
Densest translational lattice packing of

non-convex polygons ?

Victor J. Milenkovic
1

University of Miami, Department of Computer Science,

P.O. Box 248154, Coral Gables, FL 33124-4245

Abstract

A translation lattice packing of k polygons P1; P2; P3; : : : ; Pk is a (non-overlapping)
packing of the k polygons which is replicated without overlap at each point of
a lattice i0v0 + i1v1, where v0 and v1 are vectors generating the lattice and i0
and i1 range over all integers. A densest translational lattice packing is one which
minimizes the area jv0 � v1j of the fundamental parallelogram. An algorithm and
implementation is given for densest translation lattice packing. This algorithm has
useful applications in industry, particularly clothing manufacture.

Key words: layout, packing, nesting, lattice packing, linear programming,
quadratic programming.

1 Introduction

A number of industries generate new parts by cutting them from stock ma-
terial: cloth, leather (hides), sheet metal, glass, etc. These industries need to
generate dense non-overlapping layouts of polygonal shapes. Because fabric
has a grain, apparel layouts usually permit only a �nite set of orientations.
Since cloth comes in rolls, the most common layout problem in the apparel in-
dustry is strip packing: �nd a layout of polygons P1, P2, : : :, Pk in a rectangular

? Expanded version of paper presented at the 16th Annual ACM Symposium on
Computational Geometry (Hong Kong, June 2000).
Email address: vjm@cs.miami.edu (Victor J. Milenkovic).
URL: http://www.cs.miami.edu/~vjm (Victor J. Milenkovic).

1 This research was funded by the Alfred P. Sloan Foundation through a subcon-
tract from the Harvard Center for Textile and Apparel Research and by NSF grant
NSF-CCR-97-12401.

Preprint submitted to Elsevier Science 18 April 2001



Fig. 1. Human-generated layout of parts for 123 brassieres.

Fig. 2. Densest lattice packing \clipped" to the same rectangle.

container of �xed width and minimum length. Strip packing is a special case
of the more general minimum enclosure problem in which both dimensions
can vary and the goal is to minimize the area of the rectangle.

The values of k are often in the dozens or even hundreds. Unfortunately, even
the purely translational version of strip packing is NP-hard, and therefore one
has to expect the running time of a packing algorithm to be exponential in
k. In the apparel industry, no layout software has yet replaced a human. The
best hope is to develop good minimum enclosure algorithms for small k and
then use these algorithms as part of heuristics for much larger k. Much work
has been done in this direction, and this paper follows this philosophy.

Sometimes the large set of polygons consists of a replication of a much smaller
set of identical or nearly identical polygons which are much smaller than the
container. For example, Figure 1 shows a layout of 492 parts to make 123
brassieres. There are only two types of part: a cup and a strap. Half of the
parts of each type are rotated 180 degrees, creating four di�erent types of
parts for the strictly translational problem. As one can see, di�erent regions
are approximately double-lattice packings: a periodic packing of a part and its
180 degree rotated twin.

Figure 2 depicts the densest periodic packing of four polygons: a cup, a side,
and the 180 degree rotations of each. An arbitrary translation of the in�nite
periodic packing is \clipped" to the same rectangle as the human-generated
layout. As it happens, this layout contains 7 more cups and 2 more straps than
the layout in Figure 1. This example clearly demonstrates that a solution to
lattice packing for small k, such as k = 4, might be very useful for generating
layouts for very large k, such as k = 492.

2



Fig. 3. Four polygons (grey), lattice packing, fundamental parallelogram, and lattice
generators (dark arrows).

Why did not the human start with a periodic packing involving all four parts?
It is likely that this was beyond the human capability. It is also beyond the
ability of current algorithms and heuristics. Indeed, the subject of this paper
is how we generated Figure 2.

Of course, we are ignoring two aspects of the actual layout problem. First, the
cloth is not the in�nite plane: it has boundaries, and we need to �gure out the
best way to \clip" the lattice to a strip or rectangle. Second, the parts vary
somewhat in size and shape, as they do in this layout of brassieres, because
the manufacturers need to generate di�erent sizes for di�erent people. These
aspects will have to be dealt with by new algorithms and heuristics. We discuss
these possible extensions in the �nal section of this paper. In the meantime,
it is clear that an algorithm for densest lattice packing is a big step toward
solving an important industrial problem.

1.1 New Results

A translation lattice packing of k polygons P1; P2; P3; : : : ; Pk is a (non-overlap-
ping) packing of the k polygons which is replicated without overlap at each
point of a lattice i0v0+ i1v1, where v0 and v1 are vectors generating the lattice
and i0 and i1 range over all integers. Figure 3 is a close-up of a lattice packing
(not the one in Figure 2). The grey polygons are the four polygons to be
packed. Dark arrows depict the two generating vectors v0 and v1. Three copies
of the grey polygons appear displaced by v0, v1, and v0+v1. Along with (0; 0),
these three displacements form the vertices of the fundamental parallelogram.
Note: there are an in�nite number of pairs of vectors which generate the same
lattice; for example, v0 and v0 + v1 also generate the lattice.

The density of a lattice packing is the fraction of the area covered by polygons.
Copies of the fundamental parallelogram tile the plane. For every pair of in-

3



tegers i0; i1, there is one copy of the fundamental parallelogram and one copy
of each polygon P1; P2; P3; : : : ; Pk. Therefore the density is the total area of
the k polygons divided by the area jv0�v1j of the fundamental parallelogram.
For each particular lattice packing problem, the polygons and their areas are
�xed, and therefore a densest translational lattice packing is one which mini-
mizes the area jv0�v1j of the fundamental parallelogram. This paper gives an
algorithm and implementation for densest translation polygon lattice packing.
Note: this algorithm �nds a global minimum.

