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Robust Complete Path Planning in the Plane
Victor Milenkovic, Elisha Sacks, and Steven Trac

Abstract—We present a complete path planning algorithm for
a plane robot with three degrees of freedom and a static obstacle.
The part boundaries consist ofn linear and circular edges. The
algorithm constructs and searches a combinatorial representa-
tion of the robot free space. Its computational complexity is
O((n4 +c3) log n) with c3 ∈ O(n6) the number of configurations
with three simultaneous contacts between robot and obstacle
edges. The algorithm is implemented robustly using our adaptive-
precision controlled perturbation library. The program is fast and
memory efficient, is provably accurate, and handles degenerate
input.

Index Terms—Path planning, robust geometry.

I. I NTRODUCTION

We present a complete path planning algorithm for a plane
robot with three degrees of freedom and a static obstacle. The
part boundaries consist ofn linear and circular edges. The
algorithm constructs and searches a combinatorial represen-
tation of the robot free space. Complete path planning has
been deemed impractical because the free space complexity
is O(nd) for an input of sizen with d degrees of freedom.
However, mild input restrictions reduce the complexity to
O(n) [1]. Our algorithm is practical for this class of inputs
because it is sensitive to the reduced complexity.

Complete path planning has also been deemed impracti-
cal because it employs computational geometry algorithms
that are hard to implement robustly, meaning accurately and
efficiently. We implement our algorithm using our adaptive-
precision controlled perturbation robustness library. The pro-
gram is fast and memory efficient, is provably accurate, and
handles degenerate input.

Complete path planning solves the narrow passage problem
of sample-based planning. Sample-based planning algorithms
[2] build and search a graph whose vertices and edges are
points and line segments in free space. As the sample size
grows, the probability of finding a path converges to one.
The outstanding problem isnarrow passageswhere the robot
clearance,ε, is small. The sample size that ensures a fixed
probability of finding a path isΩ(ε−d) for a robot with d
degrees of freedom. Planning experiments confirm that narrow
passages require large sample sizes in practice. Our planner is
correct for anyε. We demonstrate that it is fast forε = 10−8,
a value that far exceeds application requirements.

Free space construction supports mechanical design [3] and
part layout [4] algorithms by characterizing the space of po-
tential robot configurations, whereas sample-based algorithms
cannot provide this information.
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II. PRIOR WORK

Avnaim et al [5] present a free space construction algorithm
for polygonal parts. Our algorithm has the same complexity as
theirs, yet handles circular edges, which increases the algebraic
degree of the free space and complicates its combinatorial
structure. Circular edges enable one to model curved parts to a
given accuracy with many fewer edges and permit one to work
with level sets and rotational sweeps without approximation.
Sacks [6] presents a precursor to our algorithm that computes
type 3 criticalities (Sec. III) approximately, is not output
sensitive, and is not robust. Stappenet al [7] develop efficient
path planning algorithms for a translating robot with mild input
restrictions. Sacks [3] computes the free space of two curved
parts, in 2D or 3D, each of which rotates around or translates
along a fixed axis.

Complete path planning has been implemented robustly
via exact computation (Sec. VI) for translating polygons [8],
translating polyhedra [9], and polygons with translation along
an axis and rotation [10].

There is extensive research on sample-based planning with
narrow passages. The approach closest to ours is a hybrid
algorithm [11] that approximates the free space with an octree
comprised of free, blocked, and mixed cells, builds a graph of
free configurations for each mixed cell, and links the graphs
into a global approximation of free space. In practice, this
method is restricted tod = 3 because its computational
complexity isr−d with r the octree resolution.

III. OVERVIEW

The configuration space isC = ℜ2×S. Let θM+a denote a
robot,M , rotated by angleθ around the origin then translated
by a. The free space ofM with respect to an obstacle,F , is
{(a, θ) ∈ C|(θM + a) ∩ F = ∅}. Define−M = {−m|m ∈
M}. When the robot translates at a fixedθ value, its free space
is defined by the convex convolution [12] ofθ(−M) andF .
The convolution is the set of points,t, such thatθM + t has a
local contact withF . It subdivides the plane into open regions:
some regions comprise the free space and the others comprise
the blocked space. Fig. 1a depicts an oval robot inside a dome-
shaped room. The obstacle is the complement of the room. The
convolution edges appear above. Fort ∈ c⊕−a, denotedc−a,
a + t contactsc, and similarly forb andd. The free space is
the circular segment bounded by subsets ofc − a andd − b.

The subdivision is a smooth function ofθ, except at a
discrete set of critical angles where its structure changes. There
are three types of criticality (Sec. IV), a change in: 1) the set
of convolution edges, 2) the set of intersections among edges,
or 3) the order of intersections on each edge.

Fig. 1b illustrates a type 1 criticality at which there exists t
such thata + t andd can be tangent at an endpoint (although
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Fig. 1. Type 1 criticality: before (a), at critical angle (b), after (c).
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Fig. 2. Type 2 criticalities: at critical angle (a), between(b), at critical angle
(c).

t is in blocked space). Beyond this criticality, the edged − a
appears (Fig. 1c). Figs. 2a and 2c depict the type 2 criticalities
at whichd − a first intersectsc − a andd − a first intersects
d−b. Fig. 3b depicts a type 3 criticality in whichc−a, d−a,
andd − b are coincident and a triple contact is possible. The
triangle formed byc − a, d − a, andd − b flips (Fig. 3a and
Fig. 3c), and the boundary of the free space now contains a
subset ofd − a.

