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Robust Complete Path Planning in the Plane

Victor Milenkovic, Elisha Sacks, and Steven Trac

Abstract—We present a complete path planning algorithm for Il. PRIORWORK

a plane robot with three degrees of freedom and a static obstacle. Avnaim et al [5 taf tructi laorith
The part boundaries consist ofn linear and circular edges. The vnaim et al [5] present a free space construction algorithm

algorithm constructs and searches a combinatorial representa- for polygonal parts. Our algorithm has the same complexsty a
tion of the robot free space. Its computational complexity is theirs, yet handles circular edges, which increases tlebedic

O((n" +c3) logn) with ¢3 € O(n°) the number of configurations  degree of the free space and complicates its combinatorial
with three simultaneous contacts between robot and obstacle structure. Circular edges enable one to model curved paés t

edges. The algorithm is implemented robustly using our adaptive- . ith f d d it t K
precision controlled perturbation library. The program is fast and given accuracy with many fewer edges and permit one to wor

memory efficient, is provably accurate, and handles degenerate With level sets and rotational sweeps without approxinmatio
input. Sacks [6] presents a precursor to our algorithm that comspute

type 3 criticalities (Sec. lll) approximately, is not outpu
sensitive, and is not robust. Stappetral [7] develop efficient
path planning algorithms for a translating robot with miigut
I. INTRODUCTION restrictions. Sacks [3] computes the free space of two curve
parts, in 2D or 3D, each of which rotates around or translates
We present a complete path planning algorithm for a plamaéong a fixed axis.
robot with three degrees of freedom and a static obstacke. Th Complete path planning has been implemented robustly
part boundaries consist of linear and circular edges. Thevia exact computation (Sec. VI) for translating polygon§ [8
algorithm constructs and searches a combinatorial represganslating polyhedra [9], and polygons with translatidong
tation of the robot free space. Complete path planning has axis and rotation [10].
been deemed impractical because the free space complexitYhere is extensive research on sample-based planning with
is O(nd) for an input of sizen with d degrees of freedom. narrow passages. The approach closest to ours is a hybrid
However, mild input restrictions reduce the complexity talgorithm [11] that approximates the free space with aneectr
O(n) [1]. Our algorithm is practical for this class of inputscomprised of free, blocked, and mixed cells, builds a graph o
because it is sensitive to the reduced complexity. free configurations for each mixed cell, and links the graphs
Complete path planning has also been deemed impradatito a global approximation of free space. In practice, this
cal because it employs computational geometry algorithm®ethod is restricted tai = 3 because its computational
that are hard to implement robustly, meaning accurately aodmplexity isr~¢ with r the octree resolution.
efficiently. We implement our algorithm using our adaptive-
precision controlled perturbation robustness librarye Tino- 1. OVERVIEW
gram is fast and memory efficient, is provably accurate, and
handles degenerate input.
Complete path planning solves the narrow passage probl
of sample-based planning. Sample-based planning algwsith

[2] build and search a graph whose vertices and edges %a’e) € C|(OM +a) N F = 0} Def'me —M - {=mlm €
oints and line segments in free space. As the sample siz .When the robot translates atgﬁx@dalue, its free space
P ’ IS defined by the convex convolution [12] 6{— M) and F.

grows, the probability of finding a path converges to Onq’he convolution is the set of points, such that M +t has a

The outstanding problem isarrow passagesvhere the robot . L . L
. . : Iacal contact withF'. It subdivides the plane into open regions:
clearanceg, is small. The sample size that ensures a fixe

probability of finding a path is2(=—%) for a robot with d some regions comprise the free space and the others comprise

. . ) the blocked space. Fig. 1a depicts an oval robot inside a dome
degrees of freedom. Planning experiments confirm that warrg .

: : . . . Shaped room. The obstacle is the complement of the room. The
passages require large sample sizes in practice. Our planne

correct for anye. We demonstrate that it is fast fer= 10-8, convolution edges appear above. Far c@—a, denotect —a,
a value that far exceeds application requirements, a + t contactse, and similarly forb andd. The free space is

Er nstruction ts mechanical desian I3 tp] circular segment bounded by subsetg efa andd — b.
ee space construction supports mechanical design [3] a he subdivision is a smooth function @f except at a

Fezﬁ:';?)r/gg:)t[i]oﬁ:‘gor:;htn;f]sby EZ?ézztier]n?et-geassep dace Of. PQiscrete set of critical angles where its structure chanfjesre
: 'gurations, w P aigosi are three types of criticality (Sec. IV), a change in: 1) teé s

cannot provide this information. of convolution edges, 2) the set of intersections among£dge
Victor Milenkovic is at the University of Miami, vim@miami.edu or 3) the order of intersections on each edge'
Elisha Sacks is at Purdue University, elisha.sé\cks@gmail.é Fig. 1b illustrates a type 1 criticality at which there esist
Steven Trac is at Epic Systems Corporation, Madison, WI, @emic.com such thatz + ¢t andd can be tangent at an endpoint (although

Index Terms—Path planning, robust geometry.

