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Abstract

An algorithm and a robust floating point implementation is given forrotational polygon containment: given
polygonsP1,P2,P3, . . . ,Pk and a container polygonC, find rotations and translations for thek polygons that
place them into the container without overlapping. A version of the algorithm and implementation also solves
rotational minimum enclosure: given a classC of container polygons, find a containerC ∈ C of minimum area for
which containment has a solution. The minimum enclosure is approximate: it bounds the minimum area between
(1− ε)A andA. Experiments indicate that finding the minimum enclosure is practical fork = 2,3 but not larger
unless optimality is sacrificed or angles ranges are limited (although these solutions can still be useful). Important
applications for these algorithm to industrial problems are discussed. The paper also gives practical algorithms and
numerical techniques for robustly calculating polygon set intersection, Minkowski sum, andrange intersection:
the intersection of a polygon with itself as it rotates through a range of angles. In particular, it introducesnearest
pair rounding, which allows all these calculations to be carried out in rounded floating point arithmetic. 1999
Published by Elsevier B.V. All rights reserved.
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1. Introduction

A number of industries generate new parts by cutting them from stock material: cloth, leather (hides),
sheet metal, glass, etc. These industries need to generate dense non-overlapping layouts of polygonal
shapes. Because fabric has a grain, apparel layouts usually permit only a finite set of orientations.
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Stripes, plaids, or other patterns on the fabric can further limit the allowed orientations and translations.
Nevertheless, apparel manufacturers often allow small “invisible” rotations (called “tilting”), typically
not more than 3 degrees, but still large enough to make a significant difference in cloth utilization. Glass
and sheet metal (and sometimes leather) have no grain (or stripes or plaids), and therefore layout on these
materials allows arbitrary orientations for the parts.

The problem these manufacturers need to solve is eithercontainmentor minimum enclosure.

Containment Given polygonsP1,P2, . . . , Pk and a fixed containerC, place the polygons intoC without
overlapping. As in the case of overlap minimization,P0 denotesC, in which case the goal becomes to
find a non-overlapping layout ofP0,P1, . . . , Pk .

Minimum enclosure Find a non-overlapping layout ofP1,P2, . . . , Pk that minimizes some measure of
the container. The most common version in the textile industry isstrip packing: minimize the length
of a rectangular containerR of fixed width. It is also useful to minimize the area ofR.

The values ofk one sees is often in the dozens or even hundreds. Unfortunately, even the translational
versions of containment and minimum enclosure are NP-hard, and therefore one has to expect the running
time of a containment or minimum enclosure algorithm to be exponential ink. In the apparel industry, no
layout software has yet replaced a human. All hope is not lost: one has to use a heuristic or meta-heuristic
of which there are many for the layout problem.

In the translational case, we have demonstrated [8] that a containmentalgorithmfor modestk (k = 5 or
even perhapsk = 2) is an excellenttool for the creation of containmentheuristicsfor larger values ofk,
even exceeding expert human performance in some cases. This work is based on packing one column
at a time, but it is only one among many ways a “largek” heuristic can use a “smallk” algorithm. For
instance, subsets of the polygons might be packed together tightly and then the union treated as a single
polygon.

This paper examines the following question: for what values ofk is it possible to practically solve
rotational containment and minimum enclosure problemsalgorithmically? In other words, for what value
of k is it necessary to switch to heuristics and give up on performance guarantees? The two main issues
are running time and numerical robustness.

1.1. New results

This paper presents new algorithms and robust floating point implementations of these algorithm
for rotational polygon containment and minimum enclosure. As far as we know, there are no other
algorithms for k > 2 or implementations fork > 2 for multiple non-convex polygons. Minimum
enclosure algorithms are given for the following classes: (1) rectangles of fixed width, (2) scaled copies
of a fixed convex polygon, (3) arbitrary rectangles. The minimum enclosure is approximate: it bounds
the minimum area between(1− ε)A andA. Experiments are done to determine the largest practical
value ofk for minimum enclosure of type (1). Since the minimum enclosure algorithm seeks the smallest
possible container, solving minimum enclosure also gives the running time for the “hardest” instances of
containment.

The property that distinguishes analgorithm from aheuristic is the ability to say “no”. If aheuristic
fails to place polygons into a container, it just says that it cannot do it, not that the problem itself is
infeasible. Analgorithm, by definition, must be able to detect infeasibility. In our algorithms, the key to
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detecting infeasibility is therange intersectionP(α,β), of a polygonP : the intersection ofP with itself
as it rotates through the ranges of angles fromα to β about the origin. The new containment/enclosure
algorithms integrate the range intersection into the framework we developed originally for solving
translational containment/minimum enclosure [28,33].