By sweeping a plane of constantθ, we compute a vertical
decomposition of configuration space along theθ axis and
extract the subset that comprises the free space (Sec. V and
Fig. 12b). We describe the robust implementation in Sec. VI
and validate it in Sec. VII.

IV. CRITICALITY COMPUTATION

A part is a plane region with a boundary comprised of
vertices and edges. A vertex,v, is a point,pv, and an outward
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Fig. 3. Type 3 criticality: before (a), at critical angle (b), after (c).
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Fig. 4. Circular edges: convexe (a), concavef (b), concaveg = e⊕ f (c).

normal, nv. An edge,e, is an open line segment or circular
arc with tail vertext = te and head vertexh = he such that
nt × nh ≥ 0 (Fig. 4). A linear edge has normalne = nt

(= nh), normal interval[ne, ne], and curvaturese = 0. A
circular edge has normal interval(nt, nh), angular extent at
mostπ, centerme, signed radiusre, and curvaturese = 1/re.
It is convex if re > 0 and is concave otherwise. The part
interior lies to the left when a linear or convex edge is traversed
from t to h, or when a concave edge is traversed fromh to t.

The convex convolution [12] ofF andθ(−M) consists of
sum vertices and sum edges. A sum vertex,w = v ⊕ e, is the
sum of a vertex,v, on one part and a point,a, on an edge,e, of
the other part such thatnv equals the normal ofe at a. If v ∈
F , θe ∈ θ(−M) andw = v⊕θe, thenpw = pv +θme +renv

and nw = nv. If θv ∈ θ(−M), e ∈ F and w = θv ⊕ e,
then pw = θpv + me + reθnv and nw = θnv. A sum edge,
g = e⊕θf , is the sum of edgese ∈ F andθf ∈ θ(−M) with
se + sf > 0 whose normal intervals intersect. The curvature
condition implies thatF and θM + t are in contact without
local overlap for everyt ∈ g, which is necessary forg to
contribute to the free space boundary. Edgeg is the set of
sums,p + q, of pointsp ∈ e and q ∈ θf with equal normals.
If e and f are circular,g is circular with mg = me + θmf ,
rg = re + rf , tg = te ⊕ θf or tg = θtf ⊕ e, andhg = he ⊕ θf
or hg = θhf ⊕ e (Fig. 4). If one edge is linear, the other is
circular by the convexity condition, sog is the offset of the
linear edge by the circle. Ife is circular, ng = θnf , tg =
θtf + me + reθnf and hg = θhf + me + reθnf ; otherwise,
ng = ne, tg = te + θmf + rfne andhg = he + θmf + rfne.
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Fig. 5. Type 1 criticality:θ < 0 (a), θ > 0 (b).

Let edgese and f in counterclockwise order around the
boundary of one part meet at verticesv andw, sopv = pw. If
nv × nw > 0, pv forms sum edges with the compatible edges
of the other part. These sum edges can be derived as above
by introducing an artificial circular edge with tailv, headw,
and radius zero [13].

A. Type 1 Criticality

A type 1 criticality occurs when verticesv ∈ F and
θw ∈ θ(−M) have equal normals. This criticality, denoted
(v, w), occurs atθ = nv/nw. Here and throughout the paper,
angles are equated with unit vectors and division denotes the
complex quotient, sonv/nw is nv rotated clockwise by the
angle ofnw. The sum vertexv⊕θf with f ∈ −M enters and
exits the convolution at the(v, hf ) and (v, tf ) criticalities;
θw ⊕ e with e ∈ F enters and exits at the(te, w) and(he, w)
criticalities. If e ∈ F is circular andf ∈ −M is linear, the
sum edgeg = e ⊕ θf enters and exits at the(te, nf ) and
(he, nf ) criticalities (we usenf instead oftf or hf because
they have equal normals). Ife is linear andf is circular, g
enters and exits at the(ne, hf ) and (ne, tf ) criticalities. If
both are circular,g enters and exits at the(te, hf ) and(he, tf )
criticalities. At the(te, tf ) criticality, tg switches fromte⊕θf
to θtf ⊕e. At the (he, hf ) criticality, hg switches fromθhf ⊕e
to he ⊕ θf .

Fig. 5 shows edgese, f ∈ F that meet atv and g, h ∈
θ(−M) that meet atw. The (v, w) critical angle isθ = 0,
sum vertexv ⊕ h exits, sum verticesv ⊕ g, w ⊕ e, andw ⊕ f
enter, and sum edgef ⊕ g enters. There is noe ⊕ g edge
(drawn dashed) becausese + sg < 0. The normal vector out
of v is vertical. The point ong with a parallel normal vector
sums withv to form v ⊕ g. Similarly, for w ⊕ e, etc.

B. Type 2 Criticality

A type 2 criticality occurs when two sum edges are tangent
(Fig. 6) or when a sum vertex hits a sum edge (Fig. 7). At
a tangency, two vertices enter or exit the subdivision. At a
hit, each incident edge gains or loses a vertex. A candidate
tangency occurs when the lines or circles of two edges are
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Fig. 6. Circle/circle (a–c) and circle/line (d) tangencies.
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Fig. 7. Circle/circle (a–c) and circle/line (d) hits.

tangent. It is a criticality when the point of tangency lies on
both edges. Likewise for hits.

