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ABSTRACT 

Two methods are proposed for correct and verifiable geometric reasoning using finite precision 
arithmetic. The first method, data normalization, transforms the geometric structure into a configura- 
tion for which all finite precision calculations yield correct answers. The second method, called the 
hidden variable method, constructs configurations that belong to objects in an infinite precision 
domain-without actually representing these infinite precision objects. Data normalization is applied 
to the problem of modeling polygonal regions in the plane, and the hidden variable method is used to 
calculate arrangements of lines. 

1. Introduction 

Geometric reasoning using finite precision arithmetic presents great difficulties 
because of round-off error. Yet reasoning in a finite precision domain is an 
area worth investigating because finite precision floating point arithmetic is 
fast, widely available, and widely used in practice. The common alternative, 
algebraic systems, are not subject to error, but they can be much less efficient. 
The goal of this work are verifiably correct finite precision implementations of 
geometric algorithms. 

Implementations based on finite precision arithmetic pose two problems. 
First, as has been stated, a finite precision implementation of a proven 
geometric algorithm is not necessarily correct; because of round-off error, it 
may fail on valid input. Second, finite precision arithmetic does not have the 
power to allow an implementation to exactly match the behavior of an 
implementation based on infinite precision arithmetic. At best it can retain 
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only some of the properties of interest. For example, a polygon modeling 
system may maintain planar topology, allow lines to intersect no more than 
once, and determine region areas to within a prespecified accuracy, even 
though it does not correctly determine the number of vertices of the modeled 
polygon. Solving these two problems requires several steps. The implementor f 

must 

- choose a useful set of properties to be retained by the finite precision 

- design the implementation, 
-prove that the implementation has the chosen properties. 

implementation, 

This paper proposes two general methods for the .design of correct finite 
precision geometric algorithms: data normalization and the hidden variable 
method. It illustrates the use of these methods with concrete examples ‘of 
correct implementation designs. The application of the first method, a model- 
ing system for planar polygon regions, has been implemented and is in use as 
part of a research tool. The application of the second method seriously 
addresses for the first time the problem of round-off error in calculating the 
topological arrangement of lines in the plane. 

2. Error Resulting from Finite Precision: An Example 

This section examines a simple example of the type of error ‘that can occur 
when an implementation uses the most naive form of floating point computa- 
tion. Suppose we have seven line equations and we wish to determine the 
topological arrangement of the lines. If, as in Fig. 1, two points of intersection 
A and B are very close together, round-off error may place them in the wrong 
order on line L .  The result, topologically, is shown in Fig. 2. This arrangement 
has the topology of a two-holed doughnut. Any algorithm that depends on 
planar topology would fail if presented with such a data structure. 

Fig. 1. Error-prone geometric configuration. 

c 
i 

Fig. 2. Topologically incorrect interpretation. 
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3. Two Approaches to Finite Precision Implementations 

Here then is the crux of the problem: Because of round-off error, we cannot 
depend solely on numerical tests to determine the structure or topology of a 
particular geometric object. The choice of topology is sometimes arbitrary, 
given our lack of information. Yet we want to model geometric domains, such 
as Euclidean or planar projective geometry, with well-defined topological 

6 constraints. This paper proposes two approaches to resolving this problem of 
ambiguity, data normalization and the hidden variable method. 

- Data normalization. Alter the structure and parameters of the geometric 
object slightly so as to arrive at an object for which all numerical tests are 
provably accurate. After this normalization process there are no arbitrary 
choices because calculation always gives a definitive and correct answer. 
- Hidden variable method. Choose a topological structure so that the 

following holds true: there exist infinite precision parameters for the object, 
close to the given finite precision parameter values, such that with the infinite 
precision values, the problem has the chosen structure. This approach is called 
the hidden variable method because the topology of the infinite precision 
version is known but not its numerical values. 

In Fig. 3 we see how the normalization method might deal with the problem 
that was shown in Fig. 1. Very close vertices, which can lead to numerical 
singularities, are either separated, as on the left, or merged, as on the right. 
With this method we lose the geometric properties of the lines because the 
lines have been broken up into noncollinear segments, but we retain the 
properties of planar polygons. 

In Fig. 4, we see two possible solutions under the hidden variable method. 
On the left is one possible topological arrangement: the three interior lines 

Fig. 3. First method: Altered problem. 

1 :: Fig. 4. Second method: Imposed interpretation. 
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form a triangle. On the right, the three lines pass through a single point C. This 
choice is possible because one can easily prove that there exists three nearby 
lines which are indeed concurrent at point C. (The diagram looks awkward 
because the error has been magnified so as to be visible.) An erroneous 
interpretation as was seen in Fig. 2 is impossible because no set of “hidden * 
lines” will form that configuration. At least some of the constraints of the 
domain (Euclidean geometry) are satisfied in that pairs of lines intersect 
exactly once and the object has planar topology. However we do not have 
access to the (infinite precision) parameters of the actual lines which satisfy the 
topology we have chosen. Thus it may be harder to extract information from 
the model. 