The lattice packing algorithm uses the \CG-to-MP" strategy devised by the
author for packing and optimization problems: use algorithms of computa-
tional geometry to reduce the problem to mathematical programming. It is
similar to the author's previous algorithms for minimum enclosure; however,
the lattice packing problem presents new diÆculties which need to be solved.
Also the lattice packing algorithm introduces superior techniques to solve some
previous problems.

The �rst major new diÆculty is the absence of a container: as the �gure
illustrates, the fundamental parallelogram does not contain the four polygons.
Without the boundary of a container to \bump up against" the lattice packing
algorithm cannot use geometric restriction{a powerful technique developed for
the minimum enclosure problem. It is possible to use LP (linear programming)
restriction, but the technique has to be modi�ed.

The second major diÆculty is the non-linearity and non-convexity of the ob-
jective. The objective to be minimized is the area jv0� v1j of the fundamental
parallelogram of the lattice. For strip packing, the objective is x, the length
of the rectangle, which is linear. Even for more general minimum enclosure in
an axis-parallel rectangle, the objective is xy, which has a convex boundary
xy = c. In contrast, the set v0 � v1 = c has a saddle point at every point. 2

New techniques and algorithms are developed to deal with these major diÆ-
culties. The most important development is an approximation to the lattice
area. This approximate area is the \trick" that makes the lattice packing algo-
rithm work. In addition, a new algorithm is given for selecting maximal convex
subsets of polygonal regions as a part of evaluation and compaction. The new
algorithm also introduces a new strategy for subdivision (selecting cutting
planes). These new techniques can also be applied to improve the previous
algorithms for containment and minimum enclosure.

2 Since all vectors are planar, we de�ne u�v = uxvy�uyvx, the scalar z-component
of the three dimensional cross product. The x-component and y-component are zero.

4



1.2 Related Work

Very little work has been done on lattice packing of polygons, and the only
previous results we are aware of apply only to the problem of lattice pack-
ing or double-lattice packing a single convex polygon [13,7]. We are aware
of only some preliminary work on heuristics for lattice packing of multiple
non-convex polygons. However, it should be stated that most of the heuristic
and meta-heuristic methods for packing are very general in nature and should
apply to the lattice packing problem too. There are a number of surveys of
packing/nesting heuristics [4,1,15,5,14,6].

The most closely related algorithms are for containment and minimum en-
closure by the author. For multi-polygon translational layout, we have had
considerable theoretical and practical success using a combination of com-
putational geometry and mathematical programming (CG-to-MP) [2,12,11].
In practice, these algorithms can solve translational containment for up to
ten polygons and minimum enclosure for at least �ve. We have also proved
a number of theoretical running time bounds including O((m2 +mn)2k logn)
for placing k non-convex m-gons into a non-convex n-gon and O(m4k�4 logm)
for placing them into a minimum area, �xed orientation rectangle [10].

1.3 Outline

Section 2 describes how to transform the densest lattice packing problem �rst
to a target area problem and then to an angle range problem. It gives a high
level description of the algorithm for the angle range problem. Section 3 gives
the details of the angle range algorithm and proves its correctness. Section 4
discusses its implementation and experimental results. Overall the program is
about 6500 lines of C++, 3100 of which are new and speci�c to the lattice
packing algorithm. All operations are carried out in oating point arithmetic.

2 Overview of the Lattice Packing Algorithm

The densest translational polygon lattice packing problem takes as input k
planar polygonal regions P1; P2; P3; : : : ; Pk. The outputs are k translation vec-
tors t1; t2; t3; : : : tk for the polygons and generating vectors v0 and v1 for a
lattice. The polygons must not overlap: for 1 � i; j � k and for any integers
i0; i1, Pi + ti does not overlap Pj + tj + i0v0 + i1v1.

3 The area jv0 � v1j of the

3 For polygonal region P and translation vector t, P + t = fp+ t j p 2 Pg denotes
region P translated by t.

5



Table 1
Finding a densest lattice packing using the solution to the target area problem.

set A equal to known feasible area
solve target area problem for target area A

repeat

set A = (1 + �)�1jv0 � v1j
solve target area problem for target area A

until problem is infeasible

fundamental polygon is minimal.

This section gives an overview of how we solve the densest lattice packing
problem. We �rst reduce it to the target area problem which we in turn reduce
to the angle range problem. The algorithm for solving the angle range problem
is based on four operations: restriction, evaluation, compaction, and subdivi-

sion. These operations use iterated linear programming or iterated quadratic
programming. We solve the linear programs and quadratic programs using the
CPLEX library.

2.1 Target Area Problem

Densest lattice packing has a related feasibility question which we call the
target area problem: given P1; P2; P3; : : : ; Pk and a target area A, determine if
there exists a lattice packing with lattice area jv0�v1j � A and, if so, �nd one
whose area is at a local minimum. Table 1 shows how we use a solution to the
target area problem to �nd a solution to the densest lattice packing problem
which is at most 1 + � times optimal. For example, if � = 0:0001, it is within
0:01% of optimal. Note: a local minimum this close to the global minimum
almost certainly is the global minimum.

