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Abstract

An effective and fast algorithm is given for rotational overlap minimization: given an overlapping layout of
polygons P1, P2, P3, . . . , Pk in a container polygon Q, translate and rotate the polygons to diminish their overlap
to a local minimum. A (local) overlap minimum has the property that any perturbation of the polygons increases
the overlap. Overlap minimization is modified to create a practical algorithm for compaction: starting with a
non-overlapping layout in a rectangular container, plan a non-overlapping motion that diminishes the length or
area of the container to a local minimum. Experiments show that both overlap minimization and compaction
work well in practice and are likely to be useful in industrial applications.  1998 Published by Elsevier Science
B.V.

Keywords: Layout; Packing or nesting of irregular polygons; Containment; Minimum enclosure; Compaction;
Linear programming

1. Introduction

A number of industries generate new parts by cutting them from stock material: cloth, leather
(hides), sheet metal, glass, etc. These industries need to generate dense non-overlapping layouts of
irregular polygonal shapes. Because fabric has a grain, apparel layouts usually permit only a finite set
of orientations. Stripes, plaids, or other patterns on the fabric can further limit the allowed orientations
and translations. Nevertheless, apparel manufacturers often allow small rotations (called “tilting”),
typically not more than 3 degrees, but still large enough to make a significant difference in cloth
utilization. Glass and sheet metal (and sometimes leather) have no grain (or stripes or plaids), and
therefore layout on these materials allows arbitrary orientations for the parts.

Variations of the layout problem have a variety of names: nesting, packing, and so forth. In
the computational geometry literature, containment refers to the task of placing k input polygons
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P1, P2, P3, . . . , Pk into a fixed container Q without overlapping. If the container varies over a class,
such as the class of rectangles with a fixed given width and variable length, then minimum enclosure
refers to the task of finding the minimum area container in the class which allows a layout.

Both in practice and in theory, minimum enclosure is a highly complex non-linear and non-convex
global optimization problem. One can consider containment to be special case of another such op-
timization problem, global overlap minimization: find the layout of P1, P2, P3, . . . , Pk in Q which
minimizes the sum of the pairwise overlaps. (Containment has a solution if and only if the global min-
imum overlap is zero.) Even for purely translational containment and minimum enclosure (polygons
cannot rotate), no layout software currently in use can consistently come as close to the optimum as
hand layout by expert humans. These humans easily pay their own wages (actually about five times
their wages) with the material they save over the best heuristics and algorithms.

This paper addresses local optimization versions of containment and minimum enclosure, called
overlap minimization and compaction, respectively. The local optimization problems are simpler to
solve than their global counterparts, yet our previous work on translational layout indicates that finding
a local optimum is still quite useful. Translational overlap minimization forms an essential part of our
algorithms for translational containment and minimum enclosure, and clothing manufacturers currently
apply our translation compaction algorithm to human-generated layouts as a post-processing step. We
expect rotational algorithms to be at least as beneficial.

1.1. New results

This paper gives a new algorithm for rotational overlap minimization. Like our translational com-
paction and overlap minimization algorithms, it finds the minimum through the solution of a sequence
of linear programs. Our experiments demonstrate that, like our translational algorithms, the new ro-
tational algorithm has “supernatural” convergence. We say “supernatural” because, unlike standard
physically based energy minimization techniques, our algorithm anticipates collisions and overlaps
before they happen and therefore converges in fewer steps than these “natural” methods.

For convex polygons Ci and Cj , this paper defines overlap(Ci, Cj) to be the length of the shortest
translation of Cj that moves it off Ci, also known as the intersection depth [8]. For non-convex
polygons Pi and Pj , we define a different measure for overlap(Pi, Pj) but one which matches the
intuitive notion of overlap. The current algorithm minimizes∑

06i<j6k
overlap(Pi, Pj),

where P0 = Q is the complement of the container, although in principle, it can minimize any mono-
tone differentiable function of the pairwise overlaps. Also, if the user desires, the algorithm can
independently limit the range of motion or range of angle for each polygon Pi.