This paper also shows that the range intersection has linear complexity, although it may have
circular arcs in its boundary. It gives practical algorithms for computing the range intersection and for
approximating it by a polygon in a manner that is suitable for the containment/enclosure algorithms.

Like our earlier translational algorithms, our new containment/enclosure algorithms are very
numerically demanding. They apply polygon set intersection and Minkowski sum over and over
to the same collection of polygons.Cascading, the repeated use of the output as the next input,
cannot be implemented using “pure” exact arithmetic because the number of bits required to represent
coordinates can grow exponentially [31]. Cascading also quickly crashes any naive rounded arithmetic
implementation. This paper presents a new hybrid techniquenearest pair roundingfor implementing
polygon set operations in floating point arithmetic. Currently, nearest pair rounding must use some exact
arithmetic to ensure correctness, but we have created a version that uses no exact arithmetic at all and
which, so far, has been numerically robust, even under the cascading “torture test”.

1.2. Related work

In the literature, there are essentially three approaches to layout of non-convex polygons: (1) heuris-
tics and meta-heuristics (neural nets, simulated annealing, genetic algorithms), (2) “classical” compu-
tational/combinatorial geometry, (3) a combination of computational geometry and mathematical pro-
gramming (which we use here).

Heuristics and meta-heuristics are limited in theory because they cannot say “no” if there is no solution.
According to our sources in the apparel industry, available layout software is limited in practice to falling
about 5% behind humans in cloth utilization. There are a number of surveys of packing/nesting heuristics
[7,10–12,36,38]. Recent work has used simulated annealing [21], boundary matching [22], grouping of
polygons into sub-rectangles [13], genetic algorithms [5], database driven layout [23,24], or a hybrid
approach [18,19,34,37]. Heuristic approaches have been tailored to sheet metal [35] and leather [20],
both of which permit rotations.

Chazelle [6] introduced the single-polygon containment problem: placem-gonP into n-gon container
Q. For convexQ, the running time bound is O(mn2), and for non-convexP andQ, O(m3n3(m +
n) log(m+ n)). Avnaim et al. [3,4] improve this to O(m3n3 log(m+ n)). Most recent work deals with
finding the largest copy of a convexP that can be placed, which is equivalent to finding the minimum
(scaled) enclosure. For convexQ the best running time is O(mn2 logn) [1], and for non-convexQ,
O(m2n2) [2]. Grinde and Cavalier use an extensive case analysis and linear programming to place a
single convexP [15] or convexP1 andP2 [16]. The running time of the first algorithm appears to be
O(m2n3), and it is not clear what the running time of the second is, but for one of its cases they are able
to use parametric programming and find a solution by solving O(m4n4) linear programs.

For multi-polygontranslational layout, we have had considerable theoretical and practical success
using a combination of computational geometry and mathematical programming (CG/MP) [9,28,29].
These algorithms can practically solve containment for up to ten polygons and minimum enclosure
for at least five. We have also proved a number of theoretical running time bounds including O((m2+
mn)2k logn) for placingk non-convexm-gons into a non-convexn-gon and O(m4k−4 logm) for placing



6 V.J. Milenkovic / Computational Geometry 13 (1999) 3–19

them into a minimum area, fixed orientation rectangle [27] (this paper also surveys other results in multi-
polygon translational layout).

1.3. Relation of new algorithm to previous work

Avnaim and Boissonnat gave a formula for placing two polygons in a container. This formula works
for both the translational and the rotational case. Our previous translational algorithm generalizes this
work to k > 2 polygons through the use of a branch and bound paradigm. It is possible to generalize
our translational algorithm to handle the rotational case in the same manner. One might call this thetrue
generalizationof our translational algorithm.

The algorithm presented here isnot the true generalization. The true generalization would require
robust set operations on subsets ofR2 × S1. These subsets would either represent either (a) valid
configurations (translation plus rotation) of a single polygon to place it in the container, or (b) the set
of valid (non-overlapping) relative positions of one polygon with respect to another. Unfortunately, the
configuration sets are three dimensions with curved surface boundary. As yet, there are no numerically
robust ways to implement the necessary set operations. As we have previously stated, the branch and
bound paradigm cascades these set operations in a manner that is extremely stressful numerically.

The algorithm presented here only requires set operations on polygons in two dimensions, which
we know how to do robustly. It is likely that the true generalization would run faster than the current
algorithm—if and when it could be implemented robustly. The algorithm presented here represents a
practical tradeoff of running time for numerical robustness.