Because 1 + � is nearly equal to 1, it might seem that this algorithm will
very slowly converge to the optimum. However, each new target area is less
than the area of the smallest local minimum seen so far, and therefore each
iteration eliminates all local minima which have greater area than the best
seen so far. It is reasonable to assume that the solution to the target area
problem is a randomly selected local minimum which achieves the target. If
this were so, then each iteration would eliminate half of the remaining local
minima on average, and the number of iterations would be logarithmic in the
number of local minima. We have no proof that our algorithm for the target
area problem selects a random local minimum, but it does converge quickly
in practice.

6



2.2 Angle Range Problem

To solve the target area problem, we reduce it to multiple angle range prob-
lems. An angle range problem is a target area problem plus a pair of intervals
[�00; �01] and [�10; �11] which constrain the angles of the lattice generators: the
generator v0 must have an angle (with respect to the x-axis) in the range
[�00; �01], and the generator v1 must have an angle in the range [�10; �11]. The
two intervals must not overlap, and they must be shorter than 180 degrees.

It is well known that one can always choose generating vectors v0 and v1 for
a lattice such that the angle from v0 to v1 is between 60 and 120 degrees. A
modest but very tedious generalization of this result shows that v0 and v1 can
always be chosen to lie either in the angle range pair [�75;�15]; [15; 75] or the
range pair [�30; 30]; [60; 120]. Therefore, a target area problem can be reduced
to two angle range problems. Note: given these choices of angle ranges, we
can assume from now on that v0 � v1 � 0 and hence jv0 � v1j = v0 � v1.

2.3 Solving the Angle Range Problem

To solve the angle range problem, we consider the unknown polygon trans-
lations t1; t2; t3; : : : ; tk and the unknown lattice generators v0 and v1 to be
point-valued ((x; y)-valued) variables. To these, we add the following:

� auxiliary point-valued variables w's and u's;
� linear constraints on the variables;
� a set of relevant pairs of polygons;
� (possibly non-convex and non-polygonal) two-dimensional regions U 's;
� point-inclusion constraints u 2 U for each u and corresponding U .

The variables, linear constraints, regions, and point-inclusion constraints are
chosen so that, in a solution to the angle range problem, each w equals its
corresponding u.

Relevant Pairs of Polygons There are an in�nite number of polygons in a
lattice packing and therefore an in�nite number of pairs of polygons. We only
assert a non-overlap constraint for a �nite set of relevant pairs of polygons.
By the symmetry of the lattice, it suÆces to consider pairs of the form Pi+ ti,
Pj+tj+i0v0+i1v1. If some pair of polygons not in this set end up overlapping,
then at least one such pair has to be added to the set. Fortunately, this addition
only has to happen a �nite number of times before all polygons are non-
overlapping. This is true because i and j have only k possible values and for
ji0j and ji1j suÆciently large, Pj + tj + i0v0 + i1v1 is too far away from Pi + ti
to overlap it.

7



Restriction The point-inclusion constraints make the problem non-convex
and even non-linear. However, we can relax each point-inclusion constraint
as u 2 CH(U), where CH(U) is the (convex and polygonal) convex hull of
U . We add constraints setting the w's equal to the u's, and the result is a
linear program (LP). If this LP is infeasible, then the relaxed problem has no
solution, and therefore the original problem has no solution. In this case, we
say the problem has restricted to null. Even if the problem does not restrict to
null, we can calculate the range R(u) of a variable u in the relaxed problem.
This range must be a superset of the range of u in the unrelaxed problem.
Therefore, we can replace U by U \R(u) without throwing away any solutions
to the original angle range problem.We call this the restriction of U . To restrict
a problem, we restrict each U in turn. Calculating the range of a variable u
requires iterated linear programming.

Slack Objective The slack objective is a (positive-de�nite quadratic) sum of
all terms of the form (w � u)2. For some of these terms, jw � uj corresponds
to the intersection depth [3] of a relevant pair of polygons: the length of the
minimum displacement necessary to un-overlap the two polygons. For other of
these terms, (w � u)2 corresponds to an approximate measure of excess area:
if v0� v1 � A, then these terms are zero. Hence the slack objective includes a
measure of overlap of relevant pairs of polygons plus a measure of estimated

excess area (EEA).

Evaluation Unlike restriction, which uses a convex superset of each U (its
convex hull), evaluation calculates a convex polygonal subset I(w;U) � U : a
maximal convex subset which contains the point of U nearest to w. Evaluation
constricts (as opposed to relaxes) the problem by temporarily replacing the
constraint u 2 U with u 2 I(w;U). The constricted problem, along with the
slack objective, is a quadratic program (QP). Solving this QP gives (possibly)
new values for the w's and hence new regions I(w;U) (since the nearest point
to w in U may change). Iterating this step yields a local minimum of the slack
objective. To evaluate a problem, we calculate this local minimum.

Compaction If the slack objective is zero, the w's equal the corresponding
u's. This means that no pair of relevant polygons are overlapping. The EEA is
also zero. Unfortunately, the EEA is only an estimate. It is still possible for the
true lattice area v0�v1 to be greater than the target A. Compaction moves the
packing to a local minimum of the lattice area while keeping the w's equal to
the u's. Since the cross product v0�v1 is neither linear nor positive-de�nite, we
temporarily replace it by a linearization and use linear programming to solve
for the minimum. Since we are using a linear approximation to the objective,
we have to use interpolation to �nd a step that minimizes the true lattice
area. To compact a problem, we iterate linear programming and interpolation
on constricted problems until we reach a local minimum of the lattice area.