The configuration space 6 = #2? x S. LetdM +a denote a
r%t])ot, M, rotated by angl® around the origin then translated
Ey a. The free space ol with respect to an obstaclé;, is
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Fig. 1. Type 1 criticality: before (a), at critical angle (lafter (c). Fig. 3. Type 3 criticality: before (a), at critical angle (ifter (c).
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c Fig. 4. Circular edges: convex(a), concavef (b), concavey = e @ f (C).
(b)
d\—a
c-a \\tx normal,n,. An edge,e, is an open line segment or circular
/ d- arc with tail vertext = ¢, and head vertex = h. such that
ny X np > 0 (Fig. 4). A linear edge has normal. = n;

d (= ng), normal interval[n.,n.], and curvatures, = 0. A
circular edge has normal intervéh;, n;), angular extent at
. mostr, centerm,, signed radius., and curvature, = 1/r..
c N, It is convex if r, > 0 and is concave otherwise. The part
© interior lies to the left when a linear or convex edge is tragd
from ¢ to h, or when a concave edge is traversed frono ¢.
Fig. 2. Type 2 criticalities: at critical angle (a), betwen), at critical angle The convex convolution [12] of’ and #(—M) consists of
©- sum vertices and sum edges. A sum vertex: v @ e, is the
sum of a vertexy, on one part and a point, on an edgeg, of
t is in blocked space). Beyond this criticality, the edfie a the other part such that, equals the normal of ata. If v €
appears (Fig. 1c). Figs. 2a and 2c depict the type 2 critieali F, fe € 6(—M) andw = v @ e, thenp,, = p, +0me +1en,
at whichd — a first intersects: — ¢ andd — « first intersects andn,, = n,. If v € 8(—M), e € F andw = v P e,
d—b. Fig. 3b depicts a type 3 criticality in which—a, d—a, thenp, = 0p, + m¢ + r.6n, andn, = 6n,. A sum edge,
andd — b are coincident and a triple contact is possible. Thg=e®0f, is the sum of edgese F andff € 6(—M) with
triangle formed byc — a, d — a, andd — b flips (Fig. 3a and s, + sy > 0 whose normal intervals intersect. The curvature
Fig. 3c), and the boundary of the free space now containgendition implies that?” and M + ¢ are in contact without
subset ofd — a. local overlap for everyt € g, which is necessary foy to
By sweeping a plane of constafit we compute a vertical contribute to the free space boundary. Edgés the set of
decomposition of configuration space along thexxis and sums,p + ¢, of pointsp € e andq € f with equal normals.
extract the subset that comprises the free space (Sec. V #nd and f are circular,g is circular withm, = m. + 6my,
Fig. 12b). We describe the robust implementation in Sec. W), = r. +ry, t, =t. ®0f ort, = 0ty de, andhy, = h. BOf

and validate it in Sec. VII. or hy = 6hy ® e (Fig. 4). If one edge is linear, the other is
circular by the convexity condition, sg is the offset of the
IV. CRITICALITY COMPUTATION linear edge by the circle. I¢ is circular,n, = 6ng, t, =

A part is a plane region with a boundary comprised dfty + m. + r.fny andhy = 0hy + m. + r.0ny; otherwise,
vertices and edges. A vertex, is a point,p,,, and an outward ng, = n., ty = t. +0mys +rn. andhgy = he + 0my + rene.
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Fig. 6. Circle/circle (a—c) and circle/line (d) tangencies

(b) m, g
Fig. 5. Type 1 criticality:0 < 0 (a), 0 > 0 (b). r
f g
e

Let edgese and f in counterclockwise order around the (b)
boundary of one part meet at verticesndw, SOp, = py,. If
n, X Ny > 0, p, forms sum edges with the compatible edges
of the other part. These sum edges can be derived as above f 9
by introducing an artificial circular edge with tail headw, e
and radius zero [13]. ()

Fig. 7. Circle/circle (a—c) and circle/line (d) hits.
A. Type 1 Criticality

A type 1 criticality occurs when vertices € F and
bw € 6(—M) have equal normals. This criticality, denote oth edges. Likewise for hits.
(v, w), OCCUrS &b = n,/ny,. Here and throughout the paper, The tangency equations for circular edgesand f with
angles are equated with unit vectors and division denotes ﬁp > |r/| (Fig. 6b) are|jm —me|| = r with r — [r| & |r]
complex quotient, sa,/n,, is n, rotated clockwise by the & ¢ 71 ! en e S

. Letme =a+0b, my =c+0d, w=c—a, andv = d —b.
angle ofn,,. The sum vertex @6 f with f € —M enters and _ . . : . :
exits the convolution at thév, hy) and (v.t,) criticalities: Let b; be the intersection points of the circle with center0)

. ! and radius-, and the circle with center and radiug|v||. The
6w & e with e € F enters and exits at thg., w) and (h., w) ’ .
o o L TN I h =b;/r.. Th I
criticalities. If e € F' is circular andf € —M s linear, the e normals at the tangent points asg= b;/r. ef normals

: for r = + are Fsi ;. The critical angles are
sum edgeg = e @ 6f enters and exits at th@.,ny) and 0. jn-/‘gj/”v'ﬁ{'Thech:ilt%él’cgﬁ;)fiZl?:é are; — a+9_bf7. n;
(he,ny) criticalities (we useny instead oft; or hy because " .° ' ' RS

they have equal normals). i is linear andf is circular If f is linear, the distance from, to the f line equalsjr|
y qu ' > “TMHAL 9 (Fig. 6d). Define a linear trigonometric expression (LTE) as
enters and exits at thén., hy) and (n,ts) criticalities. If