The tangency equations for circular edgese and f with
|re| > |rf | (Fig. 6b) are||mf −me|| = r with r = |re|± |rf |.
Let me = a + θb, mf = c + θd, u = c − a, andv = d − b.
Let bi be the intersection points of the circle with center(0, 0)
and radiusr, and the circle with centeru and radius||v||. The
e normals at the tangent points areni = bi/re. Thef normals
for r = |re| ± |rf | are∓sign(rerf )ni. The critical angles are
θi = ni/(v/||v||). The critical points arepi = a + θib + reni.

If f is linear, the distance fromme to thef line equals|re|
(Fig. 6d). Define a linear trigonometric expression (LTE) as
k1 sin θ + k2 cos θ + k3 with the ki constants. The tangency
equations are LTE’s:nf ·me +d = ±re or θnf ·me +d = ±re

with me = θa + b and with d an LTE. We can solve forθ
then computep as before. A tangency between linear edges is
degenerate.

The hit equations for sum vertexv and circular edgeg are
||mg − pv|| = |rg| (Fig. 7b). If g is linear, the equations are
ng · pv + d = 0 or θng · pv + d = 0 with d an LTE (Fig. 7d).
The solutions are the same as for the tangency equations.

C. Type 1 Criticality with Intersection

A type 1 criticality that coincides with an edge hit is not
counted as a type 2 criticality. Suppose edgese and f share
vertex v on F and edgesg and h share vertexw on −M ,
with e precedingf in a traversal with the inside on the left
and similarlyg and h. Type 1 events involving the normals
at v and w can either add or remove an intersection. We
will start with the case thate, f and g, h are arcs meeting
smoothly atv andw. Next we will consider if some ofe, f, g, h
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Fig. 8. Simultaneous type 1 and 2: Case 2 (a), Case 3 (b).

are line segments. After that, we will address non-smoothv
and/orw. Finally, we will show that these are the only ways a
type 1 event can introduce an intersection up to the following
symmetries: a) exchangeF and−M hencee with g and f
with h and b) take a mirror image and exchangee with f and
g with h.

1) Smoothly joined arcs.:For two pairs of edges meeting
smoothly, there are three cases based on the signed radii of
the incident edges. Let edgese, f ∈ F meet smoothly atv
with outward normalnv and g, h ∈ −M meet smoothly at
w with outward normalnw. The analysis assumes the critical
angle isθ = 0 and hencenv × nw > 0 after the type 1 event.

Case 1 isre < 0, rf , rg, rh > 0, re + rg > 0, re + rh < 0
(Fig. 5b). For the coordinate system in whichnv is they axis,
edgef ⊕ g is abovee ⊕ g (drawn dashed) because they are
tangent andrf + rg > rg > re + rg. Sincere + rg > 0, e⊕ g
is concave downward and hencee ⊕ w with normalnw is to
the left of v ⊕ g with normalnv. Edgee ⊕ h is abovee ⊕ g
because it is tangent toe⊕g at e⊕w and it is concave upward
(re +rh < 0). Hence,f ⊕g intersectse⊕h for all sufficiently
small θ > 0.

Case 2 isre, rg < 0, rf , rh > 0, rf + rg < re + rh < 0
(Fig. 8a). For the coordinate system in whichnw is they axis,
f ⊕ w and e ⊕ w are the highest and lowest points off and
e, respectively, added tow. Hence,e⊕w is below and to the
right of f ⊕ w. But f ⊕ w is also a lowest point off ⊕ g,
hencee ⊕ w is belowf ⊕ g. For all sufficiently smallθ > 0
hencee⊕w sufficiently close tof ⊕w, e⊕h intersectsf ⊕ g
because|re + rh| < |rf + rg|.

Case 3,re, rf < 0, rg, rh > 0, re + rh < 0, re + rg > 0,
rf + rg < 0 (Fig. 8b), is similar to Case 1. Edgesf ⊕ g and
e⊕h are both externally tangent toe⊕g (dashed), hence they
intersect for all sufficiently smallθ > 0.

2) Line segment edges.:For the purposes of detecting
intersections, we can treat line segments as arcs withr = −∞.
Case 1 cannot have an intersection ife is a line because that
implies re + rh < 0. Case 2 has an intersection ifg is a line
segment andre + rh < 0. Case 3 has an intersection iff is a
line segment and the other inequalities hold.
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Fig. 9. Concave/convex vertex before (a) and after (b) a type1 event with
rf > 0 and rg > 0. After event withrf > 0 and rg < 0 (c) andrf < 0
andrg > 0 (d).

3) Non-smooth vertices.:Non-smooth vertices are treated
as zero radius arcs whose “sign” is positive or negative if the
vertex is convex or concave. Under this interpretation, Case 1
and Case 2 have an intersection iff or h are convex zero radius
arcs. Non-smooth vertices also introduce three new ways in
which a type 1 event can introduce or remove an intersection.
A convex vertex and concave vertex can cause an intersection
only if the convex angle is smaller than the concave angle. In
Fig. 9a,M can fit intoF because the convex angle between
g andh at w is smaller than the concave angle betweene and
f at v. Vector ng (shown) is the outward normal tog at w,
which is to the right of the vertical normalnf to f at v (not
shown). Locally, the convolution is a translated copy ofe, f .
In this casee⊕w andf ⊕w are edges, not vertices, because
w is a (zero-radius) arc with an interval of normal angles.