The examples given in Sections 2 and 3 are meant to give the reader some 
idea of the sort of geometric error that can occur and the different means by 
which the error may be avoided. The following sections contain rigorous 
definitions of verifiable finite precision implementations. Section 4 contains a 
model of finite precision arithmetic which can be used as a replacement for the 
axioms of real arithmetic. The model chosen is perhaps the most pessimistic 
possible in the sense that nothing is known with greater accuracy than the 
maximum round-off error. Under this model, the two methods of verifiable 
geometric computation are demonstrated by means of concrete examples. In 
Section 5 ,  the normalization method is applied to the problem of modeling 
polygonal regions in the plane, and in Section 6, the hidden variable method is 
used to construct the arrangement of lines in the plane. In each case the design 
is verifiable under the assumptions of the given model of finite precision 
arithmetic, and the satisfaction of a chosen set of properties is guaranteed. 

4 

4. Model of Finite Precision Computation 

In order to reason about round-off error, some model of finite precision 
computation is necessary. The methods of this paper are based on the simplest 
assumption that round-off is a bounded but random error added to the result of 
each computation. In evaluating a complicated expression, multiple round-off 
errors will generally cancel each other, but for purposes of proving correctness, 
the maximum possible total error must be used. 

The implementor must derive an error bound E .  This bound depends on the 
algorithm being implemented and the type of finite precision arithmetic used to 
implement it. For every expression evaluated by the implementation, the 
following must hold true: 

- The error may be as large as E .  

-The error is no larger than E .  . 
- No program can assume an accuracy of a derived result greater than can be 

verified under the first assumption. 
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As an example of the last property, suppose an algorithm must calculate the 
intersection of two lines. The only way to verify an answer under the finite 
precision model is to evaluate the expressions which determine the distance of 
the intersection point to each line. This evaluation may differ from the correct 
value by as much as E .  At best, the calculated intersection point may be any 
point within E of the two lines, possibly quite far from the actual intersection 
point if the lines form a small angle. In Fig. 5 ,  point Z is the true intersection, 
but the calculated intersection may be as far away as C. 

The value of E depends on two factors: the maximum round-off error per 
arithmetic operation and the number of arithmetic operations per expression. 
Suppose we use a floating point representation with q bits of accuracy. 
Evaluating any expression involving quantities of magnitude M can result in 
errors on the order of 2-'M. Suppose we bound the magnitude of all real 
numbers that an implementation uses by some value MAX. Then the smallest 
guaranteed significant quantity is, 

SIG = 2-'MAX. 

An expression such as the area of a triangle ~ 1 ~ 2 ~ 3 ,  

Area= $(PI x P2 ' P 2  x P3 +P3 x P1) 7 

involves six multiplications and five additions (or subtractions). Assuming that 
the additions can be performed with total error at most ~ S I G  and that each 
multiplication can have round-off error no more that ~ S I G ,  the maximum 
possible error in the computation of the area is, 

( is1G + 6 * $SIG) < 2SIG. 

Similarly, most expressions can be evaluated so as to have error no more than 
a small constant times SIG. To determine the value of E ,  the implementor looks 
at the number of round-offs in the most complex expression evaluated by the 
system. 

Given two quantities calculated under this model of computation, a geomet- 
ric reasoning system can sometimes show that one is greater than the other or 
that one is less than the other, but it can never show that the two quantities are 

Fig. 5 .  Error in calculated intersection position. 
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equal. It is hard to imagine a more pessimistic viewpoint, but it is interesting to 
see what can be done with these assumptions. 

5. Data Normalization . 
This paper illustrates the method of data normalization by applying it to the 
problem of modeling polygonal regions in the plane. Central to this approach is 
a set of rules which a validly normalized object must satisfy. These rules can be . 
correctly tested using finite precision computations. The system provides four 
types of operations: 

- make: creation of new normalized objects; 
- move: translation and rotation operations; 
- combine: union, complement, and all the other regularized set operations 

- examine: a point-in-region predicate, for example. 
on planar polygonal regions; 

These operations generate normalized objects so long as they are given 
normalized objects as input. Since normalization is a precondition and post- 
condition of all the system operations, the system cannot enter an invalid 
(unnormalized) state. 

The system contains the following 'types of objects, 

- vertices: ordered pairs of finite precision values representing points in the 

- edges: ordered pairs of vertices representing oriented line segments. 
plane; 

As shown in Fig. 6, the interior of a polygonal region is defined to lie to the left 
of its bounding edges. 