: ; i 5 with the k; constants. The tangenc
both are circularg enters and exits at th@., k) and(h., ty) Rasing 4 ko cos + ks @ k; constants. The tangency

S o i equations are LTE'su - d=+r.orfng- d=+
criticalities. At the(t.,t;) criticality, t, switches from, &6 f g N Te OF Ony e+ e

e X with m, = 6, + b and withd an LTE. We can solve fof
Eg %tfgg'fAt the (he, ) criticality, hy switches frombhy@e e compute as before. A tangency between linear edges is

angent. It is a criticality when the point of tangency ligs o

. degenerate.
0 F';\;/j SthShtOWS (:dgt;s,_lj_”he £ that !’Peelt atz;lan.déq,f 06 The hit equations for sum vertexand circular edge are
(—M) that meet atw. The (v, w) critical angle ist = 0, lmg — po|| = |ry| (Fig. 7b). If g is linear, the equations are

sum vertexv @ h exits, sum vertices & g, wd e, andw & f My py+d=00f On, - py +d — 0 with d an LTE (Fig. 7d)
g v - Il v — . .

enter, and sum edg¢ & g enters. There is ne & g edge The solutions are the same as for the tangency equations.
(drawn dashed) because + s, < 0. The normal vector out
of v is vertical. The point ory with a parallel normal vector

sums withv to form v & g. Similarly, for w & e, etc. C. Type 1 Criticality with Intersection

A type 1 criticality that coincides with an edge hit is not
o counted as a type 2 criticality. Suppose edgesnd f share
B. Type 2 Criticality vertexv on F and edges and h share vertexw on —M,

A type 2 criticality occurs when two sum edges are tangewith e precedingf in a traversal with the inside on the left
(Fig. 6) or when a sum vertex hits a sum edge (Fig. 7). Aind similarlyg and h. Type 1 events involving the normals
a tangency, two vertices enter or exit the subdivision. At& v and w can either add or remove an intersection. We
hit, each incident edge gains or loses a vertex. A candidatél start with the case that, f and g,h are arcs meeting
tangency occurs when the lines or circles of two edges amoothly aty andw. Next we will consider if some of, f, g, h
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Fig. 9. Concave/convex vertex before (a) and after (b) a fypeent with
ry > 0 andrg > 0. After event withry > 0 andry < 0 (¢) andry < 0
andrg > 0 (d).

Fig. 8. Simultaneous type 1 and 2: Case 2 (a), Case 3 (b).

are line segments. After that, we will address non-smaoth
and/orw. Finally, we will show that these are the only ways a 3) Non-smooth vertices.Non-smooth vertices are treated
type 1 event can introduce an intersection up to the follgwinas zero radius arcs whose “sign” is positive or negativedf th
symmetries: a) exchang€ and —M hencee with g and f  vertex is convex or concave. Under this interpretation,eCas
with ~ and b) take a mirror image and exchangeith f and and Case 2 have an intersectiorf ibr 4 are convex zero radius
g with h. arcs. Non-smooth vertices also introduce three new ways in
1) Smoothly joined arcs.For two pairs of edges meetingwhich a type 1 event can introduce or remove an intersection.
smoothly, there are three cases based on the signed radiAafonvex vertex and concave vertex can cause an intersection
the incident edges. Let edgesf € F meet smoothly ab  only if the convex angle is smaller than the concave angle. In
with outward normaln, and g,h € —M meet smoothly at Fig. 9a, M can fit into F' because the convex angle between
w with outward normal,,. The analysis assumes the criticaly andh atw is smaller than the concave angle betweend
angle isé = 0 and hencer, x n,, > 0 after the type 1 event. f at v. Vector n, (shown) is the outward normal tg at w,
Case lisre <0, 7, 79,7 >0, 7 + 74 >0, 7.+ 75, <0 Which is to the right of the vertical normal; to f atv (not
(Fig. 5b). For the coordinate system in which is they axis, shown). Locally, the convolution is a translated copyeof-.
edge f @ g is abovee @ g (drawn dashed) because they art this casec @ w and f @ w are edges, not vertices, because
tangent and-y +ry > r, > r. +r,. Sincer. +r, >0, e®g w is a (zero-radius) arc with an interval of normal angles.
is concave downward and heneed w with normaln,, is to As n, sweeps past vertical in Fig. 9b, edgiep g appears,
the left of v & g with normaln,. Edgee & h is abovee @ g intersectinge ® w. This is clear becaus#&/ can be put into
because it is tangent tob g ate®w and it is concave upward two-point contact withF", as shown. This happens ffand g
(re+mn < 0). Hence,f ¢ g intersects: & h for all sufficiently are convexly compatible (Fig. 9b-d). The radii and r;, do
small 6 > 0. not matter. Here andh are shown as line segments, but even
Case 2 isre, 7y < 0, rg,rp > 0, 75+ 14 <71 + 7, < 0 ifthey are arcs, they approximate line segments closeaod
(Fig. 8a). For the coordinate system in whie}) is they axis, w.
[ @w ande @ w are the highest and lowest points pfand ~ 4) Completeness:We need to show that these are the
e, respectively, added te. Hence,e @ w is below and to the only ways intersection can occur. Starting with the smooth
right of f @ w. But f © w is also a lowest point of © g, case, we observe that only® h and f & g can intersect
hencee © w is below f @ g. For all sufficiently small > 0 in a neighborhood of the type 1 event. The pai® g and
hencee @ w sufficiently close tof ©w, e® h intersectsf ©g e @ h cannot intersect because their circles are tangent at
becausdr. + 74| < |y + 1] their common endpoint, and similarly @ g and f @ h. An
Case 3jc, 1y <0, 1,75 >0, 7o + 1, <0, 7. +74 >0, intersection corresponds to a double contact betwiesnd
ry + 1y < 0 (Fig. 8b), is similar to Case 1. Edggs® g and M. Since—g is to the left of—h in M, —g cannot contace
e @ h are both externally tangent tab g (dashed), hence theyif —h is contactingf, hencee & g cannot intersecf & h.
intersect for all sufficiently small > 0. If e, f,g,h are all convex, them @ h and f & ¢ are joined
2) Line segment edges.For the purposes of detectingsmoothly bye & g or f @ h and hence do not intersect.
intersections, we can treat line segments as arcsiwith-oco.  Otherwise, we cannot have,r, < 0 or r¢,r, < 0 because
Case 1 cannot have an intersectior i a line because thatboth ¢/h and f/¢g must be convexly compatible. Apply the
impliesr. + r, < 0. Case 2 has an intersectiongifis a line symmetries to make., < 0 hencer;, > 0. The three cases are
segment ana. +r, < 0. Case 3 has an intersectionfifis a thereforery,r, > 0 (1), 7 > 0 andry, < 0 (2), orry <0
line segment and the other inequalities hold. andrg, > 0 (3). For Case 2, ifn, x n, < 0, exchangeF
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and —M. For Case 3, ifn, x n,, < 0, take the mirror image.
Aside from the requirement thaf// and f /g be compatible,