As ng sweeps past vertical in Fig. 9b, edgef ⊕ g appears,
intersectinge ⊕ w. This is clear becauseM can be put into
two-point contact withF , as shown. This happens iff andg
are convexly compatible (Fig. 9b-d). The radiire and rh do
not matter. Heree andh are shown as line segments, but even
if they are arcs, they approximate line segments close tov and
w.

4) Completeness:We need to show that these are the
only ways intersection can occur. Starting with the smooth
case, we observe that onlye ⊕ h and f ⊕ g can intersect
in a neighborhood of the type 1 event. The paire ⊕ g and
e ⊕ h cannot intersect because their circles are tangent at
their common endpoint, and similarlyf ⊕ g and f ⊕ h. An
intersection corresponds to a double contact betweenF and
M . Since−g is to the left of−h in M , −g cannot contacte
if −h is contactingf , hencee ⊕ g cannot intersectf ⊕ h.

If e, f, g, h are all convex, thene⊕ h andf ⊕ g are joined
smoothly by e ⊕ g or f ⊕ h and hence do not intersect.
Otherwise, we cannot havere, rh < 0 or rf , rg < 0 because
both e/h and f/g must be convexly compatible. Apply the
symmetries to makere < 0 hencerh > 0. The three cases are
thereforerf , rg > 0 (1), rf > 0 and rg < 0 (2), or rf < 0
and rg > 0 (3). For Case 2, ifnv × nw < 0, exchangeF



IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING 5

and−M . For Case 3, ifnv × nw < 0, take the mirror image.
Aside from the requirement thate/h andf/g be compatible,
Case 1 requiresnv ×nw > 0 andre +rg > 0, Case 2 requires
that rf + rg < re + rh, and Case 3 requires thatre + rg > 0.
We need to show that these are necessary for intersection.

Case 1 (Fig. 5): As Fig. 5a shows,f ⊕ g does not exist if
nv × nw < 0. If nv × nw > 0 but re + rg < 0, thenf ⊕ g
ande ⊕ h smoothly joine ⊕ g at its endpoints, hence do not
intersect.

Case 2 (Fig. 8a): Ifre +rh < rf +rg (< 0), thenf⊕g does
not intersecte⊕h becausef ⊕ g starts below and to the right
of the minimum ofe ⊕ h and has a larger magnitude radius.

Case 3 (Fig. 8b): As in Case 1, ifre + rg < 0, thene ⊕ g
is a sum edge and smoothly connectse⊕ h andf ⊕ g, which
therefore cannot intersect.

Now consider the non-smooth case. If the convex angle is
smaller than the concave angle yetM cannot be seated inside
F with −w in contact withv (Fig. 9a), then the situation must
be as shown in Figs. 9b-d or their mirror images. The double
contacts hence intersections do not occur ifv andw are both
convex: if e has downward slope,−w cannot contacte in a
vicinity of v. Finally, if both v andw are concave, then−w
cannot come into contact withv.

D. Type 3 Criticality

A type 3 criticality occurs when three edges intersect at
a point. For circular edgese, f , andg (Fig. 10a), letφef =
6 mepmf anddef = mf −me = u+θv. By the law of cosines
and the identity(θu) · (θv) = u · v,

cos φef =
r2
e + r2

f − def · def

2rerf

, (1)

=
r2
e + r2

f − u · u − v · v − 2u · θv
2rerf

. (2)

Defineφfg andφge likewise. The equation

cos2 φef +cos2 φfg +cos2 φge−2 cos φef cos φfg cos φge = 1

follows from φef + φfg + φge = 2π, which implies
cos φef = cos(φfg +φge), and from the identitycos(x+y) =
cos x cos y − sin x sin y. Replacecos φef with the rightmost
expression in Eq. 2 and replacecos φfg and cos φge likewise
to obtain the criticality equation, a cubic incos θ and sin θ.

If g is linear (Fig. 10b), letφeg = 6 pmeq with q the
projection of me onto g. Since cos φeg = d/re with d =
ng · (me − tg) the distance fromme to g, it is an LTE
(Sec. IV-B). Defineφfg likewise, defineφef as before, and
useφeg + φfg = φef to obtain a cubic. Iff andg are linear
(Fig. 10c), letφef and φeg be the angles betweenpme and
the projections ontof andg, let φfg be the angle betweenf
and g, hencecos φfg = nf × ng, and useφef + φeg = φfg

to obtain a cubic. Ife, f , and g are linear (Fig. 10d), their
line equations arene · (x, y) + de = 0 with ne andde LTE’s
and likewise forf and g. Because(θu) × (θv) = u × v, the
criticality equation,

de(nf × ng) + df (ng × ne) + dg(ne × nf ) = 0,

is quadratic insin θ andcos θ.
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Fig. 10. Type 3 criticality involving 3 (a), 2 (b), 1 (c), and 0(d) circular
edges.

Givenθ, the edge intersection point,p, is the solution of two
linear equations:e − f = 0 and e − g = 0 for three circles,
e − f = 0 and g = 0 for two circles and a line, andf = 0
andg = 0 otherwise. A criticality occurs ifp lies on the three
edges.