This paper also gives a new algorithm for rotational compaction. An implementation of the rotational
compaction algorithm is shown to reduce material waste for a number of industrial layouts—even after
translational compaction has been applied. An analysis of the running times shows that this rotational
compaction is fast enough for many practical industrial applications.

The following section relates the new algorithms to other work in layout of irregular polygons.
Section 2 gives an algorithm for rotational overlap minimization of convex polygons. Section 3 gen-
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eralizes it to non-convex polygons and compaction. Section 4 gives experimental results and analyzes
the running time, particularly for the compaction application.

1.2. Related work

Most of the work on layout has focused on heuristics or meta-heuristics for containment and mini-
mum enclosure, often called nesting. Less work has focused on algorithms: techniques that are guar-
anteed to find the global minimum. Relatively little work has considered the problem of finding local
minima, although there is considerable work in the area of physical simulation, which can generate a
local minimum as a by-product. This section summarizes recent work in these areas and its relationship
to the new algorithms for rotational overlap minimization and compaction.

Heuristics and meta-heuristics are limited in theory because they cannot say “no” if there is no so-
lution. According to our sources in the apparel industry, available layout software is limited in practice
to falling about 5% behind humans in cloth utilization. Recent work has used simulated annealing
[14], boundary matching [15], grouping of polygons into sub-rectangles [1], genetic algorithms [4],
incremental approach [24], database driven layout [16,18], or a hybrid approach [12,13]. See [7,9]
for surveys of older work. Many of these approaches either discretize the search space, replace the
polygons by approximations, and/or use other accuracy/time trade-offs. Rotational overlap minimiza-
tion can help speed up these heuristics by moving these approximate layouts to the nearest exact
non-overlapping layout, if one exists.

Chazelle [6] gave the first algorithm for the irregular (non-convex) single-polygon translational
containment problem, and Avnaim and Boissonat [3] improve the running time. Agarwal et al. [2]
give the best running times for single-polygon rotational minimum enclosure. Grinde and Cavalier [10]
give a rotational containment algorithm for two convex polygons. Finally, we give an algorithm for
k-polygon translational containment and minimum enclosure that is within a log factor of optimal [19].
It is not clear how overlap minimization can improve the theoretical running times of these algorithms.
However, we have found overlap minimization to be essential to reducing the running time in practice
[22,23].

Local minimization is simpler to achieve than global minimization, yet we have shown an exponen-
tial running time lower bound [17] for any “realistic” compaction algorithm: one which generates the
motion of the polygons as part of the minimization. In the case of translational compaction, we have
not seen this worst case in practice [16,18]. Stoyan et al. [25] have independently arrived at essentially
the same approach for translational compaction. Our translational compaction algorithm is also much
faster than a physically based approach. In three dimensions, the linear programming approach can
be 1000 times faster than a physically based approach [20]. Since the rotational algorithms presented
here also use iterated linear programs, we expect them to have the same advantages.

Our translational compaction algorithm [16,18] has been available to industry since 1993. Our
feedback from industry indicates that humans indeed do not generate local minima and that compacting
their layouts saves material without violating cutting rules. Our translational compaction algorithm can
compact an industrial layout of over one hundred clothing parts in 4 or 5 iterations in well under a
minute on a PC. For some domains, such as intimate apparel, compaction can reduce cloth waste by
over 1%, and the average reduction is about 0.5%. For men’s pants, the average reduction is about
0.25%. For one manufacturer with $100 million in cloth cost, compaction saves them about $250,000
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per year. Anticipated yearly savings for customers already under contract 1 is $2,750,000, and the
customer base is growing rapidly.

What about rotation? Textile manufacturers do not allow arbitrary rotation of the parts because
fabric has a grain. However, they often allow parts to “tilt” (industry term for a small rotation) a few
degrees. Li attempted to add rotations to his translational compaction algorithm by rotating polygons
one at a time. Even though this technique does not necessarily reach a local minimum, his experiments
on 162 layouts [16] showed that adding rotations saved at least 49% more cloth than translational
compaction alone. For industries cutting sheet metal, glass, and (sometimes) leather, the parts can
have arbitrary orientations. For these industries, it is essential that compaction and the other layout
algorithms can handle both rotation and translation. Hence a good system for rotational compaction
would be even more valuable to industry than the one for translational compaction has been.