Case 1 requires, x n,, > 0 andr.+r, > 0, Case 2 requires

thatry +r, < r. +ry, and Case 3 requires that 4 r, > 0.

We need to show that these are necessary for intersection.

Case 1 (Fig. 5): As Fig. 5a showg,® g does not exist if
Ny X Ny < 0. If ny Xy >0butre +7, <0, thenf @y

ande & h smoothly joine & g at its endpoints, hence do not

intersect.
Case 2 (Fig. 8a): If.+m, < 4714 (< 0), thenf@g does

not interseck & h becausef & g starts below and to the right
of the minimum ofe @ h and has a larger magnitude radius.

Case 3 (Fig. 8b): As in Case 1,if +r, < 0, thene® ¢
is a sum edge and smoothly conneets h and f @ g, which
therefore cannot intersect.

(d)

Now consider the non-smooth case. If the convex anglefig- 10. Type 3 criticality involving 3 (a), 2 (b), 1 (c), and(@) circular

smaller than the concave angle ydt cannot be seated inside
F with —w in contact withv (Fig. 9a), then the situation must

edges.

be as shown in Figs. 9b-d or their mirror images. The dOUbleGivene, the edge intersection point, is the solution of two

contacts hence intersections do not occur #ndw are both
convex: if e has downward slope;w cannot contact in a
vicinity of v. Finally, if both v andw are concave, therw
cannot come into contact with.

D. Type 3 Criticality

A type 3 criticality occurs when three edges intersect
a point. For circular edges, f, andg (Fig. 10a), letp.s =
Lmepmy andd.y = my—m. = u+60v. By the law of cosines
and the identity(6u) - (v) = u - v,

T§+T]20—def~def

COS Pe f Q)

2rery

rg+r§7u'u7v'v72u~9v

@)

2rery
Define ¢ ¢, and ¢, likewise. The equation

cos? Gef+ cos? Grg+ cos? Pge —2COS e COSPrgCOSPge = 1

follows from ¢.; + ¢pg + Pge 2, which implies
€oS e = c08(¢P g+ Pge), and from the identityos(x +y) =
cosx cosy — sinxsiny. Replacecos ¢y with the rightmost
expression in Eqg. 2 and replaces ¢, andcos ¢4 likewise
to obtain the criticality equation, a cubic s # andsin 6.

If g is linear (Fig. 10b), lety., = Zpm.q with ¢ the
projection of m. onto g. Since cos ¢, = d/r. with d =
ng - (me — t4) the distance fromm,. to g, it is an LTE
(Sec. IV-B). Define¢y, likewise, defineg.; as before, and
usegcq + ¢rq = der to obtain a cubic. Iff andg are linear
(Fig. 10c), let¢.; and ¢., be the angles betweemn. and
the projections ontg and g, let ¢, be the angle betweef
and g, hencecos ¢y, = ny X ng, and US€pcs + deg = P14
to obtain a cubic. Ife, f, and g are linear (Fig. 10d), their
line equations are. - (x,y) + d. = 0 with n. andd, LTE's
and likewise forf andg. Becausgu) x (6v) = u x v, the
criticality equation,

de(nf X ng) + df(ng X ne) + dg(ne X nf) =0,

is quadratic insin # and cos 6.

linear equationse — f = 0 ande — g = 0 for three circles,
e— f=0andg = 0 for two circles and a line, angd = 0
andg = 0 otherwise. A criticality occurs ip lies on the three
edges.