1.4. Geometric rounding

An arrangementof line segments subdivides the plane into a disjoint union of pointvertices, open
line segmentedges, and open polygonal regionfaces: the connected components of the complement of
the vertices and edges.Geometric roundingreduces the precision of the vertices in a subdivision while
changing the topology (combinatorial structure) in a consistent way. Each edge becomes a polygonal
chain, and so forth. The most recent versions of geometric rounding do not introduce new vertices,
although they may increase the degree of existing.Snap rounding[14,17] can round vertices to the
integer grid.Shortest path rounding[25,26,30,31] can also round to the non-uniform lattice of points with
floating point coordinates and it has less rounding error on average even for the integer grid. Rounding
to floating point rather than just integers is nice because the resulting algorithm is much morescale
invariant in practice.2

We could have used snap rounding or shortest path rounding for the rotational containment algorithm,
but we chose to use the algorithm as a test-bed for a new geometric rounding method:shortest path
rounding. Shortest path rounding rounds vertices to the floating point grid, and unlike previous rounding
methods, it ensures a minimum separation criterion in the result. This minimum separation allows us to
avoid the use of exact arithmetic. All calculations are carried out in rounded floating point arithmetic.
The downside of nearest pair rounding is that it has no proven bound on the rounding error. The other
methods have constant error. In future work, we plan to investigate the error introduced by shortest path

2 Of course, floating point arithmetic is only truly scale invariant under multiplication by powers of two, and even then only
if the calculation avoids overflowing or underflowing the exponent field.
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rounding, but the current work is only well suited to testing its robustness. Again, we emphasize that we
could have used the other rounding methods if we wanted a guaranteed error bound on each operation.
(It still would not guarantee an error bound for the entire algorithm.)

Of course, any rounding technique we choose will introduce rounding error, and rounding means
uncertainty. Does that make this algorithm into a heuristic? There are many established algorithms
for global minimization: linear programming, quadratic programming, and so forth. Floating point
implementations of these algorithms are not called heuristics. They are just called “work for numerical
analysts”. For the faint of heart, we make two observations. First, each output of the containment
algorithm is a local as well as a global minimum, and we compute the local minima from the original input
polygons using an accurate commercial optimization library. Second, rounding can cause the algorithm
to miss a local minimum entirely (by shrinking a “face” to nothing), but if this turns out to be a practical
problem, one can always run the algorithm on slightly shrunken copies of the polygons and then restore
them to their original size for the local minimization.

Outline.Section 2 gives the algorithms for rotational containment and minimum enclosure using the
range intersection. Section 3 analyzes the range intersection and gives algorithms for constructing it
and useful polygonal approximations to it. Section 4 gives the nearest pair rounding algorithm. Finally,
Section 5 gives results.

2. Containment/enclosure algorithms

The rotational containment/enclosure algorithm uses a “branch and bound” approach which general-
izes our previous practical translational containment algorithm [28,33]. However, this is also essentially
the approach used by many mathematical programming algorithms.

The input to the containment algorithm is a set of polygonsP1,P2,P3, . . . , Pk and a container
polygon C. In the case of minimum enclosure, the container is replaced by a setC of containers.
A configurationis an assignment of translationst1, t2, . . . , tk and rotationsθ1, θ2, . . . , θk to the polygons.
To simplify the notation, it is convenient to replace the container by an additional polygonP0=C which
is the complement of the container and to fix its translationt0 and rotationθ0 at (0,0) and 0, respectively.

In the case of containment, the goal is to find all configurations (or at least one configuration) with zero
overlap among the polygons. Since the complement of the container isP0, this means thatP1,P2, . . . , Pk
lie inside the container. In what follows these configurations are called thesolutions. In the case of
minimum enclosure, the goal is to find a non-overlapping layout which fits in the minimum area container
C ∈ C.

2.1. Abstract algorithm

We use the same language as in our translational work. Ahypothesisis a set of constraints on the
configuration.Restrictionadds to this set of constraints in a way that is guaranteed not to eliminate
any solutions.Evaluationattempts to find a solution within the hypothesis (that satisfies its constraints).
Subdivisionsplits a hypothesisH into two sub-hypothesesH ′ andH ′′ such that all solutions inH reside
in (satisfy all the constraints of) eitherH ′ orH ′′.
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The containment algorithm first generates a root hypothesis: a set of constraints which all solutions
must satisfy. It restricts this hypothesis and evaluates it. If it cannot either (a) restrict it to the empty set,
or (b) find a solution, it subdivides the hypothesis and recurses on the two sub-hypotheses. A hypotheses
for which evaluation is successful is called asolution hypothesis. If only one solution is desired, the
algorithm can stop when it finds the first one. Otherwise, it generates a set of solution hypotheses. Note
that we only find one solution for each solution hypothesis, not all. In the translational case, it is possible
to find all solutions [27], but we have not done this for the rotational case.