8



Table 2
Algorithm to solve the angle range problem.

repeat

repeat

restrict the problem
if restricted to null

return \infeasible"
while the area of some U diminishes by at least a �xed fraction
evaluate the problem
if the slack objective is non-zero

subdivide using linear subdivision

solve (recursively) the two sub-problems
return the solution if either is feasible else return \infeasible"

compact the layout
if v0 � v1 > A

subdivide using angular subdivision
solve (recursively) the two sub-problems
return the solution if either is feasible else return \infeasible"

if any pair of polygons is overlapping
add one such pair to the set of relevant pairs

until the set of relevant pairs is unchanged
return the solution

Subdivision There are two kinds of subdivision: linear and angular. If eval-
uation results in a non-zero slack objective, then we choose a pair of variables
u; w corresponding to a largest term (w � u)2 in the objective. Let L be the
perpendicular bisector of the line segment uw. Since u = w in a solution, we
can create two sub-problems: one in which u and w are constrained to lie to
the left of L and another in which u and w are constrained to lie to the right.
This is linear subdivision. If evaluation results in a zero slack objective but
compaction results in a lattice area v0 � v1 > A, then we apply angular sub-

division to one of the angle ranges [�00; �01] or [�10; �11]. If we choose to divide
the �rst range, let �0 be the angle of v0. We create two sub-problems: one in
which [�00; �01] is replaced by [�00; �0] and another in which it is replaced by
[�0; �01]. This is angular subdivision.

2.4 Angle Range Algorithm

Table 2 gives the algorithm that solves the angle range problem. Keep in
mind that restriction requires doubly iterated linear programming; evaluation
requires iterated quadratic programming; and compaction requires iterated
linear programming and interpolation.

9



3 Details of the Angle Range Algorithm

This section gives the details of the algorithm for solving the angle range prob-
lem. First it gives a representation for the set of relevant pairs and de�nes the
corresponding w's, u's, U 's and constraints. These act to constrain the polygon
overlaps. Additional w's, u's, U 's, and constraints are introduced to constrain
the lattice area. The linear constraints on the variables are described. Details
are given on restriction, constriction (constructing the inner convex approx-
imations I(w;U) � U), and the convergence of evaluation and compaction.
Finally, this section provides the missing details of angular subdivision and
proves that the algorithm of Section 2.4 correctly converges to a solution to
the angle range problem or determines that none exists.

3.1 Relevant Pairs

A lattice pair index hi; j; i0; i1i, where 1 � i; j � k, signi�es a choice of two
polygons Pi and Pj and a lattice point i0v0 + i1v1. The set of relevant pairs of
polygons is represented as a set of lattice pair indices.

Each lattice pair index hi; j; i0; i1i corresponds to

two point-valued variables whi;j;i0;i1i and uhi;j;i0;i1i,

a linear equality constraint whi;j;i0;i1i = �ti + tj + i0v0 + i1v1,

a two dimensional region Uhi;j;i0;i1i = Pi ��Pj,

and a point-inclusion constraint uhi;j;i0;i1i 2 Uhi;j;i0;i1i.

The symbol � represents the Minkowski sum, which we use extensively in our
work on layout algorithms [11]. The Minkowski sum reduces polygon overlap
to point-inclusion. Speci�cally, for regions P and Q and translations tp and tq,
P + tp and Q+ tq overlap if and only if tq� tp lies in the interior of the region,

P ��Q = fp� q j p 2 P and q 2 Qg:

The variable uhi;j;i0;i1i is always set to a point of Uhi;j;i0;i1i which minimizes
jwhi;j;i0;i1i�uhi;j;i0;i1ij with respect to the current value of the variable whi;j;i0;i1i.

Lemma 1 The distance jwhi;j;i0;i1i�uhi;j;i0;i1ij, is the intersection depth of poly-

gons Pi + ti and Pj + tj + i0v0 + i1v1.

PROOF. The variable whi;j;i0;i1i = (tj + i0v0 + i1v1) � ti is the current dis-
placement between the two polygons. In order for the polygons not to overlap,

10



their displacement must lie in Uhi;j;i0;i1i = Pi ��Pj, the complement of the
Minkowski sum. The distance jwhi;j;i0;i1i�uhi;j;i0;i1ij is the minimum additional
displacement required to accomplish this. 2

3.2 Constraints on Area

Recall that the angles of the lattice generators v0 and v1 are constrained to lie
in the ranges [�00; �01] and [�10; �11], respectively. De�ne b00 = (cos �00; sin �00)
to be the unit vector with angle �00, and de�ne b01, b10, and b11 similarly.

We introduce four additional point-valued \w" variables w0, w
0
0, w1, and w0

1.
These are related to v0 and v1 by the following linear constraints:

v0 = w0xb00 + w0
0xb10; v1 = w0yb10 � w0

0yb00; (1)

v0 = w1xb01 � w0
1xb11; v1 = w1yb11 + w0

1yb01; (2)

In other words, v0 and v1 are expressed as a linear combination of b00 and b10
and also as a linear combination of b01 and b11, and the components of these
w's are the coeÆcients of these linear combinations. The signs are chosen to
keep the components of the w's positive.

We introduce two additional \u" variables u0 and u1 and corresponding planar
regions,

U0= f(x; y) j x; y � 0 and xy � (b00 � b10)
�1Ag; (3)

U1= f(x; y) j x; y � 0 and xy � (b01 � b11)
�1Ag: (4)

The new u's satisfy the point-inclusion constraints u0 2 U0 and u1 2 U1 and
they are always set to points which minimize jw0 � u0j and jw1 � u1j, respec-
tively. Note: this might require �nding the nearest point to w on a hyperbolic
arc xy = a. To do this in closed form requires solving a fourth degree equation.
However, it suÆces to �nd the point numerically using Newton's method.