V. FREE SPACE CONSTRUCTION

at The free space construction algorithm consists of two parts
Part 1 is a plane sweep that computes the sum edges and
their intersection points a8 increases from) to 27 (Sec.
1.5.1). Part 2 computes the free space boundary (Sec..1.5.3)
Part 1 dominates the computational complexity and the hctua
running time. We prove that it is output sensitive (Sec.2).5.

A. Plane Sweep

Step 1 of the first part calculates the convolution edges
and their intersections fo§ = 0. Each edge has a list of
its endpoints and its intersections with other edges, edler
from tail to head. Each intersection is an ordered pairy),
of sum edges, denoting crossesf from left to right, to
distinguish it from the(f,e) intersection. Step 2 initializes a
priority queue with all the type 1 and type 2 criticalitiesida
with the type 3 criticalities of the initial candidate trigies.

A candidate is three sum edges each of whose lists contains
adjacent intersection points with the other two. Step 3 eand
the criticalities in increasing order. The output is the the
initial set of lists plus the edit that occurs at each crliiga

A type 1 criticality is handled by adding or removing
vertices and edges, and by updating intersection lists. Vdhen
linear edge is added or removed, its intersection points thi
other edges at the critical angle are added to or removed from
the appropriate lists. When a circular edge with a coincident
hit is added (Figs. 5b, 8a, 8b), a point is appended to one
end of its list. A type 2 criticality is handled by updatingeth
two intersection lists. For a tangency, two points are itesktor
removed in each intersection list. For a hit, a point is apleen
to one end of the list or is removed. A type 3 criticality is
handled by swapping three pairs of incident points on the lis
of the three sum edges of the triangle. After each updateynew
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created candidate triangles are checked for type 3 cittesl \ 2 e+ +
hich are added to the priorit /- ‘f+ lag «ehiéé
which are added to the priority queue. ] f e+| FS Gg+ 3 8\
B. Analysis J 9 i \E
The sweep algorithm is correct if every change in the r\h J; h
structure of the subdivision is one of the three criticaditi () (b)
This condition holds when every criticality equation haasle +h f+h
o . g+i \9
roots and every criticality occurs at a unig@i@alue. Correct- ’8
ness follows by verifying the criticality handling. / 5 f
There arem € O(n?) sum vertices and sum edges with g
n the input size. The complexity of thé = 0 slice is I
co € O(m?). There are:; € O(n?) type i criticalities. Hence, j/\h
the complexity of the output iV € O(co + c1m + ¢o + ¢3) ©

because each criticality addS(1) complexity, except for _ o
type 1 criticalities that add or remove a line and hence ady- 11 Sums of linear edges before (a), at (b), and after @)taality.
O(m) complexity. The number of candidate triangle©iV)

because each newly adjacent pair of intersections in a “?{are acorresponding list elemert the same endpoint or if
defines a single candidate.

: . . one contains an endpoint of the other at the criticalityt Lis
We can perform step 1 i©®(cylogn) time with a sweep . ,
. . P elements of linear edgesand f correspond if they are both
algorithm. Computing the type 1 criticalities také3(c,) intersections with the same third sum edger if they are a
time. Computing the type 2 criticalities takeé3(n?) time, y

so step 2 take©)(n"logn) time. Step 3 takeS)(N logn) Co{giﬁgogsrl:g f nipilr((:\jlg?(;ed)bglr\otjvgone linear sum edge
time using binary search on edge lists to handle critiesiti yp Y 9

. 4 i . . . and starts another, and eitheror v is not the endpoint of a
Since N € O(n* + ¢3), the algorithm running time is . !
1 . ; S linear edge, then the two sum edges are neighbors and their ta
O((n* 4+ c3)logn). The algorithm is output sensitive in that : T .
. . . o and heads correspond. Otherwise, the situation is as ddpict
the dominant cost is proportional t@, which is the number

of configurations with simultaneous convex contacts bemNe%? +F|g aﬁ gﬁzgebthzriﬂﬁ:?!tgh“gzar j_um Aeggresc:;cﬁlr;dr
three pairs of moving/fixed part edges. J J y getJ

g+ h joins linearf 4+ h andg +i. Sum edgeg + j andg+h
] shrink to points at the criticality. Linear sum edggs- j and
C. Faces, Shells, Cells, and Path Planning e+i are neighbors of+i and f + k, and the tails ot +i and

We define asubedggedge in the translational subdivision)f + h (right endpoints) and the heads pf+ j andg + i (left
to be an adjacent pair of elements (in a particular ordefyén tendpoints) correspond. Suppose another sum edge (dashed)
list of a sum edge. This pair is adjacent fot anterval. The splits f + j into subedges 1 and 2 amd+ i into 5 and 6 and
subedge plus its interval corresponds taeein configuration suppose yet another splitst- i into 3 and 4 andf + j into 7
space. For example, in Fig. 3a, sum edbe a (d ® 6(—a)) and 8. Subedges 1, 2, 3, and 4 are neighbors of 5, 6, 7, and 8,
is split into three subedges. The top subedge was createdespectively, because of corresponding list element e@ntipo
the Fig. 2a criticality and the others at the Fig. 2c criitgal In addition 2 is a neighbor of 7 because 2 contajrsh (also
All three subedges end at the Fig. 3b criticality where theé containse + j) at the criticality. If one or more of the arcs
intersection points o — a swap. e, g, h, j are concave then some of the linear sum edges might