The minimum enclosure algorithm acts the same as the containment algorithm, except that every time it
finds a solution hypothesis, it establishes a new upper bound on the area of the minimum container. It uses
this upper bound as a constraint to restrict the previously discovered solution hypotheses, and it recurses
on these. Its output is a solution hypothesis with minimum area (or possibly several solution hypothesis
whose solutions have the same area). To establish that the area is indeed minimal, it is necessary to run
the algorithm on its output hypotheses with a slightly smaller upper bound. We first diminish the upper
bound by 1%. If no new solution is found, then we roll back and try diminishing the upper bound by
0.01%, and so forth. By these means, the upper bound can be established to any degree of numerical
accuracy. In theory, it might be possible to apply symbolic perturbation to the solution to establish that
there is no solution for any smaller area. In practice, this is not possible since much of our algorithm is
numerical.

2.2. Root hypothesis

The hypothesis for the containment algorithm takes the following form:

αi 6 θi 6 βi, 06 i 6 k, (1)

tj − ti ∈Uij , 06 i < j 6 k, (2)

whereαi andβi are bounds on the angle andUij is a (usually non-convex) planar region. Think of each
Uij as a non-convex-polygon-valued variable which is initialized when the hypothesis is created and
possibly changed later by restriction.

In the case of translational containment [28,33] all solutions must satisfy

tj − ti ∈ Pi ⊕ Pj, 06 i < j 6 k, (3)

where⊕ is the Minkowski sum,

A⊕B = {a + b | a ∈A andb ∈B}.
Hence, we setUij = Pi ⊕ Pj initially in the root hypothesis. However, this does not work for rotational
containment.

Define therange intersection

P(α,β)= ⋂
α6θ6β

P (θ), (4)

whereP(θ) is P rotated by angleθ . 3 The range intersection is the intersection of all copies ofP as it is
rotated fromα to β. The following lemma provides a way of constructing a root hypothesis for rotational
containment.

3 All rotations are about the origin. It is assumed that all polygons contain the origin.
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Lemma 1. There is a solution to rotational containment forαi 6 θi 6 βi , 06 i 6 k only if (but not if,
alas) there is a solution to translational containment forP(αi, βi), 06 i 6 k.

Proof. If αi 6 θi 6 βi , thenP(αi, βi)⊆ P(θi). Given the solution to rotational containment, just use the
same translations.2

In the case of rotational containment, we initially set

αi = 0, βi = 2π, 06 i 6 k,
(which is a disk) in the root hypothesis, and set

Uij = Pi(0,2π)⊕ Pj(0,2π) , 06 i < j 6 k
(which are the complements of disks). By Eqs. (1) and (3), all solutions to containment will satisfy the
constraint equations (1) and (2) for this hypothesis.

In the case of minimum enclosure, if the setC of containers is either (1) a set of rectangles with fixed
width, or (2) a set of similar (scaled) copies of a convex polygon, then we setC equal to the element
whose size (length or scale) equals a known upper bound. (For sufficiently large size, it is trivial to find a
solution.) We postpone the discussion of more general sets, such as (3)all rectangles, until Section 2.6.

2.3. Restriction

Restriction. In our previous work on translational containment, we established two types of restriction:
geometric restriction[7] and linear programming restriction[27]. These restrictions were both derived
from Eq. (2), and therefore they apply in the case of rotational containment as well.

Repeatedly, for all triplesh, i, j , geometric restriction setsUij to be a subset,4 Uij ∩ (Uih ⊕ Uhj).
This corresponds to the rule that “a valid placement ofPj relative toPi must also be a valid placement
of Pj relative toPh plus a valid placement ofPh relative toPi ”. It stops when no polygon diminishes
in area by more than a threshold fraction. This repetition (cascading) can lead to numerical difficulties
which we deal with using nearest pair rounding (Section 4). Note: fork = 2, geometric restriction is an
exact algorithm. In this special case, it becomes essentially the same as Avnaim and Boissonnat’s exact
formula for this case [3,4]. If either geometric restriction or linear programming restriction generates the
empty set, then there is no solution in the current hypothesis.