V. FREE SPACE CONSTRUCTION

The free space construction algorithm consists of two parts.
Part 1 is a plane sweep that computes the sum edges and
their intersection points asθ increases from0 to 2π (Sec.
1.5.1). Part 2 computes the free space boundary (Sec. 1.5.3).
Part 1 dominates the computational complexity and the actual
running time. We prove that it is output sensitive (Sec. 1.5.2).

A. Plane Sweep

Step 1 of the first part calculates the convolution edges
and their intersections forθ = 0. Each edge has a list of
its endpoints and its intersections with other edges, ordered
from tail to head. Each intersection is an ordered pair,(e, f),
of sum edges, denotinge crossesf from left to right, to
distinguish it from the(f, e) intersection. Step 2 initializes a
priority queue with all the type 1 and type 2 criticalities, and
with the type 3 criticalities of the initial candidate triangles.
A candidate is three sum edges each of whose lists contains
adjacent intersection points with the other two. Step 3 handles
the criticalities in increasingθ order. The output is the the
initial set of lists plus the edit that occurs at each criticality.

A type 1 criticality is handled by adding or removing
vertices and edges, and by updating intersection lists. Whena
linear edge is added or removed, its intersection points with the
other edges at the critical angle are added to or removed from
the appropriate lists. When a circular edge with a coincident
hit is added (Figs. 5b, 8a, 8b), a point is appended to one
end of its list. A type 2 criticality is handled by updating the
two intersection lists. For a tangency, two points are inserted or
removed in each intersection list. For a hit, a point is appended
to one end of the list or is removed. A type 3 criticality is
handled by swapping three pairs of incident points on the lists
of the three sum edges of the triangle. After each update, newly
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created candidate triangles are checked for type 3 criticalities
which are added to the priority queue.

B. Analysis

The sweep algorithm is correct if every change in the
structure of the subdivision is one of the three criticalities.
This condition holds when every criticality equation has simple
roots and every criticality occurs at a uniqueθ value. Correct-
ness follows by verifying the criticality handling.

There arem ∈ O(n2) sum vertices and sum edges with
n the input size. The complexity of theθ = 0 slice is
c0 ∈ O(m2). There areci ∈ O(n2i) type i criticalities. Hence,
the complexity of the output isN ∈ O(c0 + c1m + c2 + c3)
because each criticality addsO(1) complexity, except for
type 1 criticalities that add or remove a line and hence add
O(m) complexity. The number of candidate triangles isO(N)
because each newly adjacent pair of intersections in a list
defines a single candidate.

We can perform step 1 inO(c0 log n) time with a sweep
algorithm. Computing the type 1 criticalities takesO(c1)
time. Computing the type 2 criticalities takesO(n4) time,
so step 2 takesO(n4 log n) time. Step 3 takesO(N log n)
time using binary search on edge lists to handle criticalities.
Since N ∈ O(n4 + c3), the algorithm running time is
O((n4 + c3) log n). The algorithm is output sensitive in that
the dominant cost is proportional toc3, which is the number
of configurations with simultaneous convex contacts between
three pairs of moving/fixed part edges.

C. Faces, Shells, Cells, and Path Planning

We define asubedge(edge in the translational subdivision)
to be an adjacent pair of elements (in a particular order) in the
list of a sum edge. This pair is adjacent for aθ interval. The
subedge plus its interval corresponds to afacein configuration
space. For example, in Fig. 3a, sum edged − a (d ⊕ θ(−a))
is split into three subedges. The top subedge was created at
the Fig. 2a criticality and the others at the Fig. 2c criticality.
All three subedges end at the Fig. 3b criticality where the
intersection points ond − a swap.

Two faces arehorizontal neighborsif they share a sum edge
endpoint or if they share an edge intersection point and are
on the sides of the outward normals of the intersecting edges.
Hence, in Fig. 1, the middle subedges ofc − a andd − b are
neighbors because the normals point upward fromc − a and
downward fromd − b. In Fig. 3a, the intersection ofc − a
and d − a is in blocked space, but the subedges to the left
and above the intersection are neighbors because the outward
normal tod − a points to the left.

Two faces arevertical neighborsif the same criticality ends
one and starts the other, they belong to the same subedge, and
they share an endpoint. Hence the lower subedge ofd − a
in Fig. 2b is a vertical neighbor of the trivial subedged − a
in 1c because they share the tail ofd − a. The former is
a neighbor of the middle subedge ofd − a in 3a because
they share the intersection ofc − a and d − a as an upper
endpoint. Two linear subedges can also be neighbors if they
are subsets ofneighboring sum edges(defined below) and they
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Fig. 11. Sums of linear edges before (a), at (b), and after (c) acriticality.

share acorresponding list elementat the same endpoint or if
one contains an endpoint of the other at the criticality. List
elements of linear edgese andf correspond if they are both
intersections with the same third sum edgeg or if they are a
corresponding endpoint(defined below).