2. Overlap minimization for convex polygons

This section gives an algorithm for rotational overlap minimization of convex polygons. It first de-
scribes a non-linear optimization problem for overlap minimization of convex polygons. This problem
is linearized, and interpolation is applied to find an overlap-diminishing step. This step is repeated
until the system converges to a local minimum.

2.1. Overlap of convex polygons

In this paper, lower case letters generally denote scalars, points and vectors. Upper case letters denote
sets of points, usually polygonal regions. Scalar multiplication and vector/point addition are defined as
usual. This section employs three vector multiplications: a · b = axbx +ayby, a× b = axby−aybx and
ab = (axbx− ayby, axby + aybx). The first and second are the two dimensional dot and cross product.
The third is the product of points as complex numbers, which is useful for representing rotations: if
u = (cos θ, sin θ), then the product up is point p rotated by θ about the origin. Vector operations are
applied pointwise to sets: uP + t is polygon P rotated by θ and translated by t.

Convex polygons A and B overlap if their interiors intersect. Vector t is a separating translation
for A and B if A − t/2 and B + t/2 do not overlap, although their boundaries may intersect. Since
boundary contact is permitted, the set of separating translations is a closed set, and therefore the set of
lengths of separating translations has a minimum. Define the measure of overlap to be this minimum
length o = |t|. Note that there may be more than one shortest separating translation. We can determine
the overlap by solving the following optimization problem on (unit) vector variable u, |u| = 1, and
scalar variables d and o, o > 0. Minimize o, given

u · a 6 d+ o/2, ∀a ∈ A, and u · b > d− o/2, ∀b ∈ B. (1)

Lemma 2.1. The solution to Eq. (1) is the overlap o of A and B and a minimum separating translation
t = o u.

1 Customers are under contract to Gerber Garment Technologies, which currently holds exclusive license to our compaction
software.
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Fig. 1. Illustration of convex polygons A, B, a separating translation t of length o, and a separating line L for A− t/2 and
B + t/2. Vertices a and b are critical (Section 3.2).

Proof. Let 〈u, d〉 denote the line L = {(x, y) | u · (x, y) = d}. By Eq. (1), A lies to the left of
line 〈u, d+ o/2〉 and B lies to the right of line 〈u, d− o/2〉, and therefore A− t/2 and B + t/2 lie
on opposite sides of L and do not overlap (see Fig. 1). Let t′ be another separating translation, and
let L′ = 〈u′, d′〉 (|u′| = 1) be the line which separates A − t′/2 from B + t′/2. 2 For all a ∈ A,
u′ ·(a−t′/2) 6 d′, which implies u′ ·a 6 d′+(u′ ·t′)/2. Similarly, for all b ∈ B, u′ ·b > d′−(u′ ·t′)/2.
Since o is the minimum value satisfying Eq. (1), it follows that o 6 u′ · t′ 6 |t′| and thus no separating
translation is shorter than t = o u. 2

Lemma 2.1 implies that rotational overlap minimization for polygons P0, P1, P2, . . . , Pk is the
solution to a minimization problem on vector variables ui, |ui| = 1, and ti, 0 6 i 6 k, and vector
variable uij = −uji, |uij | = 1, and scalar variables dij = −dji and oij = oji, oij > 0, 0 6 i < j 6 k.
Minimize

∑
06i<j6k oij , given

uij · (uipi + ti) 6 dij + oij/2, ∀pi ∈ Pi, 0 6 i 6= j 6 k. (2)

In Eq. (2), ui and ti represent the rotation and translation of polygon Pi, and oij is the overlap of
polygon ujPi+ ti with ujPj + tj . This result follows as a corollary to Lemma 2.1. 3 This optimization
problem can be modified to minimize the maximum overlap or some other monotonic function on the
overlaps instead of the sum. It is also easy to add constraints on the range of rotation or translation
of a polygon. In fact, since the container Q = P0 is not suppose to move, one would fix u0 = (1, 0)
and t0 = (0, 0). Finally, since the constraint is linear in pi, it suffices to allow pi to range only over
the vertices of Pi.