2.4. Evaluation

We have previously developed a practical algorithm forrotational overlap minimization[32]: find
translations and rotations that minimizes the sum of the overlaps amongP0,P1,P2, . . . , Pk . This
algorithm can also performrotational compaction: given a non-overlapping layout ofP1,P2, . . . , Pk
inside a rectangular containerC, find a layout which minimizes (local minimum) of the container while
keeping the width fixed. In the full paper we show how to generalize compaction to minimize the area
of a scaled convex enclosure or even the area of an arbitrary rectangular container. (The latter problem is
non-linear.)

4 SettingUij to be a subset is equivalent to adding more constraints since the previous constraints must still hold.



10 V.J. Milenkovic / Computational Geometry 13 (1999) 3–19

Evaluation for the containment algorithm simply consists of running rotational overlap minimization
with a set of additional constraints derived from the current hypothesis. Since compaction is based on
linear programming, the additional constraints must be convex. The additional constraints are (a) the
angle constraints, Eq. (1), and (b) the “relaxed” translation constraints, Eq. (2), with eachUij replaced
by its convex hull.5

For the minimum enclosure algorithm, if the algorithm finds a solution hypothesis, it compacts the
non-overlapping layout into a local minimum area container. This establishes an upper bound on the area
of the container which is also a local minimum.

2.5. Subdivision

Subdivision has two cases based on the output of evaluation. If the translations satisfy Eq. (2), then the
output is a non-overlapping layout of the range intersectionsPi(αi, βi) (Lemma 1). It is necessary in this
case to subdivide an angle range. If the output does not satisfy Eq. (2), then the algorithms use essentially
the same subdivision algorithm as the translational containment algorithm.

To subdivide an angle range, the algorithm selects the polygonPi whose total overlap with the other
polygons is maximal at its current translation and rotation (the output of evaluation). It then cuts the
angle range[αi, βi] at its midpoint, creating two new angle ranges[α′i , β ′i] and[α′′i , β ′′i ]. To generate sub-
hypothesisH ′, it generates the root hypothesis for[αi, βi] replaced by[α′i , β ′i] and adds these constraints
toH . GeneratingH ′′ is analogous.

If Eq. (2) is not satisfied, then the subdivision algorithm picks the pairi, j such thattj − ti is
farthest fromUij (Euclidean distance). IfUij has more than one component, then it setsU ′ij equal to the
component ofUij nearest totj − ti and it setsU ′′ij to theUij minus this component. IfUij has only one
component, then subdivision calculates the lineL which is tangent toUij at the pointp of its boundary
nearest totj − ti : L is perpendicular to the line fromtj − ti top. Using lineL, the algorithm cutsUij into
U ′ij andU ′′ij . 6 This is different (and somewhat simpler) than what we do for our translational containment
algorithm [33] but this case is rare enough that it should not make much of a difference in practice. To
generate sub-hypothesesH ′ andH ′′, subdivision replacesUij by eitherU ′ij orU ′′ij .

2.6. Minimum area rectangle enclosure

The preceding sections have described the whole of the containment and minimum enclosure
algorithms for the case of a rectangle with fixed width and variable length or the case of scaled
copies of a fixed convex polygon. The case of minimum area rectangle with arbitrary length and width
requires a more sophisticated hypothesis withk + 2 polygons. Given polygonsP1,P2, . . . , Pk as input,
set P0 = {(x, y) | x 6 0 or y 6 0} and Pk+1 = {(x, y) | x > or y > 0}. In the root hypothesis, set
U0,k+1= {(x, y) | xy 6 A}; otherwise, setUij = Pi ⊕Pj as usual. Any solution under these constraints
corresponds to a layout in an axis-parallel rectangle with diagonalt0tk+1 and with area no greater thanA.
To keep everything polygonal, we approximate the hyperbolaxy =A by a polygon.

5 This replacement is a means to generate a set of constraints. The values of theUij “variables” are not changed by this step.
6 Sincep lies inside the convex hull ofUij (from the constraints),L cannot extend a convex hull edge, and therefore it must

cut the interior ofUij .
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3. Range intersection

Section 2.2 gave a definition for therange intersectionP(α,β) of a polygonP : the intersection of all
copies ofP as it is rotated from angleα to angleβ about the origin. The range intersection is acircular
polygon: a planar region bounded by line segments and circular arcs. In particular, these circular arcs are
concentric with the origin.

The set intersection, convex hull, and even Minkowski sum of circular polygons is a circular polygon,
and therefore it is possible in principle to implement all the operations used in Section 2 on circular
polygons. However, generalizing the overlap minimization/compaction algorithm to circular polygons
would require a switch from linear program to quadratic or convex programming. Also, it is difficult to
handle the intersection of circular arcs in a numerically robust fashion, which would make it difficult to
implement the intersection and Minkowski sum of circular polygons.