Two faces ardorizontal neighborsf they share a sum edgebe missing. If, for exampleg + 7 is missing, then the tail of
endpoint or if they share an edge intersection point and afet+ h has no corresponding endpoint.
on the sides of the outward normals of the intersecting edgesWe group the faces into connected components via graph
Hence, in Fig. 1, the middle subedgescof ¢ andd — b are traversal. Theshellsare the components where each face has
neighbors because the normals point upward froma and a neighbor at every boundary point. Specifically, it should
downward fromd — b. In Fig. 3a, the intersection of — ¢ have two vertical neighbors. If it is linear, it should hawetip
andd — a is in blocked space, but the subedges to the Idfbrizontal neighbors. If it contains a corresponding efmapo
and above the intersection are neighbors because the dutwas do subedges 2 and 7 in Fig. 11, it should have two neighbors
normal tod — a points to the left. at that criticality

Two faces arevertical neighbordf the same criticality ends  We select a sample poiriton each shell and discard the
one and starts the other, they belong to the same subedge, stvell if M/ +¢ intersects’ except at the point of tangency. Next,
they share an endpoint. Hence the lower subedgé ofa we compute the shell nesting order by ray casting. We pick a
in Fig. 2b is a vertical neighbor of the trivial subedde- « ray orthogonal to thé axis, so ray/face intersection reduces to
in 1c because they share the tail @f— a. The former is ray/edge intersection. The result is a boundary representa
a neighbor of the middle subedge df— « in 3a because of the cells (connected components) of the free space.
they share the intersection of— a andd — a as an upper  The path planner reports failure if the start and goal config-
endpoint. Two linear subedges can also be neighbors if thesations are in different cells; otherwise it finds a pathhwat
are subsets afeighboring sum edgdsefined below) and they bug algorithm [14].
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VI. ROBUSTNESS by selectively increasing the arithmetic precision and sugp-

The free space construction algorithm is formulated in ﬂ&prtsimplicit para_rn_etershat der_mte the roots of polynomials.
real-RAM model where real arithmetic has unit cost. The The user specifies the required accuracyACP replaces

control logic is expressed in terms of predicates: polyraisni each input pgramete:t_;, -by T + d with d.unifor.m in [._5’ 0].
T{he user defines explicit parameters using arithmetic oqesra

in the input parameters whose signs are interpreted as tru , . o
values. The robustness problem is how to implement reQ Prior parameters. ACP assigns them values using interval

RAM algorithms accurately and efficiently. We wish to usé\rithmetic. ACP cqmputes predic_ate_s u_sing the in_tervmr_filt
floating point arithmetic, and a numerical solver for thS"a“_’ate the pred|cate_ polynomial in mte_rval arithmetc t
criticality equations, because these are accurate, fast, é’k?ta'” U’“}.’ return —1 '.f U= .0’ retrn 1 if 1 > 0, an_d
memory efficient. But even a tiny computation error can cau ! ot_herW|s<_a. If a pred|pa}te fa|I§, the program reevaisgt

a predicate to be assigned the wrong sign, which can cre§ter Increasing the precision O_f Its argume'nts..Each geume

a large error in the algorithm output. We wish to handI8 ject has pointers to the objects on which it depends. For

all inputs, whereas the real-RAM algorithm requires Simp@_xample, a cir_cle/line hit criticality (Fig. 7) points_to ah
criticalities with unique values. circle and the line. The program traverses these pointats an

increases the precision recursively. The initial precisie

double float and higher precision is implemented using MPFR
A. Prior Work [21].

The mainstream robustness method is to evaluate predicate®n implicit parameter,z, is a root of a polynomial.f.
exactly via algebraic computation [15]. Algebraic compiata ACP isolates the roots of on an interval,[L, U], using
increases bit complexity, hence running time. Floatingnpoi@ Straightforward recursive algorithm that @(d®) in the
filtering techniques somewhat reduce this cost [16]. Exaéegree.d, of f (there are faster algorithms in the literature).
evaluation cannot assign a sign todageneratepredicate We describe how to implement this algorithm in interval
whose exact value is zero. Degeneracy is common due&dthmetic. If d < 2, use the explicit roots. Id > 2, let
design constraints and to symmetry. z1,...,%, be the roots off’ with xo = L andz,+1 = U.