Eq. (2) is non-linear, and to solve it we first linearize it. We replace each variable which participates
in higher order terms by a perturbed version: uij → uij + ∆uij , ui → ui + ∆ui and ti → ti + ∆ti.
Since |uij | = 1 and |ui| = 1, the linearized approximations to ∆uij and ∆ui are ∆θiju⊥ij and ∆θiu⊥i ,

2 Non-overlapping convex polygons can always be separated by a line [11,21].
3 By setting uij = −uji, dij = −dji and oij = oji, the two constraints in Eq. (1) are collapsed into one constraint in

Eq. (2) for each i, j, i 6= j.
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respectively, perpendicular to uij and ui. Substituting perturbed variables, expanding, dropping higher
order terms, and setting p′i = uipi + ti yields 4

−
(
uij × (uipi)

)
∆θi + uij · ∆ti +

(
uij × p′i

)
∆θij − dij −

1
2
oij 6 −uij · p′i. (3)

Lemma 2.2. If rotations θi (recall that ui = (cos θi, sin θi)) and translations ti, 0 6 i 6 k, do not
correspond to a local minimum of the non-linear optimization problem in Eq. (2), then the linear
optimization problem in Eq. (3) has a solution which diminishes the total overlap in a neighborhood
of ui and ti: for sufficiently small s > 0, rotations θi+s∆θi and translations ti+s∆ti yield a diminished
total overlap.

Proof. If the layout is not at a local minimum for the overlap measure, then some motion (rotation
and translation) will diminish the overlap. For a sufficiently small part of this motion, the higher order
terms are negligible, and the linearized system approximates the actual system arbitrarily closely.
Therefore, the linearized system has a solution which diminishes the overlap. For a sufficiently small
part of the motion (small s) towards the linearized solution, the higher order terms are negligible, and
therefore the original non-linear system has diminished overlap measure. 2

2.2. Algorithm

The linearized optimization problem in Eq. (3) can be solved using linear programming. The overlap
minimization algorithm solves the system for the current rotations and translations, determines the value
of s which most diminishes the overlap, and replaces θi by θi + s∆θi and ti by ti + s∆ti, 1 6 i 6 k.
This update step is repeated until the system converges to an equilibrium state of the non-linear
optimization problem in Eq. (2). Lemma 2.2 implies that if the algorithm converges, it converges to
such an equilibrium, and our experiments in Section 4 indicate that it does indeed converge very fast.
All that remains to describe the overlap minimization algorithm for convex polygons is (1) how to
determine uij , dij and aij before solving the linear program, and (2) how to determine the best value
of s after solving the linear program.

For a pair of non-overlapping convex polygons, at least one separating line must be parallel to an
edge of one of the polygons [11,21]. Hence, one can quickly solve the optimization in Eq. (1) by
checking each unit vector u perpendicular to an edge of A or B. Again, it suffices to let a and b range
over the vertices of A and B. For fixed rotations and translations, this technique determines the value
of uij for uiPi + ti and ujPj + tj , and hence dij for these rotated/translated polygons.

After solving the linear program, one can solve exactly for the optimum value of s, but the set of
equations is messy and at least fourth degree. Our current implementation uses sampling and interval
halving. Abusing notation, let Σ(s) be the total overlap for interpolation value s. We know that
Σ′(0) < 0, and we are seeking smin, the first minimum of Σ(s) for 0 < s 6 1. If we have two
sample values sl < sr such that Σ(sl) < Σ(sr), then we know smin < sr, and we can discard sample
intervals to the right of sr. In our implementation, we alternate between sampling the midpoint of
(1) the longest interval, and (2) the last (rightmost) interval between samples.