This section establishes that the complexity of the range intersectionP(α,β) is linear in the complexity
of P . It gives a way to approximate circular polygons by polygons in a way that is suitable for
the containment/enclosure algorithms. In particular, the approximation is (a) a subset (b) whose error
is proportional to(α − β)2 and (c) whose complexity is also linear. Finally, it gives the “practical”
implementation we use to construct approximate range intersections.

3.1. Theoretical complexity

Lemma 2. The range intersectionP(α,β) has complexityO(|P |).
Proof. Construct aconcentric trapezoidalizationof P which is analogous to the standard trapezoidal-
ization ofP . From each vertexv of P extend an arc (centered at the origin) in each direction (clockwise
and counter-clockwise) that goes into the interior ofP . Terminate the arc when it hits the boundary of
P . This procedure cutsP into a linear number ofconcentric trapezoids: regions bounded by two line
segments and two concentric circular arcs.

The intersectionP(α,β) is a rotated copy ofP(0, γ ), whereγ = β − α. The setP(0, γ ) equals the
set of counter-clockwise endpoints of arcs of angleγ which lie insideP . It is clear that each such arc
lies in a single concentric trapezoid. Therefore, the range intersection of each concentric trapezoid can be
computed independently. For a concentric trapezoid, the range intersection is simply the intersection
of the two extremes. There are a number of cases to consider (see Fig. 1), but the intersection can
be constructed in constant time, and it is also a concentric trapezoid. The range intersections of the
concentric trapezoids meet only at their boundaries and in a nice fashion. It is easy to show that the
complexity of the boundary of their union is also linear: a linear number of arcs and line segments.2
3.2. Polygonal approximations

In order to compute a polygonal approximation toP(α,β), it is necessary to perform aradial
trapezoidalization. From each vertexv of P(α,β), extend a line towards the origin and/or away from
the origin, in each direction that goes into the interior ofP(α,β). Terminate a line when it hits the
boundary.

Fig. 2 shows the three types of non-polygonal radial trapezoids and how to form inner polygonal
approximations. The most complex case has an inner arc and outer line segment. We approximate the
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Fig. 1. Possible range intersection of a concentric trapezoid.

Fig. 2. Radial trapezoids and their inner polygonal approximations.

Fig. 3. Polygonal approximation of two-arc trapezoid can have different topology.

inner arc by three tangent line segments: two of them tangent at the endpoints and the middle one parallel
to the outer bounding line segment. In the case of two arcs, the polygonal approximations can intersect.
In this case, we lose the middle part of the arc, and the topology changes as illustrated in Fig. 3.

Lemma 3. Let B(r) be the ball of radiusr. LetQ(α,β) be the polygonal approximation to the range
intersectionP(α,β). For |γ | sufficiently small(γ = β − α),

Q(α,β)⊆ P(α,β)⊆Q(α,β)⊕B(O(γ 2)).
Proof. Clearly the approximation is a subset. It can be shown thatP(α,β) can have no arc in its boundary
longer than|γ |. Basic trigonometry shows that a chordal approximation to an outer arc has error at most
1− cos(γ /2) ≈ γ 2/4 times the radius. A tangential approximation to an inner arc has error at most
1/cos(γ /2)− 1≈ γ 2/4 times its radius.

The difference between the inner and the outer radius is at least the thickness of the thinnest
concentric trapezoid of the original trapezoidalization ofP . This value is independent ofγ . Therefore,
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for sufficiently smallγ , the topological change of Fig. 3 does not occur. Each individual radial trapezoid
approximation satisfies the condition of the lemma, and therefore their union does too.2

Lemma 3 is exactly the property we need to ensure that we can substitute the polygonal approximation
to the range intersection for the actual range intersection in the containment/enclosure algorithms. As the
containment algorithm subdivides the angle ranges, the accuracy of the approximation increases with the
square of the angle range. Thus we expect to have to divide a given angle range no more thanb times to
obtain accuracy at leastε = 2−b.

3.3. Practical algorithm

We briefly sketch here a “practical algorithm” we use in lieu of constructing a full circular
trapezoidalization. We decompose the complementP into angularly monotonicregions: each ray out
of the origin intersects the region in a single line segment, a points, or the empty set. This implies that a
monotone componentM is bounded by two functions of angle:

M = {(r, θ) | f (θ)6 r 6 g(θ)},
in polar coordinates. We compute the minimum off ( ) over an angle “window” of sizeα as the window
rotates about the origin. Similarly, we compute the maximum ofg( ) over a sliding window of angleα. We
compute an inner polygonal approximation to the minimum curve and an outer polygonal approximation
to the maximum curve. The two curves bound an approximation to the range unionM(0, γ ) of the
componentM. Finally, we take the complement of the union of the range unions.