The other popular robustness method, controlled perturlfz@r €ach pairg;_1,z;, calculatesign(f(z;—1)), sign(f(z;)).
tion (CP) [17], [18], evaluates predicates with floating roi If either ACP sign test fails, restart with higher precisidh
arithmetic. The computed sign of(a) is correct, and the sign(f(zi-1)) # sign(f(x;)), shrink the root isolating interval
predicate is called safe, when the computed magnituddieatis|#i—1,i] using interval Newton’s method. ACP increases the
|f(a)| > ¢ with ¢ a function of f anda. The numerical input precision ofz by further shrinking its interval after increasing
to the algorithm is perturbed randomly by up doand the the precision off.
algorithm is executed. If every predicate is safe, the auigpu ~We use ACP to implement the free space construction
returned. Otherwise, the algorithm is rerun with a différén @lgorithm. The input parameters specify the part boundary
The final § bounds the error due to replacing the true inp@eometry. The type 3 critical angles are implicit paranmgeter
with a verifiable input. This error is inconsequential wiieis T heir polynomials are obtained by substituting the appater
less than the required accuracy of the application thatigesv charts of the rational parameterization of the unit circl®i
the input, such as the tolerances in path planning. the bivariate criticality equations in Sec. IV-D. The rest o

CP is faster than exact computation because all comglie implementation follows the real-RAM algorithm. The
tations are in floating point. Whereas degenerate predicat@lementation handles any input and generates an outatit th
defeat exact computation, CP handles them just like nd8-correct for aj-perturbation of the input.
degenerate predicates. Their perturbed values are of order
0, so they are verifiable for reasonablevalues. However,

CP performs poorly orsingular predicates whose value and Source code for our validation is available at http://wwaw.c
gradient are both zero. A singular predicate of degdee Miami.edufvjm/robust. We validate the path planning algo-
requiresd of order {/z. This error is unacceptable with thefithm by constructing a maximal clearance path for a given
reporteds values and is marginal even with equal to the robot, obstacle, and start/goal configurations. We find the
rounding unit,u ~ 10716, largest numbergs, for which the algorithm finds a path for

Melhorn et al [19] handle singular predicates by rerunning-offsets of the parts. The-offset of a part is its Minkowski
the algorithm with extended precision arithmetic, whictesis SUM with ans-disk centered at the origin. A path for the offset
much more time and space than floating point arithmetic. ViRrts is a2s-clearance path for the original parts. We compute
[20] identify the cases where the predicates in a MinkowsKie maximals by bisection search oif0, 1] to the floating
sum algorithm can be singular and replace them by noRpint resolution, which takes 53 iterations. The clearaisce

degenerate predicates in defined parameters. This approachO(d) because thes-path is correct for a-perturbation
does not generalize. of the input parameters, which causes@(@) perturbation of

the parts.
) . . The bisection algorithm tests how our program handles
B. Adaptive-Precision Controlled Perturbation degenerate input. A zero-clearance path is degeneratedeeca
We have developed an extension of CP, adaptive-precisithe robot has multiple simultaneous contacts with the ebsta
controlled perturbation (ACP), that handles singular pmates cle. Hence, the final iterations of the algorithm are nearly

VII. VALIDATION
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TABLE |
RESULTS. TEST4, ITERATION k, m SUM EDGES e EDGES IN THE SUBDIVISION f FREE FACES t RUNNING TIME IN SECONDS FOR ONE CORE OF AN
INTEL CORE 2 DUO, t12 TIME COMPUTING TYPEL1 AND 2 CRITICALITIES, ¢ = 106t/(elg e), c12 = 103t12/m, T AND 7 NUMBER OF POLYNOMIALS
WITH FLOATING POINT AND EXTENDED PRECISION ROOT ISOLATIONAND ps AND pe NUMBER OF FLOATING POINT AND EXTENDED PRECISION
PREDICATE EVALUATIONS.

i ko om e foe/f t tiz ¢ c2 1y Te  Df Pe

1 1 84 2,017 424 48 0.2 01 68 1.1 14 0 1.1e5 36,000
1 53 84 2,027 424 48 0.2 01 6.7 1.1 12 0 1.1e5 35,000
2 1 400 26,000 1,000 26.0 0.4 0.3 1.0 0.8 600 0 2.7e6 0

2 53 400 36,000 2,000 180 26 0.3 48 0.8 1,700 400 3.7e6 3.2e5
3 1 700 89,000 3,000 29.7 14 09 1.0 1.3 3,200 0 8.9e6 0

3 53 700 1.0e5 4,000 250 18 1.0 11 14 5,600 5 1.1e7 0

4 1 3,000 48,000 3,000 16.0 14 09 19 0.3 5,300 60 1.2e7 @5,00
4 35 2,500 1.0e5 3,000 333 26 1.0 16 04 3,300 200 1.5e751.7e
5 1 4400 14e5 15000 93 3.1 18 1.3 04 3,500 36 2.7e7 68,000
5 22 3900 4.1e5 10,000 41.0 9.7 21 1.3 05 24,000 335 4.6e9e56.

6 1 8,000 22e5 20,000 11.0 6.1 3.7 16 05 2800 300 5.4e752.1le
6 34 6,800 5.1e5 11,000 46.4 13 39 1.3 0.6 21,000 900 7.0e7e59.0

7 1 13,000 55e5 31,000 17.7 14 89 1.3 0.7 12,000 200 1.4e852.1

7 27 12,000 1.4e6 28,000 50.0 33 10 1.2 0.8 81,000 1,700 2.1eB61

8 1 18,000 7.1e5 75000 95 22 16 16 0.9 12,000 300 2.3e8 2.6e5
8 24 15,000 1.5e6 55,000 27.3 55 14 1.8 0.9 72,000 3,600 2.6eB65

Fig. 12. Tightest clearance path= 0.27865 in 2D.

degenerate. In every test, we obtain a correct output and t
running time increases modestly from the first iterationhi® t

last iteration. We usé = 10~% and extended precision of

p = 250 binary digits. Table | shows the results.