Lemma 2 If v0�v1 � A, then w0 2 U0 and w1 2 U1. If w0 2 U0 and w1 2 U1

and either v0 is collinear with b00 or b01 or v1 is collinear with b10 or b11, then

v0 � v1 � A.

PROOF. Given Equations 1 and 2 and the fact that v0 and v1 lie in the
angle ranges, it follows that the components of w0, w

0
0, w1,and w0

1 are all
non-negative. Also,

11



v0 � v1=(w0xb00 + w0
0xb10)� (w0yb10 � w0

0yb00); (5)

= (w0xw0y + w0
0xw

0
0y)(b00 � b10): (6)

If the angle ranges are small, then jw0
0j will be small, and (w0xw0y)(b00�b10) will

be a good approximation to the true area. (Similarly for (w1xw1y)(b01 � b11).)
Furthermore, w0

0xw
0
0y is non-negative, and so the approximation is always an

under-estimate. Therefore,

(w0xw0y)(b00 � b10) � v0 � v1 � A;

which implies that w0 2 U0. Similarly for w1.

If w0 2 U0, then (w0xw0y)(b00 � b10) � A. If v0 is collinear with b00, then
Equation 1 implies that w0

0x must be zero. By Equation 6,

v0 � v1 = (w0xw0y)(b00 � b10) � A:

The other cases are analogous. 2

Lemma 1 implies that Pi + ti and Pj + tj + i0v0 + i1v1 do not overlap if
and only if there exists values for variables whi;j;i0;i1i and uhi;j;i0;i1i such that
whi;j;i0;i1i = uhi;j;i0;i1i and uhi;j;i0;i1i 2 Uhi;j;i0;i1i. In other words, setting the w's
equal to the u's is equivalent to eliminating overlap.

Lemma 2 is not quite as strong with respect to the target area. Setting
w0 = u0 2 U0 and w1 = u1 2 U1 only implies that the target area is met
if (in addition) v0 or v1 is at an extreme of its angle range.

3.3 Additional Linear Constraints for all LPs and QPs

Constraining v0 to the appropriate angle range is equivalent to the two linear
constraints b00 � v0 � 0 and b01 � v0 � 0. Similarly for v1.

Bounds are put on the lengths of v's in the direction of the b's: v0 � b00 � D,
v0 � b01 � D, v1 � b10 � D, and v1 � b11 � D. The \diameter" D is chosen
suÆciently large to ensure that no solutions are missed.

Without loss of generality, we can set t1 = (0; 0). Since we can arbitrarily add
or subtract v0 and v1 from the other translations t2; t3; : : : ; tk, we would like to
constrain them to lie in the parallelogram with vertices (0; 0), v0, v0+ v1, and
v1: the primary fundamental parallelogram. However, this would require non-
linear constraints. Instead, we construct the smallest octagon which contains

12



this parallelogram and which has sides parallel to b00, b01, b10, or b11. Due
to the angle range constraints, the combinatorial structure of this octagon is
�xed, and the constraint that each ti lies in this octagon is convex and linear.

3.4 Restriction

Restriction is as described in Section 2.3. First, set the w's equal to the u's
and replace each point-inclusion constraint u 2 U by a relaxed constraint
u 2 CH(U). Assuming each convex hull is a polygon, the result is a linear
program. We have shown in previous work [11] how to trace out the range
R(u) of a point-valued variable u in a linear program.

Initially, the convex hull of U0 (and U1) is the �rst quadrant f(x; y) j x; y � 0g.
Restriction intersects U0 with a convex polygonal region R(u0). It is simplest
to always compute this intersection with the original U0 (Equation 3). If R(u0)
has n edges, U0 \ R(u0) can have up to n connected components, each with
a single concave hyperbolic edge. Using the quadratic formula, it is simple to
determine if each edge of R(u0) has zero, one, or two intersections with the
boundary of U0. Some care has to be taken when carrying out this construction
in oating point. Obviously, if the computed values of pxpy and qxqy indicate
that vertices p and q of R(U0) both lie inside U0, then the segment pq must
cross the boundary of U0 an even (zero or two) number of times, no matter
what the numerics say! The same method constructs U1.

3.5 Constructing Inner Convex Approximations

Evaluation and compaction both depend on constricting the problem by con-
structing a convex subset I(w;U) � U which is near to w. This section gives
the algorithm for constructing I(w;U) and proves that it has a visibility prop-
erty essential for the correct convergence of both evaluation and compaction.

Algorithm Given a point w, a region U , and a point u 2 U which minimizes
jw � uj, the algorithm sets I equal to the component of U which contains u.
The algorithm repeatedly clips I by the concave element of I which lies nearest
to u. When no concave elements remain, the result is I(w;U). Figure 4 shows
two examples. The next two paragraphs de�ne clipping and concave elements.

Clipping Clipping is de�ned as follows. To clip I by a line L, replace I with
I \H, where H is the half-plane bounded by L and containing u. If u 2 L, H
is chosen so that the inward pointing normal vector at or near u points into
the interior of I. To clip I by a straight edge e, clip I by the line L which
contains e. To clip I by a concave curved edge e, calculate the point p on e

13



w

u w

u

Fig. 4. Selecting convex subset near to w.

closest to u and clip I by the line L tangent to e at p. To clip I by a (concave)
vertex v 6= u, clip I by the line L which contains v and is perpendicular to the
line segment uv. To clip I by a (concave) vertex v = u, clip I by the line L
which contains v and is perpendicular to the angle bisector of the two edges
coming into vertex v.