4. Nearest pair rounding

As stated in the introduction (Section 1.4),nearest pathrounding alters planar subdivisions. After
rounding, the new subdivision has a guaranteed minimum separation condition: each vertex/vertex pair
and each vertex/edge pair is farther apart than a specified minimum (unless, of course, the two vertices
are identical or the vertex is an endpoint of the edge). This minimum separation in turn permits the use of
rounded floating point arithmetic for all operations. In particular, if vertexc lies near to edgeab, it still
must lie sufficiently far away to permit us to determine on which side it lies, using only floating point
arithmetic.

4.1. Rounding algorithm

Nearest pair rounding repeats a rounding step until no more rounding is necessary. Each step “rounds
together” the nearest pair of non-incident features: vertex/vertex or vertex/edge. When a step computes
the nearest pair, it “ignores” any vertex/edge pairc, ab if 6 cab or 6 cba is greater than or equal to 45◦. 7

Rounding stops when every pair of non-incident features is farther apart than some threshold and when
no two edges are intersecting. We use a threshold equal to 16 times the rounding unit for double precision
(16 · 10−52≈ 2−50) times the diameter of the set of points and line segments.

7 This rule prevents rounding from “bending” an edge “too much”.
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Fig. 4. “Worst case” for nearest pair rounding.

To round a vertex/vertex paira, b, the algorithm moves botha andb to the midpointv of segmentab.
Any edge which hada or b as an endpoint now hasv as that endpoint. Edgeab, if it existed, is deleted.
To round a vertex/edge pairc, ab, the algorithm constructsv, the point halfway fromc to ab. It movesc
to v (altering edges which havec as an endpoint), and it replacesab by av andvc.

4.2. Proof of correctness

Fig. 4 illustrates a “worst case” for nearest pair rounding. Since6 cab = 45◦, the vertex/edge pairc, ab
is ignored, and dist(c, ab) is not measured. Suppose dist(a, d) is the minimummeasuredseparation.
(Actually, dist(c, d) would have to be smaller, as the figure indicates, but we will not bother proving
that.) Hence, dist(a, d) 6 dist(a, c). By the 45◦ rule, dist(a, c) 6

√
2dist(c, ab). Therefore, roundinga

to e, the midpoint ofa andd, moves no point onab farther than(
√

2/2)dist(c, ab). The distance fromc
to the rounded segmenteb is still definitely positive:

dist(c, eb)>
(
1−√2/2

)
dist(c, ab) > 0.25dist(c, ab).

Theorem 4. Nearest pair rounding converges without introducing any new intersections.

Proof. As indicated in the discussion above, the key to nearest path rounding is that the perturbation it
introduces is at most 3/4 of the minimum distance between non-incident features. Therefore, applying
the rounding step cannot cause other non-incident features to “collide”. Because we ignore vertex/edge
pairs unless the angles with the endpoints are less than 45◦, the measured minimum feature separation
may be

√
2 times the actual minimum. However, rounding moves features to a midpoint, and therefore

the actual perturbation is at most
√

2/2< 3/4 times the actual minimum feature separation.
Consider a partial order on sets of line segments, ordered on: (1) number of edge/edge intersections,

(2) number of vertices, (3) length of longest edge, (4) length of second longest edge, and so forth. Adding
an intersection point decreases (1). Rounding two vertices together decreases (2) without increasing (1).
Because of the 45◦ rule, breaking an edge forms two shorter edges without increasing (1) or (2).2
4.3. Experimental rounded arithmetic arrangement algorithm

In practice, we use floating point arithmetic for all operations and apply nearest pair rounding without
using exact arithmetic to measure distances. Because the rounding step has 1− 3/4= 25% “leeway” for
error, we expect it to be numerically stable. So far, it has been stable even after hundreds of cascaded
operations.

Nearest pair rounding can also be applied to a set of intersecting line segments. If, after rounding is
complete, any pair of edges are intersecting, a new vertex is created as near as possible to their actual
intersection, and rounding resumes. Thus, nearest pair rounding becomes an arrangement algorithm, and
that is all one needs to implement set operations on polygonal regions and the Minkowski sum.
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We have implemented the arrangement algorithm in a straightforward fashion in rounded double
precision arithmetic, and so far this implementation has worked well, even under the containment
algorithm “torture test”. This is not a proof of robustness, but it is a very strong experimental result.