Test 1 is an 8-edge robot and an 18-edge obstacle wi
two chambers connected by a narrow passage (Fig. 1:
The start and goal configurations are in the top and bottol
chambers. We ensure that the robot simultaneously rotates
translates for large values, which forces the planner to searct
a large fraction of the configuration space, by making the
passage boundary arcs concentric. Fig. 12 shows one sanmalel3. View of free space boundary from blocked space watdomly
configuration per face visited in the tightest clearancenpafolored faces fos = 0.265625.
and Fig. 13 shows the 3D free space boundary for a smaller
s SO the narrow passage is visible.

Test 2 is a 5-pointed star with 15 edges inside a 6-sidéminates the degeneracy, but significant extended poecis
container with 42 edges (Fig. 14a—b). The start and ggithmetic occursi(. = 400 andp. = 320,000). Thanks to
positions are identical, the start angledfs and the goal angle @daptive precision, running time only increases by a factor
is 72° (1/5 of a turn). The solution is for the star to pivotSX-
about each of its tips in turn. Fig. 14b shows it part way Test 3 is a 7-pointed star inside an 8-sided container. &nlik
through a pivot. Sliding contacts occur at 1, 2, 3, and 4. THest 2, there is no sliding contact, so the input is not degeeg
other two tips are close but not in contact with the obstacléie s = 0.1 offset is simply degenerate, and there is little
This motion is degenerate because three contacts shogféended precision arithmetic.
fix the configuration. The input perturbation eliminates the Tests 4-8 are an-pin wheel inside a channel with + 1
degeneracy and no extended precision arithmetic is refjuikeegments fom = 3,...,7. Figs. 14c and d show = 5 and
(re = 0 andp. = 0). The motion is doubly degenerate ai = 7 and the points of contact during a pivot. The bisection
the maximum offsets = 0.1, because four points touch thesearch ends aftek < 53 iterations because the start and
container throughout each pivot. The input perturbatiolh stgoal become&-close to blocked space. At minimum clearance
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A

2
1
(b)

large radii. We use this approximation in test 1 for the chamb
walls. The penalty is the high percentage of extended pogcis
predicate evaluation®,, due to the high numerical condition

of the equations involving these edges. Reducing the radius
from 108 to 10° decreasew. from 36,158 to 10,048, and
reduces the running time from 0.15 to 0.06. For radiQs,

Pe 1S 1942 and the time is 0.031.

VIII.

We have presented a complete path planning algorithm for a
planar robot with three degrees of freedom where the rolsbt an
the obstacle boundaries consist of circular and linear £dge
We have implemented the algorithm using our ACP robustness
library. The program is complete in that for any input the
output is correct for a-deformation of the input. By setting
§ = 10~8, we make the deformed input indistinguishable from
the actual input. We have demonstrated that the progranstis fa
and output sensitive on problems that contain narrow passag
The running time is only slightly dependent on the passage
width, e, whereas the cost of sample-based planning-i$
with d the configuration space dimension.

(maximumk), symmetry causes multiple pin/channel contacts. We are developing a complete, output sensitive path plan-
Hence, there is significant extended precision arithmetit ( ning algorithm for a polyhedral robot that translates fyeel
for large k. Even so, the time increases by at most a factor ahd rotates around a fixed axig§ & 4). Our plane sweep
three. generalizes to a volume sweep. The challenge is to derive the

As m increases, the time,, for computing type 1 and 2 criticality equations and the subdivision update rules: @axt
criticalities is a smaller fraction of the total. This is thegoal is to develop a hybrid algorithm for a polyhedral robot
n* = m? component of the predicted((n* + c3) logn) run-  with six degrees of freedom whose complexityOgl /<) and
ning time. Although type 2 criticality computation @(m?), that performs well on narrow channels. We will sample the
we reduce the actual running time €@(m) using kd-trees, configuration space witk(1/s%) d = 4 subspaces, construct
bounding boxes on the area swept by a sum edge ovér ittheir free spaces, and link them into a path planning graph.
interval, and a geometric constraint on the relative siZes o
the constituent robot and obstacle edges of intersecting su
edges. For the geometric constraint, define

D IScuUsSION

(d)

Fig. 14. Star in container; start configuration (a) and piag{b); wheel in
channel (c), (d).
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then a simultaneoug/g contact andk/h contact cannot occur
and f @ g will never intersece®h. Hencecio = 103t12/m ~

1, andO(c3 logn) more accurately models the time. Looking
at the valuec = 10%/(elge), we see that < 2 except an 1]
anomalous values of 6.8 and 4.8 for small problems. Sincé,
c3 ande are proportional, these values agree with the model.
The actual output size, is much smaller than because most
faces do not appear on the free space boundary. Theesgfio 12
(3]
ranges from 4.4 to 50. To this extent, the algorithm is ndytru
output sensitive. [4]
The free space construction program does not handle non-
smooth convex vertices or linear edges. The first restrids]
tion eliminates the three types of criticality discussed in
Sec. 3.4.3.3 and the second eliminates the complicated]lypqﬁ]
criticalities shown in Fig. 11. The path planning program is
unaffected by the first restriction because offsets of pzats
not have non-smooth convex vertices. The second restricti(y]
requires us to approximate linear edges by circular edgis wi
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