
- c = 6 microseconds on 2.2 GHz processor.

Step 1: Curve y-order

- Crossing module defines curve y-order, $a <_x b$.
- k inconsistencies: a <_x b <_x c <_x a on maximal open interval.
- Bentley sweep with two modifications:
 - 1. Don't swap non-adjacent curves.
 - 2. Immediately swap out-of-order curves.
- Sweep list defines output y-order, $a <'_x b$.
- Error analysis: bound distance between a, b at x where a <'x b and b <x a.
- Key idea: there exists a sequence $a <_x s_1 <_x \cdots <_x s_p <_x b$ with $p \le k$.

Step 2: Endpoint Embedding

Inconsistency between endpoint and curve *y*-orders.

Step 2: Endpoint Embedding

inconsistency

fix

Perturbation Methods

- Perturb input to avoid inconsistency and degeneracy.
- Minimize perturbation size relative to success probability.
- Advantage: general.
- Disadvantages of prior work
 - inaccurate, especially for near-singular input.
 - incompatible with equality constraints (implicit parameters).

Constrained Linear Perturb.

Strategy: assign signs to polynomials then compute minimal perturbation that realizes these signs.

- No error or cost for safe polynomials.
- Accurate perturbation of singular polynomials.
- Implicit parameters handled.
- Signs can be set to zero.

CLP Implementation Strategy

- Online algorithm: compute perturbation for both signs of polynomial subject to prior signs; select smaller perturbation.
- Linear programming implementation.
- Linear Taylor series for regular polynomials.
- Replace a near-singular polynomial with a regular proxy and constrain it to have the same sign.

CLP Definition

- CLP defined for polynomials f_1, \ldots, f_m at $\mathbf{x} = \mathbf{a}$.
- f_i safe: $|f_i(\mathbf{a})| > k_i \mu$ with μ the rounding unit.
- Perturbation: $\mathbf{p} = \mathbf{a} + \delta \mathbf{v}, \delta \ge 0, ||\mathbf{v}|| = 1.$
- CLP: **p** and signs s_1, \ldots, s_m with $s_i = \pm 1$.
- If f_i is safe, s_i is the computed sign. If not, s_i is the sign of the rate of change ∇f_i · v.
- $s_i f_i(\mathbf{p}) \ge k_i \mu$ for i = 1, ..., m.

Core Algorithm

- Extend CLP from f_1, \ldots, f_{m-1} to f_m .
- If f_m is safe, return the computed sign and the prior **p**.
- Else assign the sign and v that maximize the minimum of the rates, $r_i = s_i \nabla f_i \cdot v/k_i$, at which the unsafe f_i become safe.
- Maximize r subject to $r_i \ge r$ and $s_m = \pm 1$; assign s_m and \mathbf{v} from the larger r value.
- Set $\delta = 2\mu/r$ to make s_i correct for the linearized f_i with margin $2k_i\mu$.
- Verify $s_i f_i(\mathbf{p}) \ge k_i \mu$ for all unsafe f_i .

Sorting Example

- Sort four equal numbers $x_i = 0$.
- Predicate polynomials are $x_i x_j$ with $k_i = 1$.
- Six signs assigned during sorting.
- Perturbation direction constraints: $-1 \le v_i \le 1$.
- Sign 1: $x_2 x_1$ with cases $v_2 v_1 \ge r$ and $v_1 v_2 \ge r$; maximum of r = 2 for both, so $s_1 = 1$ and $x_1 < x_2$.

Sorting Example

- Sign 2: $x_3 x_2$
 - $s_2 = 1$: $v_3 v_2 \ge r$ and $v_2 v_1 \ge r$ with maximum r = 1 at $\mathbf{v} = (-1, 0, 1, 0)$.
 - $s_2 = -1$: $v_2 v_3 \ge r$ and $v_2 v_1 \ge r$ with maximum r = 2 at $\mathbf{v} = (-1, 1, -1, 0)$.

• Set
$$s_2 = -1$$
 and $x_3 < x_2$.

• Sign 6: $x_1 < x_3 < x_4 < x_2$.

Pappus Example

- Sort *x* coordinates of the intersection points of 9 lines with 9 near-triple intersection points.
- First 8 triples permit all signs; 254 of these permit both signs for ninth triple.

Full CLP algorithm

- Proxies for near-singular polynomials.
 - Status: manual construction.
 - Research: automated construction for determinant polynomials.
- Implicit parameter definitions.
 - Status: regular definitions.
 - Research: singular definitions.
- Output simplification.
- Random perturbation direction.

CLP versus controlled pert.

- Convex hull of n identical points: $\delta = 121\mu$ for $n = 100, \delta = 238\mu$ for $n = 200, \delta = 1619\mu$ for n = 1000.
- Controlled perturbations 2×10^8 times larger.
- Delaunay triangulation of n identical points: $\delta = 399\mu$ for $n = 100, \delta = 1767\mu$ for $n = 200, \delta = 14959\mu$ for n = 1000.
- Controlled perturbations 10¹¹ times larger.
- Delaunay triangulation of n points on unit line segment: $\delta = 636\mu$ for $n = 100, \delta = 2933\mu$ for $n = 200, \delta = 8479\mu$ for n = 1000.
- Controlled perturbations 2 × 10⁶, 7 × 10⁶, 2 × 10⁹ times larger.

CLP versus ECG

- Arrangement of 100 random degree-6 algebraic curves: 22 seconds with CLP; 220 seconds with ECG [Eigenwillig, 2008].
- Arrangement of 100 degenerate degree-6 semi-algebraic curves.

CLP versus ECG

- Arrangement contains 1330 vertices, including 43 clusters of nearly equal vertices with an average of 23 vertices per cluster and 55 vertices in the largest cluster.
- 1.5 seconds with CLP; estimated 30,000 seconds with ECG.
- Estimate based on measured root separation, ρ , and on published $\log^2 \rho$ running time.

Conclusion

- Approximate computational geometry is fast and accurate.
- Consistency is the challenge.
- Consistency sensitivity works case by case.
- CLP is algorithm-independent.
- We aim for a black box CLP library.