If the same type 1 event(u, v) ends one linear sum edge
and starts another, and eitheru or v is not the endpoint of a
linear edge, then the two sum edges are neighbors and their tail
and heads correspond. Otherwise, the situation is as depicted
in Fig. 11. Before the criticality, linear sum edgese + i and
f + j are joined by circular sum edgee + j. After, circular
g +h joins linearf +h andg + i. Sum edgese+ j andg +h
shrink to points at the criticality. Linear sum edgesf + j and
e+i are neighbors ofg+i andf +h, and the tails ofe+i and
f + h (right endpoints) and the heads off + j andg + i (left
endpoints) correspond. Suppose another sum edge (dashed)
splits f + j into subedges 1 and 2 andg + i into 5 and 6 and
suppose yet another splitse + i into 3 and 4 andf + j into 7
and 8. Subedges 1, 2, 3, and 4 are neighbors of 5, 6, 7, and 8,
respectively, because of corresponding list element endpoints.
In addition 2 is a neighbor of 7 because 2 containsg+h (also
7 containse + j) at the criticality. If one or more of the arcs
e, g, h, j are concave then some of the linear sum edges might
be missing. If, for example,e + i is missing, then the tail of
f + h has no corresponding endpoint.

We group the faces into connected components via graph
traversal. Theshellsare the components where each face has
a neighbor at every boundary point. Specifically, it should
have two vertical neighbors. If it is linear, it should have both
horizontal neighbors. If it contains a corresponding endpoint,
as do subedges 2 and 7 in Fig. 11, it should have two neighbors
at that criticality

We select a sample pointt on each shell and discard the
shell if M+t intersectsF except at the point of tangency. Next,
we compute the shell nesting order by ray casting. We pick a
ray orthogonal to theθ axis, so ray/face intersection reduces to
ray/edge intersection. The result is a boundary representation
of the cells (connected components) of the free space.

The path planner reports failure if the start and goal config-
urations are in different cells; otherwise it finds a path with a
bug algorithm [14].
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VI. ROBUSTNESS

The free space construction algorithm is formulated in the
real-RAM model where real arithmetic has unit cost. The
control logic is expressed in terms of predicates: polynomials
in the input parameters whose signs are interpreted as truth
values. The robustness problem is how to implement real-
RAM algorithms accurately and efficiently. We wish to use
floating point arithmetic, and a numerical solver for the
criticality equations, because these are accurate, fast, and
memory efficient. But even a tiny computation error can cause
a predicate to be assigned the wrong sign, which can create
a large error in the algorithm output. We wish to handle
all inputs, whereas the real-RAM algorithm requires simple
criticalities with uniqueθ values.

A. Prior Work

The mainstream robustness method is to evaluate predicates
exactly via algebraic computation [15]. Algebraic computation
increases bit complexity, hence running time. Floating point
filtering techniques somewhat reduce this cost [16]. Exact
evaluation cannot assign a sign to adegeneratepredicate
whose exact value is zero. Degeneracy is common due to
design constraints and to symmetry.

The other popular robustness method, controlled perturba-
tion (CP) [17], [18], evaluates predicates with floating point
arithmetic. The computed sign off(a) is correct, and the
predicate is called safe, when the computed magnitude satisfies
|f(a)| > ε with ε a function off anda. The numerical input
to the algorithm is perturbed randomly by up toδ and the
algorithm is executed. If every predicate is safe, the output is
returned. Otherwise, the algorithm is rerun with a different δ.
The final δ bounds the error due to replacing the true input
with a verifiable input. This error is inconsequential whenδ is
less than the required accuracy of the application that provides
the input, such as the tolerances in path planning.

CP is faster than exact computation because all compu-
tations are in floating point. Whereas degenerate predicates
defeat exact computation, CP handles them just like non-
degenerate predicates. Their perturbed values are of order
δ, so they are verifiable for reasonableδ values. However,
CP performs poorly onsingular predicates whose value and
gradient are both zero. A singular predicate of degreed
requiresδ of order d

√
ε. This error is unacceptable with the

reportedε values and is marginal even withε equal to the
rounding unit,µ ≈ 10−16.

Melhorn et al [19] handle singular predicates by rerunning
the algorithm with extended precision arithmetic, which uses
much more time and space than floating point arithmetic. We
[20] identify the cases where the predicates in a Minkowski
sum algorithm can be singular and replace them by non-
degenerate predicates in defined parameters. This approach
does not generalize.

B. Adaptive-Precision Controlled Perturbation

We have developed an extension of CP, adaptive-precision
controlled perturbation (ACP), that handles singular predicates

by selectively increasing the arithmetic precision and that sup-
portsimplicit parametersthat denote the roots of polynomials.

The user specifies the required accuracy,δ. ACP replaces
each input parameter,x, by x + d with d uniform in [−δ, δ].
The user defines explicit parameters using arithmetic operators
on prior parameters. ACP assigns them values using interval
arithmetic. ACP computes predicates using the interval filter:
evaluate the predicate polynomial in interval arithmetic to
obtain [l, u], return −1 if u < 0, return 1 if l > 0, and
fail otherwise. If a predicate fails, the program reevaluates it
after increasing the precision of its arguments. Each geometric
object has pointers to the objects on which it depends. For
example, a circle/line hit criticality (Fig. 7) points to the
circle and the line. The program traverses these pointers and
increases the precision recursively. The initial precision is
double float and higher precision is implemented using MPFR
[21].