Concave Elements Concave elements are de�ned as follows. A vertex is
concave according to the standard de�nition. A straight edge is concave if at
least one of its endpoints is a concave vertex. A curved concave edge is always
concave.

Lemma 3 If w does not lie at a concave vertex of U , then I(w;U) contains
a point u 2 U nearest to w, and for some open set O containing u, I(w;U)
contains all points of O \ U which are visible to u.

PROOF. This lemma uses the standard de�nition that a; b 2 U are visible

to each other if the line segment ab � U . The algorithm clips away portions
of U that lie farther and farther away from u. We only need to check that the
visibility condition is satis�ed when the algorithms clips I by elements which
contain u.

If u lies at a convex vertex, the algorithm might clip I by one or both of the
two edges of that vertex, but that does not change the neighborhood. If u lies
on a straight edge, the algorithm might clip I by that edge, again not changing
the neighborhood. If u lies in the interior, then no elements touch it. Finally,
if u lies on the concave hyperbolic edge e (of U0 or U1), then in a vicinity of
u, only points in the half-plane bounded by the tangent line to the curve at u
are visible to u. Again clipping I by e does not remove any points visible to u
in a neighborhood about u. 2

14



3.6 Evaluation and Compaction

Both evaluation and compaction constrict the problem by replacing each point-
inclusion condition u 2 U by u 2 I(w; u). Evaluation sets each u to a point of
U that minimizes jw � uj, constructs the I(w;U) regions, and minimizes the
slack objective using quadratic programming. It repeats these steps until the
slack objective converges to a minimum (numerically).

In each of its minimization steps, compaction solves an LP instead of a QP
and performs an interpolation. Speci�cally, it constricts the problem, sets the
w's equal the u's, and minimizes a linearization of the lattice area v0 � v1
about its current value:

(v0 +�v0)� (v1 +�v1) � v0 � v1 � v1 ��v0 + v0 ��v1: (7)

The variables of this LP are perturbations (deltas) of the current values of
the variables of the lattice area problem. This LP has a non-trivial solution
if and only if there is some perturbation which diminishes the lattice area.
For some s, 0 < s � 1, the compaction algorithm adds s times the calculated
deltas to the current values of the variables. The interpolation of the area
(v0 + s�v0)� (v1 + s�v1) equals

v0 � v1 � s(v1 ��v0 � v0 ��v1) + s2�v0 ��v1:

Its value is minimized when the derivative with respect to s is zero,

smin = (v1 ��v0 � v0 ��v1)(2�v0 ��v1)
�1:

Since for suÆciently small s, the area must be smaller than the current area,
smin > 0. If smin < 1, compaction uses s = smin; otherwise, it simply adds the
the full deltas to the variables. This update step is is iterated until the lattice
area numerically converges to a minimum.

The following lemma implies that both evaluation and compaction converge
to a true local minimum of the original point-inclusion constraints.

Theorem 4 Except for cases in which some u is equal to a concave vertex

of the corresponding U , any minimization problem with respect to the point-

inclusion constraints u 2 U has the same equilibria when these constraints are

constricted to u 2 I(w;U).

PROOF. Since I(w;U) � U , the constricted problem is more constrained

15



than the original problem, and therefore any equilibrium of the original is an
equilibrium of the constricted problem.

Suppose the minimization with respect to the original problem is not at an
equilibrium. That means there is some path from the current values of the
variables, parameterized by s, such that the derivative of the objective with
respect to s at s = 0 is negative.

Let u(s) � U be the curve traced out by variable u in the objective-diminishing
path. Let u0 be the derivative of this curve at s = 0. The linear path u+ su0 has
the same derivative. Since U has no convex curved boundary edges, for suÆ-
ciently small s, u+su0 2 U . Since this is also true for smaller s, u+su0 is visible
to u in U . By Lemma 3, for suÆciently small s, u+ su0 2 I(w;U). Therefore,
for suÆciently small s, the interpolant for s is a objective-diminishing solu-
tion to the constricted problem. Hence, that problem is not at an equilibrium
either. 2

Evaluation or compaction should only extremely rarely if at all converge to a
state in which some u is at a concave vertex of the corresponding U . First, if
w 62 U , then a point u 2 U which minimized jw � uj cannot lie at a convex
vertex. Even if w 2 U , the concave vertices of U are not vertices of I(w;U).
The point w would have no \reason" to converge to this particular point.
Even if evaluation or compaction do so converge, it does not ruin the overall
correctness of the angle range algorithm. We could prove convergence of the
algorithm even considering this possibility, but it makes the proof twice as
long and tedious to read. To keep the proofs simple, we disregard this special
case.

3.7 Subdivision

Section 2.3 gave a complete description of linear subdivision. Since the cutting
line L is midway between a particular w and u, they lie on opposite sides of
L. Therefore, neither sub-problem allows this particular minimum of the slack
objective to occur again. This section gives the details of angular subdivision,
and proves that it prevents this particular minimum of the lattice area from
occurring again.

Angular subdivision is only necessary if the EEA is zero but the lattice area
is greater than the target. Lemma 2 implies that neither v0 nor v1 can lie at
an extreme of its angle range, and therefore they both lie in the interior of
their angle ranges. The subdivision algorithm chooses the cut that minimizes
the maximum angle range in the subproblems. Suppose the range [�00; �01]
of v0 is cut at the current angle �0 of v0, and therefore the current v0 is at

16



an extreme of the angle range in each sub-problem: [�00; �0] or [�0; �01]. If v0
is at an extreme, by Lemma 2, EEA equals zero implies target area is met.
Therefore, the current local minimum cannot be the output of compaction in
either sub-problem. Similarly if the range of v1 is cut.