4 The appearance of the cross product arises from the identity a× b = a⊥ · b.
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3. Non-convex polygons

The overlap of two non-convex polygons can also be defined as the length of the shortest separating
translation (also known as the intersection-depth [8]), and this is the overlap measure we use in our
translational algorithm. Unfortunately, this measure is not conducive to mathematical programming in
the rotational case. Instead, the rotational algorithm minimizes a measure based on an inner convex
cover (ICC). Let P be a polygon and let icc(P ) be a set of (possibly overlapping) convex subsets of
P whose union is P . Define

overlap(Pi, Pj) = max
Ci∈icc(Pi),Cj∈icc(Pj)

overlap(Ci, Cj), (4)

where overlap of convex polygons is the intersection depth. This overlap measure has two intuitive
properties: (1) it is zero only for non-overlapping polygons, and (2) for convex inputs, it is equal to
the intersection depth.

Section 3.1 gives two ways of constructing inner convex covers of non-convex polygons, one geared
towards overlap minimization and the other geared towards compaction. Section 3.2 gives an algorithm
for overlap minimization, and Section 3.3 gives an algorithm for compaction.

3.1. Constructing inner convex covers

In our first experiments, we used an overlap measure based on a convex decomposition of each
Pi, such as a triangulation. However, if icc(P ) is a partition of P , then overlap(Pi, Pj) can have
“unintuitive” local minima. Suppose Li separates icc(Pi) into two subsets, and suppose the same for
Lj and icc(Pj). In this case overlap(uiPi+ti, ujPj+tj) has a constant-depth valley for all ui, ti, uj , tj
which align uiLi + ti with ujLj + tj . This valley traps the optimization in a highly overlapped state
because the overlap measure gives no information on which way to move along the valley. Based
on this experience, we developed highly inner convex covers whose elements overlap as much as
possible: “fat” ICC and “potato” ICC. See Fig. 2.

To generate a “fat” ICC, our system generates a convex partition of Pi in a greedy fashion, and
then greedily “fattens” each convex element of the partition. The partition algorithm repeatedly cuts
Pi with a chord. A cut which eliminates two concave vertices is always better than a cut which only

Fig. 2. Inner convex covers (ICC) of non-convex apparel polygon with 71 vertices. “Fat” ICC (left) has 39 polygons but
covers each point 24 times on average. “Potato” ICC (right) has 101 polygons but only covers each point 8 times on average.



312 V.J. Milenkovic / Computational Geometry 10 (1998) 305–318

eliminates one. A cut which yields two boundary chains with roughly equal number of vertices is
better than one which yields chains with very unequal numbers of vertices. The algorithm selects
the best cut and recurses on the two halves. To fatten a convex partition element Ci, the algorithm
greedily adds vertices from Pi to the boundary of Ci as long as the result is a convex subset of Pi.
Fig. 2 shows the result for a typical non-convex apparel part. The “fat” ICC yields an excellent overlap
measure. Unfortunately, it can have so many convex polygons covering some portions of Pi that the
linear programs have many redundant constraints, and the overlap calculation takes a long time.

The “potato” ICC is an attempt to reduce the multiple coverage to a number roughly logarithmic
in the number of vertices in Pi. The “potato” algorithm generates two overlapping polygons whose
union is Pi. It does so by selecting a concave vertex and making two alternative cuts, each skewed
0.1 radians from the angle bisector. It greedily chooses the concave vertex such that the area of largest
of the two polygons is minimized. It then recurses on the two polygons. This yields a binary tree of
overlapping polygons which cover Pi. The leaves of the tree are convex polygons. For each polygon
in the tree, the algorithm generates (an approximation to) the largest area convex subset. These convex
subsets form the set icc(Pi).

The largest convex subset problem is called the “potato cutting problem”, and the fastest theoretical
algorithm runs in time O(n7) [5]. Since this algorithm is very complicated and may be impractical to
implement, we use the following approximate algorithm for the potato cutting problem. The largest
area convex subset can be generated as follows: for each concave chain of the input polygon, construct
a cut which is an internal tangent segment to that chain. The trick is to select the correct cuts! To
generate an approximation, simply select an arbitrary cut for each concave chain and then visit each
one in turn. When a cut is visited, sample nearby cutting angles to find one that maximizes the area.
Repeatedly visit cuts until no more improvement is possible. We make no claims about the quality of
the approximation, but it appears to work well in practice.