5. Results

All algorithms were implemented in C++. Overlap minimization code: 9100 lines. Polygon set
operations: 2700 lines. Containment/Enclosure algorithms: 1200 lines. Overlap minimization uses
CPLEX 4.0 by CPLEX Optimization, Inc. Experiments were run on an SGI Powerchallenge L which
has roughly the same speed as a 400 MHz Intel Pentium II.

In each case, the target accuracy was one part in 211. Whenever a successful layout was found, it was
compacted using rotational compaction. The new target length was set at 1− 2−11 times this length. The
first set of tests allowed a full 360◦ rotation for all but the largest polygon, which was limited to 180◦.
(By symmetry, this restriction will still yield the optimum length.) Figs. 5, 6 and 8 show all the successful
layouts that were found, including the optimal one.

The second set of tests limited each range of rotation to 22.5◦.

5.1. Full rotation

The 2-polygon test yielded an optimal (to one part in 211) solution of length 1385.11. The polygons
had 71 and 64 vertices. The algorithm visited 30 hypotheses and ran in 3 minutes. See Fig. 5.

The 3-polygon test yielded an optimal solution of length 2081.84. The polygons had 71, 64 and 65
vertices. The algorithm visited 1420 hypotheses and ran in 130 minutes. See Fig. 6.

The 4-polygon test yielded a solution of length 2699. The polygons had 71, 64, 65, 60 vertices. The
algorithm visited over 2700 hypotheses in over 21 hours, but it still had not verified this was optimum,
and it had only visited fraction of the search space. See Fig. 7.

The industrial data has a large number of vertices. To see if this caused the long running time, we tried
an example using polygons with only 7 vertices. We first limited the search to depth 3 (45◦). After about
24 hours, the algorithm found the solutions shown in Fig. 8. To verify the third solution, we ran it without
a bound on the depth. After a day it had only visited a miniscule fraction of the solution space.

Fig. 5. Lengths: 1403.7 (non-optimal) and 1385.11 (optimal).
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Fig. 6. Lengths: 2208.39 (non-optimal) and 2081.84 (optimal).

Fig. 7. Length: 2699.

Fig. 8. Heights: 515.54, 515.21, 509.48.

5.2. Limited angle

We ran the same 3 and 4-polygon tests with a limited angle range of 22.5◦ ([−11.25,11.25]). Fig. 9
shows the output of the 3-polygon and 4-polygon tests. The 3-polygon test yielded an optimal solution
of length 2240.72. The algorithm visited 64 hypotheses and ran in 4 minutes. The 4-polygon test yielded
an optimal solution of length 2856.65. The algorithm visited 590 hypotheses and ran in 90 minutes.
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Fig. 9. Limited angle: 3-polygon length 2240.72, 4-polygon length 2856.65.

6. Conclusions

Nearest path rounding appears to be robust, even when implemented in rounded floating point
arithmetic. It remains to find an experiment that accurately measures the error that rounding introduces.
It is our hope that, unlike shortest path rounding and snap rounding, nearest path rounding will generalize
to circular arcs, making it unnecessary to approximate circular arcs.

At present, the range intersection method appears to be practical for two or three-polygon minimum
enclosure. It does not appear to be practical for four polygons, unless one is willing to live without the
guarantee of optimality. For a limited range of angles, it might be practical for up to the four-polygon
case: 90 minutes is a bit slow, but additional tinkering and faster hardware will bring it within the practical
range. We did not even try five polygons because it was clear that the time would be much larger.

Some modifications might speed up the algorithm. For instance, it can search the hypothesis space for
each individual polygon and then each pair before considering three at time. That might speed up the
three-polygon example somewhat because it appeared to sometimes make a bad choice for on polygon’s
angle and then spend much time investigating all hypotheses with this angle.

Another conclusion is that it is worth pursuing the “true generalization” of translational containment
described in Section 1.3. This will involve performing complex set operations on curved three
dimensional objects. It will probably be difficult to make these operations robust, but the current results
demonstrate that these algorithms would be worth the effort. For instance, in the special case of two
polygons, the true generalization would be essentially the same as Avnaim and Boissonnat’s formula and
thus solve this case exactly. Our experience with translational work would indicate that it could solve at
least the three-polygon case and possibly the four or five-polygon case also in a reasonable amount of
time.

It is possible that a multidimensional method might be used to narrow the angle range, and then the
current algorithm could finish the job. Also, one should not forget that apparel manufacturers only allow
small tilts, usually less than 10◦. This means that the containment algorithm of this paper might be
practical for applications in this industry.
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