An implicit parameter,x, is a root of a polynomial,f .
ACP isolates the roots off on an interval,[L,U ], using
a straightforward recursive algorithm that isO(d2) in the
degree,d, of f (there are faster algorithms in the literature).
We describe how to implement this algorithm in interval
arithmetic. If d ≤ 2, use the explicit roots. Ifd > 2, let
x1, . . . , xn be the roots off ′ with x0 = L and xn+1 = U .
For each pair,xi−1, xi, calculatesign(f(xi−1)), sign(f(xi)).
If either ACP sign test fails, restart with higher precision. If
sign(f(xi−1)) 6= sign(f(xi)), shrink the root isolating interval
[xi−1, xi] using interval Newton’s method. ACP increases the
precision ofx by further shrinking its interval after increasing
the precision off .

We use ACP to implement the free space construction
algorithm. The input parameters specify the part boundary
geometry. The type 3 critical angles are implicit parameters.
Their polynomials are obtained by substituting the appropriate
charts of the rational parameterization of the unit circle into
the bivariate criticality equations in Sec. IV-D. The rest of
the implementation follows the real-RAM algorithm. The
implementation handles any input and generates an output that
is correct for aδ-perturbation of the input.

VII. VALIDATION

Source code for our validation is available at http://www.cs.
miami.edu/∼vjm/robust. We validate the path planning algo-
rithm by constructing a maximal clearance path for a given
robot, obstacle, and start/goal configurations. We find the
largest number,s, for which the algorithm finds a path for
s-offsets of the parts. Thes-offset of a part is its Minkowski
sum with ans-disk centered at the origin. A path for the offset
parts is a2s-clearance path for the original parts. We compute
the maximals by bisection search on[0, 1] to the floating
point resolution, which takes 53 iterations. The clearanceis
s − O(δ) because the2s-path is correct for aδ-perturbation
of the input parameters, which causes anO(δ) perturbation of
the parts.

The bisection algorithm tests how our program handles
degenerate input. A zero-clearance path is degenerate because
the robot has multiple simultaneous contacts with the obsta-
cle. Hence, the final iterations of the algorithm are nearly
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TABLE I
RESULTS: TEST i, ITERATION k, m SUM EDGES, e EDGES IN THE SUBDIVISION, f FREE FACES, t RUNNING TIME IN SECONDS FOR ONE CORE OF AN

INTEL CORE 2 DUO, t12 TIME COMPUTING TYPE1 AND 2 CRITICALITIES, c = 106t/(e lg e), c12 = 103t12/m, rf AND re NUMBER OF POLYNOMIALS

WITH FLOATING POINT AND EXTENDED PRECISION ROOT ISOLATION, AND pf AND pe NUMBER OF FLOATING POINT AND EXTENDED PRECISION

PREDICATE EVALUATIONS.

i k m e f e/f t t12 c c12 rf re pf pe

1 1 84 2,017 424 4.8 0.2 0.1 6.8 1.1 14 0 1.1e5 36,000
1 53 84 2,027 424 4.8 0.2 0.1 6.7 1.1 12 0 1.1e5 35,000
2 1 400 26,000 1,000 26.0 0.4 0.3 1.0 0.8 600 0 2.7e6 0
2 53 400 36,000 2,000 18.0 2.6 0.3 4.8 0.8 1,700 400 3.7e6 3.2e5
3 1 700 89,000 3,000 29.7 1.4 0.9 1.0 1.3 3,200 0 8.9e6 0
3 53 700 1.0e5 4,000 25.0 1.8 1.0 1.1 1.4 5,600 5 1.1e7 0
4 1 3,000 48,000 3,000 16.0 1.4 0.9 1.9 0.3 5,300 60 1.2e7 45,000
4 35 2,500 1.0e5 3,000 33.3 2.6 1.0 1.6 0.4 3,300 200 1.5e7 1.7e5
5 1 4,400 1.4e5 15,000 9.3 3.1 1.8 1.3 0.4 3,500 36 2.7e7 68,000
5 22 3,900 4.1e5 10,000 41.0 9.7 2.1 1.3 0.5 24,000 335 4.6e7 6.9e5
6 1 8,000 2.2e5 20,000 11.0 6.1 3.7 1.6 0.5 2,800 300 5.4e7 2.1e5
6 34 6,800 5.1e5 11,000 46.4 13 3.9 1.3 0.6 21,000 900 7.0e7 9.0e5
7 1 13,000 5.5e5 31,000 17.7 14 8.9 1.3 0.7 12,000 200 1.4e8 2.1e5
7 27 12,000 1.4e6 28,000 50.0 33 10 1.2 0.8 81,000 1,700 2.1e8 1.7e6
8 1 18,000 7.1e5 75,000 9.5 22 16 1.6 0.9 12,000 300 2.3e8 2.6e5
8 24 15,000 1.5e6 55,000 27.3 55 14 1.8 0.9 72,000 3,600 2.6e8 5.0e6

goal

start

Fig. 12. Tightest clearance paths = 0.27865 in 2D.

degenerate. In every test, we obtain a correct output and the
running time increases modestly from the first iteration to the
last iteration. We useδ = 10−8 and extended precision of
p = 250 binary digits. Table I shows the results.