3.2. The overlap minimization algorithm

Given a choice of icc(Pi) for Pi, 0 6 i 6 k, it is easy to generalize the algorithm of Section 2.2.
Simply apply it to the set of convex polygons

⋃
06i6k icc(Pi) with two modifications: (1) all the

polygons Ci ∈ icc(Pi) share the same translation/rotation variables ti, ui, and (2) each pair of polygons
Ci ∈ icc(Pi) and Cj ∈ icc(Pj) use the same overlap variable oij . We can also drop any constraints
between convex polygons belonging to the same ICC.

This rotational overlap minimization algorithm is very inefficient. It creates the constraints of Eq. (3)
for each choice 〈Ci, pi, Cj , pj〉, for 0 6 i < j 6 k, for all Ci ∈ icc(Pi), for all vertices pi ∈ Ci, for
all Cj ∈ icc(Pj), and for all vertices pj ∈ Cj . To reduce avoid considering this huge set of constraint
choices (Ω(k2n4) if each Pi has n vertices), we use a dynamic algorithm. In it, the minimization step
“guesses” a much smaller set S of constraint choices. The dynamic algorithm then takes a step, solving
the linear program and calculating the best value of s, thus generating tentative new angles θi and
translations ti. If it determines that S is missing critical constraints for these new angles and positions,
it adds the missing constraints to the set S and starts over at the previous angles and positions. The
algorithm terminates when this update adds no new constraints, at which point it accepts the new
values of θi and ti.

To generate the initial set S of constraints, the dynamic algorithm considers pairs Pi and Pj which
are overlapping at their current rotations and translations. For each such pair, it selects the pair Ci, Cj ,
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where Ci ∈ icc(Pi) and Cj ∈ icc(Pj), which determine the value of overlap(uiPi + ti, ujPj + tj).
It then determines the critical vertex pi ∈ Ci: pi has the maximum value of uij · (uipi + ti). It adds
to S the constraint of Eq. (3) corresponding to the vertex pi to S. Similarly, it adds the constraint
corresponding to the critical vertex pj of Cj . To update the set S of constraints, the algorithm similarly
adds to S the critical constraints for the tentative new angles and positions.

3.3. Compaction

This section gives an algorithm that modifies the overlap minimization technique to do compaction:
given a non-overlapping set of polygons in a container with fixed width and variable length, plan a
motion for the polygon which minimizes the length. This is a local minimum. It also discusses how
to generalize this algorithm to minimize the area of a rectangle with variable width and length.

Let P0 be the complement R of the rectangular container, and introduce an additional “piston”
rectangle Pk+1 on top of all the polygons as shown on the left of Fig. 4. Add the additional constraints
oij = 0, 0 6 i, j 6 k + 1, i 6= j, to the linear program of Eq. (3). Set the objective to minimize the
y-coordinate yk+1 of the “piston”. Using a standard mathematical programming technique, we also
add terms equivalent to ε

∑
16i6k(|∆θi|+ |∆xi|+ |∆yi|), where ∆ti = (∆xi,∆yi). We use ε = 0.001.

These additional terms serve to stabilize the motion and, surprisingly, even speed up the solution to
the linear program.

For inputs with many polygons, even the dynamic algorithm of Section 3.2 can take many iterations
to settle to a stable set of constraints. We found the following “reckless” algorithm to work best in
practice. Always accept the tentative new angles and positions, even if S is missing critical constraints.
Add in these missing constraints. Push the previous values of ui and ti, 0 6 i < j 6 k+1, on a stack.
If the linear program is infeasible, pop the stack to return to the previous angles and positions, but
do not remove constraints from S. In this way, the algorithm acts recklessly, not waiting for a stable
set of constraints but learning from its mistakes. The original angles and positions at the bottom of
the stack correspond to a non-overlapping configuration, and therefore its linear program is always
feasible. Thus the compaction algorithm never pops an empty stack.