Theorem 5 The algorithm in Table 2 for solving the angle range problem is

correct and runs in �nite time.

PROOF. Restriction eliminates no solutions. Lemma 3 implies that evalua-
tion and compaction work correctly. By Lemma 1, zero slack objective implies
no overlaps. Therefore, if the algorithm terminates, it terminates correctly.

The discussion of this section, based partly on Lemma 2, proves that the
algorithm visits each local minimum of the slack objective no more than once
and each local minimum of the lattice area no more than once. Therefore the
algorithm terminates. 2

4 Results and Conclusions

Section 4.1 gives implementation details, particularly techniques used to speed
up the algorithm in practice. Section 4.2 provides examples of lattice packings
generated by the algorithm, and Section 4.3 examines the performance of the
algorithm for infeasible target areas. Finally, Section 4.4 gives conclusions and
directions for future research.

4.1 Implementation Details

We implemented the algorithm in C++ on a 600 MHz Pentium II PC running
RedHat Linux 5.2. We used CPLEX 6.5 to solve the linear and quadratic
programs.

A general \rule of thumb" in hand layout is that it is good to pair polygons
with their 180-degree rotated twins. We constrained these pairs to be \nearly
touching" as follows. Select a small, disk-like polygon B, and chose only those
point which lie \on the rim" of the Minkowski sum as de�ned by this disk:

Uhi;j;i0;i1i = (Pi ��Pj � B) \ Pi ��Pj: (8)

The selected polygon B is a square 1% of the diameter of the polygons.

17



Fig. 5. Input 1: lattice packing of two pentagons.

We observe that it is not necessary to restrict a U if it is already convex. In
fact, one can prove that this optimization does not a�ect the restriction of
non-convex U .

For Uhi;j;i0;i1i not corresponding to the pair w; u just subdivided, we em-
ployed a faster but weaker form of restriction. Speci�cally, we only calcu-
lated the bounding, axis-parallel, rectangle of the range R(uhi;j;i0;i1i) instead
of R(uhi;j;i0;i1i) itself. As a result of this modi�cation, the algorithm visits
more subproblems, but it requires much less time to restrict each subproblem.
Our experiments showed that this tradeo� reduced the overall running time.
Whether we use the actual range R(uhi;j;i0;i1i) or its bounding box, we repeat
restriction until no U diminishes more than 50% in area.

Finally, to generate positive examples, we limited the depth of subdivision to a
speci�c bound. This prevented the algorithm from spending too much time in a
barren region of the search space. For negative examples, it is (unfortunately),
necessary to search the entire space.

4.2 Positive Examples

To illustrate the positive examples, we ran the program on four inputs, two
with two polygons, two with four polygons: 1) two \free-hand" pentagons,
2) two bra parts, 3) the two parts of (1) plus 180 degree rotated copies, and
4) the same with respect to (2). Figures 5 through 7 illustrate Examples 1-3.
Figures 2 and 3 illustrate Example 4.

Obviously, Example 4 is the most diÆcult problem, the most time-consuming,
and the one which is typical of the clothing industry. The cup polygons have 73
vertices, and the strap polygons have 51 vertices. We employed the following
strategy to bound the optimal area. We �rst set the search depth to 3 and
used a reasonable estimate for the lattice area. If we found a solution, we set
the target area 1% smaller than the solution's lattice area. We repeated this

18



Fig. 6. Input 2: lattice packing of two bra parts.

Fig. 7. Input 3: lattice packing of four pentagons.

step until we found no solution at depth 3. Then we tried diminishing the
target area by 0.01%. We repeated this step until we found no solution. At
this point we ran the same target with greater and greater depths. If a solution
was found at a greater depth, we set the next target to the solution's area less
0.01%. We stopped when the running time become prohibitive.

Using this strategy, our �rst four target areas were 1200000, 1083314, 1072803,
1081202. The second generated a solution with area 1081310 and the third
and fourth found no solution (above depth 3). This solution is depicted in
Figure 3. The total time was half an hour (1869 seconds). This solution has
density 90.2%, and when arbitrarily clipped to the rectangle in Figure 1, it
contains one more cup and 22 more straps than the human-generated layout.

We next started increasing the depth of search with the same target area
1081202. Searching to depths 4 and 5 found no solution and ran in 1131 second
and 2038 seconds. Searching to depth 6 found a solution with area 1078220
and density 90.4% (in the plane). Figure 2 depicts this packing clipped to a
rectangle. We set the new target area to 1078112. Even a depth 8 search, which
required just over 3 hours (11475 seconds), could �nd no better solution. A
depth 10 search required just over 7 hours (25796 seconds). However, the depth
bound cut o� search on only one-quarter (584 out of 2376) of the subproblems,

19



Table 3
Experiments on negative examples (1� �) times the optimal area.

e = � log2 � 1 2 3 4 5 6 7 8 9

seconds 11 86 146 231 302 368 423 415 473

n = # subproblems 6 72 145 202 261 344 391 365 416

seconds / subproblem 1.83 1.19 1.01 1.14 1.16 1.07 1.08 1.14 1.14

e = � log2 � 10 11 12 13 14 15 16 17 18

seconds 452 476 492 462 466 517 526 536 444

n = # subproblems 386 429 435 397 400 472 474 495 389

seconds / subproblem 1.17 1.11 1.13 1.16 1.17 1.10 1.11 1.08 1.14

rather than one-half, which give us hope that a complete search would only
take a few days.

