
L
'

' New computer designs process n

+'
, ,

I every fcw years would cover a multitude of sins-the
inefficiency and bloated size of application software

being some of the worst transgressions. That luxury appears
to be fading as power consumption has skyrocketed and the
circuit boards on which the microprocessors sit threaten to
transmute thcmselves into space heaters. Intel (where the hal-
lowed Moore's law has reigned) and other hardware makers
have responded by designing computers to.run multiple pro-
cessors at slower speeds.

lMultiprocessors come with their own baggage, however.
First, writing software that apportions computational tasks
among several processors remains an unwanted burden for
many programmers. Moreover, a number of the fastest-grow-
ing networking applications-from virus scanning to reading
Web documents encoded in extensible markup language
(XML)-do not lend themselves readily to parallel processing.

Determining whether a message contains a word that de-
notes spam, such as "lottery" or "Viagra," requires evalua-
tion of consecutive parameters: Is the word "lottery" followcd
later in thedocument by the word "payout"? Distributing this
task among an array of processors is asking for trouble. In-

for c o p r o ~ e s ~ o r ~ . he main microprocessor ret'ains its respon:
sibility as chief dispatcher for key operating system functions.
Meanwhile designs for processors that perform spam and vi-
rus hunting or X M L processing have taken a page from
graphics processing, which has long had its own specialized
units. In recent years, so-called intrusion-detection accelera-
tor engines have often taken over some of the work from in-
creasingly overburdened central processing units (CPUs). A
few academic and industrial laboratories have even begun to
advance this concept one step further by accommodating all
types of "streamed" information that move over a network.
In essence, they have created a general-purpose stream pro-
cessor that can be readily reprogrammed and can handle mul-
tiple applications, whether it be guarding a firewall or com-
pressing files.

Pattern-Matching Engine
T H E I B M Z U R I C H Research Laboratory has netted Nobel
Prizes for the creation of the scanning tunneling microscopc
and high-temperature superconductivity. I t has also served as
a nexus for developing network hardware and software. At
Hot Chips, a conference put on by the Institute of Electrical

J A N U A R Y Z O O 6

presentation on a stream processor-a "pattern-matching en-
gine" for catching viruses, spam and other bad actors-that
he developed along with colleague Ton Engbersen.

I IBlM's processor emerged from earlier research on how to
move data through the Internet's network computers, called

1 routers. Van Lunteren, a native of the Netherlands, worked
during the late 1990s at IBM Zurich on improving techniques
for efficiently looking through the data tables of routers to find
the forwarding information for data packets travelingthrough
a network. Routers have to examine tens of millions of packets
a second and inspect tens of thousands of entries in their da-
tabases to procure the next link on the network before sending
packets out of one of multiple output ports. Van Lunteren de-
vised a hash function for searching routing tables. This math-
ematical formula produces a number, or hash index, that in-
dicates in a table lodged in the processor hardware where the
relevant output port is that connects to the link that in turn
will move the packet to the next router on the network.

Van Lunteren designed an algorithm based on a hash
function-the Balanced Routing Table, or BaKT, search-that
compresses dramatically the number of bits needed to store

ets a second and might eventually take care of four times that
amount of data traffic.

Routing table searches require only a look at a short string
of,data in the initial part of the packet, the header that tells a
packet where to go. With the avalanche of spam, viruses and
other so-called malware, however, network processors now
also have to read much more deeply inside the contents of the
packet itself for telltale signs that a sender is up to no good.
Similarly, reading document-encoding languages such as
XlML also places high demands on network hardware. The
hash function that van Lunteren devised for routing became
essential for IBlM's stream processor.

Beyond von Neumann
C O N V E N T I O N A L PROCESSORS require multiple instruc-
tions to deal with XML codes or to look for malware, creating
a bottleneck in which tens of clock cycles are needed to handle
a single character. Despite many refinements, the average
CPU still relies largely on an architecture initiated in the
1940s by the great mathematician John von Neumann as well
as computer pioneers J. Presper Eckert and John ~Mauchly.

I MATCHING MANY VS. COMPARING ONE BY ONE
Finite-state machines process data streams by matching characterUL" against two others, "C' and "V," to determine whether
each input character simultaneously against many different it can be the first letterof "LOTTERY"or"VIAGRA," twostored
characters indicative of spam that are stored in memory. wordsthat denote spam. Once a match occurs, the machine
A conventional von Neumann machine, in contrast, must switches to state 1, checkingsuccessive input characters against
evaluate the characters stored in memory one by one. a stored character string, eitheraOTTERY" or"IAGRA." If i t finds a

In state 0, the finite-state machine initially compares complete match for one ofthe two strings, the machine moves to

Data streams
FINITE-STATE MACHINE

n STATE

Start
again

SPAM

Start
again

The von Neumann architecture, as it is called, fetches an in-
struction from a n address in memory and executes it, and a
program counter is updated with the address of the next in-
struction to beperformed. The cycle then repeats itself, unless
explicitly told otherwise by an instruction that requires the
processor to jump to another place in the program. If the pro-
cessor confronts a task with any degree of complexity-for
instance, evaluation of whether a particular character is legal
in XLML coding-it must grind through multiple instructions
and clock cycles to complete the task.