To minimize the area of the container rather than its length, use the same strategy with an area
minimizing linear program. In this case, P0 is the complement of the first quadrant, P0 = {(x, y) | x 6 0
or y 6 0}, and Pk+1 is the complement of the third quadrant, Pk+1 = {(x, y) | x > 0 or y > 0}.
We remove any penalty for overlap between P0 and Pk+1: remove constraints for (i, j) = (0, k + 1).
Translation t0 is fixed at (0, 0) and angles θ0 and θk+1 are fixed at zero. The goal is to minimize the area
of the rectangle with diagonal t0tk+1. This rectangle has area xk+1yk+1, where (xk+1, yk+1) = tk+1. It
can be shown [19], that this area can be diminished if and only if its gradient yk+1∆xk+1 +xk+1∆yk+1
can be diminished. The new objective is therefore to minimize yk+1∆xk+1 +xk+1∆yk+1 (plus ε times
the absolute value terms).

4. Experimental results

We ran our experiments on polygonal parts from apparel manufacturing. Of course, the domains
most in need of rotational algorithms are glass and sheet metal. In the future, we plan to obtain data
from manufacturers in these domains and run experiments on these parts. However, the apparel parts
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are representative of non-convex shapes which arise in manufacturing. In fact, they are often more
complex than glass or sheet metal parts because humans have more curves than windows or washing
machines. Overlap minimization experiments were run on a DEC Alpha 3000/700 (Digital Equipment
Corporation) using the simplex method of CPLEX 3.0 (CPLEX Optimization, Inc.), the “fat” ICC,
and dynamic constraint calculation. Compaction experiments were run on an SGI PowerChallenge L
(Silicon Graphics, Inc.) using the dual simplex option of CPLEX 4.0, the “potato” ICC, and reckless
constraint calculation.

4.1. Overlap minimization

Fig. 3 shows two examples of overlap minimization for the polygon in Fig. 2. In the first example,
the container is the bounding box for the polygon before a large rotation and translation is applied. The
polygon minimized its overlap with the exterior of the container in 3 iterations. Running times on the
DEC Alpha: decomposition, 2.1 seconds; overlap calculations (OC), 1.5 seconds; linear programming
(LP), 0.41 seconds. Iterations 1 and 2 required one auxiliary LP each (included in the 0.41 seconds)
to dynamically determine constraints. The second example is overlap minimization for two copies of
the same polygon in a container chosen to give a tight fit in the y-direction. Again, only 3 iterations
are required. (If the y-dimension is even 1% larger, only 2 iterations are required.) Running times:
decomposition, 4.2 seconds; OC, 23.7 seconds; LP, 0.93 seconds. Iteration 1 required 2 auxiliary LP
calls, and iteration 2 required 4 (included in 0.93 seconds).

Time for decomposition and LP grow linearly, but OC jumps by almost a factor of 10 because
we are (naively) calculating the overlap of every C1 ∈ icc(P1) with every C2 ∈ icc(P2) in order to
calculate overlap(u1P1 + t1, u2P2 + t2).

Fig. 3. Overlap minimization for one polygon and for two polygons.
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4.2. Compaction

We focused most of our experiments on the industrially significant problem of compaction. All
inputs are true, human-generated layouts. Translational compaction [16,18] has been applied to each,
and therefore any further benefit is the result of rotation. Iteration ceased when the objective diminished
by less that one part in a million. At each step |∆xi| and |∆yi| were limited to 0.25 inch and |∆θi| was
limited to 0.1 radians. These values were chosen after several trials to determine bounds that would
keep the number of infeasible steps to a minimum. (A development version of this system would have
to dynamically adjust these bounds automatically.) Rotational compaction was applied to layouts with
23, 54, 108, 180 and 360 polygons. Fig. 4 shows the input and output for the first experiment. Table 1
summarizes the results, and an analysis appears in Table 2.