4.3 Negative Examples

As in many domains, it takes much more time to prove infeasibility than to
generate a positive answer. We can be pretty certain that we have found the
densest layout for Example 4, but the running time for an arbitrary depth
search would be prohibitive. Similarly, it required two hours just to verify (to
arbitrary depth) that there is no layout twice as dense as the one in Figure 7!

Fortunately, for those layouts for which veri�cation is possible, it appears that
we can obtain tight lower bounds on the optimal area. Table 4.3 shows the
dependence of the running time on �, where the target area is (1� �)Aoptimal,
for Example 2 (two bra parts). The experiments examine values of � which are
negative powers of 2 from 0:5 to 2�18. As the table indicates, the running time
reaches a plateau. Any addition running time required for greater accuracy is
swamped by the overall running time for the veri�cation.Note: the conference
version of this paper seemed to �nd the opposite result, but it turns out that
the previous experiment did not examine enough �'s to �nd the \plateau".

4.4 Conclusions and Future Work

The lattice packing in Figure 2 has density 90.4% (in the plane). By contrast,
the human-generated layout in Figure 1 covers only 80.0% of the rectangle.
Obviously, we cannot hope to cover 90.4% of a rectangle, but it seems very
likely that additional heuristics and algorithms will yield a much denser layout

20



Fig. 8. Layout automatically generated from lattice packing.

for the original strip packing problem than humans can generate, and the
computer running time will be less than the human layout time.

The running times for positive examples were quite reasonable, especially if
we are willing to accept a solution just short of optimal. The running times for
veri�cation of the densest lattice are not practical yet, but from an industrial
point of view, this does not matter. With a limited depth search, the algo-
rithm can quickly �nd layouts that are much denser than those used currently
in practice. In the course of commercializing this algorithm, we expect to ob-
tain more examples on which to run experiments and verify that the running
times in Example 4 are indeed typical. It is also likely that relatively minor
modi�cations of the current algorithm will yield much faster running times
for both positive and negative examples.

There are still additional steps to be taken to generate good industrial layouts
from a lattice packing. The clipped lattice packing in Figure 2 has excess
parts. It also is a packing of only one representative cup and strap from the
original layout in Figure 1. We naively discarded excess parts and naively
substituted the original parts, and then we applied overlap minimization and
compaction [8,9]. The resulting layout (Figure 8) matches the human layout
in density, but it is a tight �t and cannot be compacted any smaller. However,
if we fully exploit the freedom we have selecting the appropriate subset of
the lattice and in substituting the original shapes, it is likely we can beat
the human density. This is a subject of future work. It is our belief that
lattice packing will very shortly lead to the �rst almost-direct application of a
global minimization algorithm to an industrially signi�cant non-convex layout
problem.

References

[1] K. Daniels. Containment algorithms for nonconvex polygons with applications

to layout. Ph.D. thesis, Harvard University, Cambridge, MA, 1995.

[2] K. Daniels and V. J. Milenkovic. Multiple Translational Containment, Part I:
An Approximate Algorithm. Algorithmica, 19:148{182, 1997.

21



[3] D. Dobkin, J. Hershberger, D. Kirkpatrick, and S. Suri. Computing the
intersection-depth of polyhedra. Algorithmica, 9:518{533, 1993.

[4] K. Dowsland and W. Dowsland. Solution approaches to irregular nesting
problems. European Journal of Operational Research, 84(3):506{21, August
1995.

[5] K. A. Dowsland and W. B. Dowsland. Packing Problems. European Journal of
Operational Research, 56:2 { 14, 1992.

[6] H. Dyckho�. A typology of cutting and packing problems. European Journal

of Operations Research, 44:145{159, 1990.

[7] G. Kuperberg and W. Kuperberg. Double-lattice packings of convex bodies in
the plane. Discrete Comput. Geom., 5:389{397, 1990.

[8] Z. Li. Compaction algorithms for nonconvex polygons and their applications.
Ph.D. thesis, Harvard University, Cambridge, MA, 1994.

[9] Z. Li and V. Milenkovic. Compaction and separation algorithms for nonconvex
polygons and their applications. European Journal of Operations Research,
84:539{561, 1995.

[10] V. Milenkovic. Translational polygon containment and minimal enclosure using
linear programming based restriction. In Proc. 28th Annu. ACM Sympos.

Theory Comput. (STOC 96), pages 109{118, 1996.

[11] V. Milenkovic and K. Daniels. Translational Polygon Containment and Minimal
Enclosure using Mathematical Programming. International Transactions in

Operational Research, 6:525{554, 1999.

[12] V. J. Milenkovic. Multiple Translational Containment, Part II: Exact
Algorithms. Algorithmica, 19:183{218, 1997.

[13] D. M. Mount. The densest double-lattice packing of a convex polygon. Report
2584, Dept. Comput. Sci., Univ. Maryland, College Park, MD, 1991.

[14] P. E. Sweeney and E. R. Paternoster. Cutting and Packing Problems:
A Categorized, Application-Oriented Research Bibliography. Journal of the

Operational Research Society, 43(7):691{706, 1992.

[15] P. Whelan and B. Batchelor. Automated packing systems: review of industrial
implementations. In Proceedings of the SPIE - The International Society for

Optical Engineering, vol.2064, pages 358{69. SPIE, September 1993.

22