Van Lunteren and Engbersen borrowed a conceptual
scheme from the earliest years of computing, a finite-state ma-
chine that is rooted in the work of computing pioneer Alan M.
Turing. A finite-state machine is a basic description of how any
computing machine operates: how it performs operations in a
discrete series of steps and assumes a finite list of internal
states at any one time. On an abstract level, even the von Neu-
mann architecture can be characterized as a finite-state ma-
chine. But the type of finite-state machine designed by van
Lunteren and Engbersen distinguishes itself from a CPU that
relies on the von Neumann architecture because it forgoes
inclusion of a program counter.

Unlike the von Neumann namesake, van Lunteren and
Engbersen's finite-state machine can evaluate multiple things
simultaneously in a single cycle, instead of considering just
one, as happens in the process that is controlled by the pro-

gram counter. That is one of the reasons finite-state machines
have been deployed for years in graphics processors and voice-
recognition systems and in hardware design. Finite-state ma-
chines, however, have not lent themselves to being repro-
grammed readily, thus sacrificing the flexible, general-purpose
quality of the von Neumann-based CPU.

Yet the bottleneck posed by the sequential nature of con-
ventional CPUs has begun to diminish some of the distinctions
between the two types of processors. The IBIM finite-state hard-
ware, for one, can be reprogrammed with a software update
if new viruses proliferate or if the XML standard changes.

The design of van Lunteren and Engbersen's processor
relies on a state diagram, a type of graph that consists of cir-
cular nodes, or states, and links between nodes that represent
transitions from one state to another. A subway turnstile is a
form of finite-state machine. Its initial node is a state called
"loclted." Insertion of a coin is indicated in the graph by a line
that traces a "transition" from the current state to an "un-
locked" node. Passing through the turnstile is another line
that marks a transition back to the locked node.

In IBM's finite-state machine, agiven state may link more
than two nodes. In an actual stream-processing application,
a node might have links to many others, and each link would
be assessed at the same time before a decision is made to move
to the next state in the diagram. In looking for spam in an
incoming stream of data, the processor would read from

state 2, indicatingdetection of a word found in spam messages. If character can be tested only against one stored character at a
no match occurs, aswiththe word "LATKE,"the hardware shiftsto time. Moreover, three and sometimes more instructions, and
state 3, suggestingthat no spamis lurking. Ifthe initial input thus multiple processor cycles, are required for each character-
letterdoes not jibe with words in memory, such astheaR" in one to load the character, another to check whether it is the
"REUNION," the machine proceedsdirectly from state 0 tostate 3. desired character, and the third to jump to another location in

In the typicalvon Neumann architecture, each input the program if it is not the character being sought.

Herbal
VIAGRA

VON NEUMANN ARCHITECTURE

L-A-T-K-E
No match

I I

Start
memory go to other

location in R-E-U-ti-1-04
No match

again

LOAD CHECK JUMP

I R-E-U-N-I-O-N I No match

memory the word "lottery." It could evaluate not only wheth-
er the character "0" followed a n "1" in a n arriving string of
characters but also whether a spam message may have in-
serted an underscore character-''I-0"-to try to fool a spam
blocker. As part of the same search, executed in a single pro-
cessor cycle, it could look for the "1" in "lottery" as well as for
the "V" in "Viagra" and many other characters in its memory.
In a conventional processor, each of those steps would have to
be executed seq~lentialty [see box on these two pages].

At least in the laboratory, applying a finite-state machine
to streaming applications improves performance substantially.
Van Lunteren reported at Hot Chips that IBM's finite-state
machine can process characters at up to 20 gigabits a. second
for viruses, spam and other applications, 10 to 100 times fast-
er than a conventional processor. A key enabling tool was
BaRT. In many finite-state machines, storing rules for carrying
out the transitions in a state diagram consumes a large amount
of memory. IBlMcan store in its finite-state machine hardware
up to 25,000 characters in less than 100 kilobytes of memory,
as little as '/so0 the requirements for some other finite-state
machines. The efficiency of the algorithm devised originally
for routing tables allows for a linear increase in memory needs:
if the number of transition rules rises from one to 10, memory
demands go up by a comparable factor. In many other finite-
state machines, a similar increment would require 100 times
more space.

IBM already offers the finite-state machine technology for
custom applications-licensed through its engineering and
technology services group-and it is evaluating the processor
for a number of products. IBM is not alone in adopting this
idea. Universities and other companies have also developed
programmable finite-state machines. John Lockwood, a pro-
fessor at Washington University in St. Louis, co-founded a com-
pany called Global Velocity to con~mercialize such a processor.
Van Lunteren says that the IBlM design is special because of its
ability to handle a wide range of applications, becoming a gen-
eral-purposc processor for any stream-processing application.
The sophistication of these coprocessors may continue to evolve
as critical tasks such as stream processing stray further and
further from the control of the central processing unit. This
work ensures that the legacy of Turing and von Neumann will
coexist a few centimeters away on the same circuit board. EI

I M O R E T O E X P L O R E
The Alphabets, Words and Languages of Finite State Machines.
This exolanation of how finite-state machinesworkcan be accessed
at wwv~.c3.lanl.gov/mega-math/workbk/machine/mabkgd.html
Globalvelocity is a company that has developed similar processing
concepts to the IBM team: www.globalvelocity.com/index.html
XMLAccelerator Engine. Janvan Lunteren,Ton Engbersen, Joe
Bostian, Bill Carey and Chris Larsson. First International Workshop on
High Performance XML Processing, May 18,2004.Availabie online
at www.research . ibm.com/XML/ IBM~Zur ich~XML~Acce le ra to r~
Engine-paper-2004May 04.pdf