Test 1 is an 8-edge robot and an 18-edge obstacle with
two chambers connected by a narrow passage (Fig. 12).
The start and goal configurations are in the top and bottom
chambers. We ensure that the robot simultaneously rotates and
translates for larges values, which forces the planner to search
a large fraction of the configuration space, by making the
passage boundary arcs concentric. Fig. 12 shows one sample
configuration per face visited in the tightest clearance path,
and Fig. 13 shows the 3D free space boundary for a smaller
s so the narrow passage is visible.

Test 2 is a 5-pointed star with 15 edges inside a 6-sided
container with 42 edges (Fig. 14a–b). The start and goal
positions are identical, the start angle is0◦, and the goal angle
is 72◦ (1/5 of a turn). The solution is for the star to pivot
about each of its tips in turn. Fig. 14b shows it part way
through a pivot. Sliding contacts occur at 1, 2, 3, and 4. The
other two tips are close but not in contact with the obstacle.
This motion is degenerate because three contacts should
fix the configuration. The input perturbation eliminates the
degeneracy and no extended precision arithmetic is required
(re = 0 and pe = 0). The motion is doubly degenerate at
the maximum offset,s = 0.1, because four points touch the
container throughout each pivot. The input perturbation still

Fig. 13. View of free space boundary from blocked space with randomly
colored faces fors = 0.265625.

eliminates the degeneracy, but significant extended precision
arithmetic occurs (re = 400 and pe = 320, 000). Thanks to
adaptive precision, running time only increases by a factorof
six.

Test 3 is a 7-pointed star inside an 8-sided container. Unlike
test 2, there is no sliding contact, so the input is not degenerate,
the s = 0.1 offset is simply degenerate, and there is little
extended precision arithmetic.

Tests 4–8 are ann-pin wheel inside a channel withn + 1
segments forn = 3, . . . , 7. Figs. 14c and d shown = 5 and
n = 7 and the points of contact during a pivot. The bisection
search ends afterk < 53 iterations because the start and
goal becomeδ-close to blocked space. At minimum clearance
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Fig. 14. Star in container: start configuration (a) and pivoting (b); wheel in
channel (c), (d).

(maximumk), symmetry causes multiple pin/channel contacts.
Hence, there is significant extended precision arithmetic (re)
for largek. Even so, the time increases by at most a factor of
three.

As m increases, the time,t12, for computing type 1 and 2
criticalities is a smaller fraction of the total. This is the
n4 = m2 component of the predictedO((n4 + c3) log n) run-
ning time. Although type 2 criticality computation isO(m2),
we reduce the actual running time toO(m) using kd-trees,
bounding boxes on the area swept by a sum edge over itsθ
interval, and a geometric constraint on the relative sizes of
the constituent robot and obstacle edges of intersecting sum
edges. For the geometric constraint, define

mind(e, f) = min
p∈e,q∈f

|p − q|, (3)

maxd(e, f) = max
p∈e,q∈f

|p − q|. (4)

If [mind(e, f),maxd(e, f)] ∩ [mind(g, h),maxd(g, h)] = ∅
then a simultaneousf/g contact ande/h contact cannot occur
andf⊕g will never intersecte⊕h. Hence,c12 = 103t12/m ≈
1, andO(c3 log n) more accurately models the time. Looking
at the valuec = 106t/(e lg e), we see thatc < 2 except an
anomalous values of 6.8 and 4.8 for small problems. Since,
c3 ande are proportional, these values agree with the model.
The actual output size,f , is much smaller thane because most
faces do not appear on the free space boundary. The ratioe/f
ranges from 4.4 to 50. To this extent, the algorithm is not truly
output sensitive.

The free space construction program does not handle non-
smooth convex vertices or linear edges. The first restric-
tion eliminates the three types of criticality discussed in
Sec. 3.4.3.3 and the second eliminates the complicated type1
criticalities shown in Fig. 11. The path planning program is
unaffected by the first restriction because offsets of partscan-
not have non-smooth convex vertices. The second restriction
requires us to approximate linear edges by circular edges with

large radii. We use this approximation in test 1 for the chamber
walls. The penalty is the high percentage of extended precision
predicate evaluations,pe, due to the high numerical condition
of the equations involving these edges. Reducing the radius
from 108 to 106 decreasespe from 36,158 to 10,048, and
reduces the running time from 0.15 to 0.06. For radius104,
pe is 1942 and the time is 0.031.

VIII. D ISCUSSION

We have presented a complete path planning algorithm for a
planar robot with three degrees of freedom where the robot and
the obstacle boundaries consist of circular and linear edges.
We have implemented the algorithm using our ACP robustness
library. The program is complete in that for any input the
output is correct for aδ-deformation of the input. By setting
δ = 10−8, we make the deformed input indistinguishable from
the actual input. We have demonstrated that the program is fast
and output sensitive on problems that contain narrow passages.
The running time is only slightly dependent on the passage
width, ε, whereas the cost of sample-based planning isε−d

with d the configuration space dimension.
We are developing a complete, output sensitive path plan-

ning algorithm for a polyhedral robot that translates freely
and rotates around a fixed axis (d = 4). Our plane sweep
generalizes to a volume sweep. The challenge is to derive the
criticality equations and the subdivision update rules. Our next
goal is to develop a hybrid algorithm for a polyhedral robot
with six degrees of freedom whose complexity isO(1/ε2) and
that performs well on narrow channels. We will sample the
configuration space withO(1/ε2) d = 4 subspaces, construct
their free spaces, and link them into a path planning graph.
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