The most remarkable property of the rotational compaction algorithm is that the number of iter-
ations is small and does not appear to grow significantly with the size of the problem. The input
with 23 polygons and 1,120 vertices requires 22 iterations. The input with 360 polygons and 21,967
vertices requires 31 iterations. This is a testimony to the power of linear programming. It can optimize
everywhere in the layout simultaneously, and unlike physically based methods, it can rapidly transmit

Fig. 4. Compaction experiment 1: 23 polygons.
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Table 1
Rotation compaction on five industrial apparel layouts (after translational compaction)

Experiment 1 2 3 4 5

#poly 23 54 108 180 360

Length (inch) 85.34 123.04 269.04 220.46 146.29

Translational 84.81 121.34 268.82 218.86 143.82

% change −0.62 −1.38 −0.08 −0.73 −1.69

Rotational 83.41 119.98 268.49 217.91 141.63

% change −1.65 −1.12 −0.12 −0.43 −1.52

#steps 22 22 25 23 31

#LP 22 26 27 33 33

Time (sec.) 41 210 128 1752 15890

LP time 6 41 56 1358 12930

Time/LP 0.27 1.6 2.1 41 392

#vert 1120 4163 2040 9183 21967

#verts/poly 49 77 19 51 61

#pairs 105 281 376 1108 3012

#cols 540 1054 1789 3817 9203

#rows 558 1277 1673 5593 16581

#non-zeros 3900 9334 11276 42463 128428

Table 2
Analysis of rotational compaction experiments

Experiment 1 2 3 4 5

#rows/col 1.0 1.2 0.9 1.5 1.8

#non-zeros/row 7.0 7.3 6.7 7.6 7.7

LP time/rows2 0.86 0.98 0.75 1.3 1.4

#rows/vert 0.5 0.3 0.8 0.6 0.8

#rows/poly 24 24 15 31 46

information from one end of the layout to the other. The results also confirm Li’s finding (Section 1.2)
that allowing rotations can save material even after translational compaction. 5

The linear programs are nearly square: as Table 2 indicates, the number of columns per row rises
slowly. The number of non-zero coefficients per row also rises slowly. The conventional wisdom about
the simplex method is that it should have a running time quadratic in the number of rows in these

5 Tilt limits make reaching a local minimum easier. Since we are measuring running time, we did not impose them. With
tilt limits, our algorithm would run faster than shown here, and it would save more material than Li’s algorithm.
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circumstances. Indeed, the ratio of linear programming time (per program) to number of rows squared
is nearly constant, rising very slowly from 0.86 to 1.4. The number of rows is a little more difficult
to predict. It appears to be roughly proportional to the number of vertices, or alternatively the number
of polygons, in the input. This is what one would expect since each row corresponds to a polygon-
polygon constraint and since in a planar packing, each polygon can be expected to have about six
neighbors. As the input size grows, the linear programming time dominates the running time. Overall,
these experiments show that the running time grows somewhat faster that quadratically in the input
complexity.

5. Conclusions

The rotational overlap minimization algorithm requires remarkably few iterations to locate a local
minimum. Its running time is quite reasonable. It clearly will be useful for future applications in
global algorithms for containment and minimum enclosure, which we intend to address in the near
future. The experiments with the rotational compaction algorithm show that it will be both useful and
practical for industrial applications. It saves at least as much material over translational compaction
as Li’s earlier rotational algorithm (Section 1.2). Its running time is clearly within the practical realm,
especially given the fast pace in hardware development. (For comparison, translational compaction of
the 360-polygon layout requires only about five minutes.)

The analysis shows that the running time of rotational compaction is roughly quadratic in the input
complexity. This suggests possible strategies for faster compaction. If the layout is divided into k equal
regions, then the running time for compaction in each would be less the 1/k2 times the running time
for the entire layout. The total running time would be less than 1/k times the running time for the
entire layout. Polygons in one region would have to be permitted to intrude into neighboring regions
and overlap the polygons by a small amount. The overlap would indicate the location of the greatest
“pressure”. The question would be how many iterations would be required to bring the layout to a
final, non-overlapping, compacted layout. If the number of iterations is not k times as large, then this
method would be of benefit. Of course, this approach could also be used for compaction in parallel
on several processors or computers.

Finally, as stated in Section 1.2 many current and future heuristics for nesting/layout might benefit
from the addition of overlap minimization and compaction. We would be happy to assist in any way
we can such an application of our algorithms.
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