To define this system, we must choose a value of E such that the distance 
between a point and another point and the distance between a point and a line 
segment can be calculated with accuracy & E .  Given this value of E ,  the five 
normalization rules are: 

(1) No two vertices are closer than E .  

Fig. 6. Example polygonal region. 
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(2) No vertex is closer than E to an edge of which it is not an endpoint. 
(3) No two edges intersect except at their endpoints. 
(4) For each vertex, the angularly sorted list of edges containing that vertex 

alternates between incoming edges and outgoing edges. 
( 5 )  For each point in the plane, the topological winding number (defined 

below) is either 0 ,1 ,  or undefined. 

The first rule can be checked under all circumstances; the second can be 
checked so long as the first rule holds; and in general, it is possible to check a 
rule so long as all the previous rules in the list are satisfied. Once the first two 
rules are satisfied, the model is no longer subject to topological ambiguities. 
For example, a set of edges which share a common endpoint can be sorted by 
angle, and it can be determined whether a vertex lies inside or outside a closed 
loop of edges. Thus the rules after the first two are basically the same as those 
of an infinite precision implementation. 

5.1. Topological winding number 

The topological winding number indicates the exterior, interior, and boundary 
of a polygonal region. This winding number can be defined as follows: 

Definition 5.1. The topological winding number of a point p with respect to a 
polygon P: if p lies on some edge of P, the winding number is undefined. 
Otherwise, let L be the horizontal line (parallel to x-axis) through p ,  and let R 
be the ray extending to the right of P. As in Fig. 7 ,  an edge AB crosses R 
positively if A is below L and B is on or above L and AB intersects L to the 
right of p .  Edge AB negatively crosses R if BA positively crosses R. The number 
of positive crossings minus the number of negative crossings is the winding 
number of p .  

In the finite precision version, the winding number can be calculated 
accurately if p is no closer than : E  to any vertex or, edge of P. 

Except on the boundary where it is not defined, the winding number has an 
integral value, For an arbitrary object satisfying rules (1)-(4), this value may 
be other than 0 or 1, but rule ( 5 )  states that the winding number can take on 
only these values, and so the polygon has a well-defined exterior and interior. 
Rules (1)-(4) make assertions about finite sets, and therefore are easily shown 
to be decidable. Rule ( 5 ) ,  on the other hand, makes a statement about all 

Fig. 7. Edges crossing ray. 
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points in the plane, including points for which the topological winding number 
cannot be calculated using finite precision. The following theorem reduces the 
set of points to be tested to a finite set. 

J 

Theorem 5.2. If rules (1)-(4) hold and the topological winding number of 
every point E to the left of the midpoint of each edge equals 1 (see Fig. S), then 
rule ( 5 )  holds. c 

Actually, if we partition the edges into connected components, it is sufficient 
to verify the condition of Theorem 5.2. for just one edge from each compo- 
nent. Thus rule ( 5 )  can be tested by only a few applications of the finite 
precision winding number function. 

One final note about the topological winding number: if the polygonal region 
is unbounded, the value defined by Definition 5.1 will be 0 for points in the 
exterior of the region and -1 for points in the interior. One can distinguish this 
case from the bounded case by testing a point as in Fig. 8. The point p should 
always be inside the region. 

Fig. 8. Test point for rule ( 5 ) .  

5.2. Accommodation 

Three out of the four basic types of operations on polygonal regions+reation, 
transformation, or combination-can lead to violations of rules (1) and (2 ) .  
The polygon(s) being operated on must be altered to accommodate new or 
transformed vertex locations which may lie within E of the current vertices and 
edges of the polygon(s). A basic operation called accommodation alters a 
polygon to accommodate a new vertex, using two more primitive operations 
vertex shifting and edge cracking. Normalization of a polygon consists of 
applying accommodation to the polygon for each vertex which violates rules . 
(1) and (2). 

For example, one of the most difficult operations on polygonal regions is the 
union. In Figs. 9 and 10 we see how vertex shifting and edge cracking allow 
one polygon to accommodate the vertices of the other. The following pseudo- 
program defines the operation of accommodation. 
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Fig. 9. Vertex shifting. 

/ . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . .  
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/ . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . . .  
\ 
/ 

Fig. 10. Edge cracking. 

ACCOMMODATE(po1ygon P, Vertex v )  
{P satisfies rules (1) through ( 5 ) }  
SHIFT-VERTEX(~, V )  
{P satisfies rule (1) and normalization invariant} 
While there exists some edge AB of P within E of some vertex 

{P satisfies rule (1) and normalization invariant} 
CRACK-EDGE(P, A B )  

{P satisfies rule (1) and rule (2) and normalization invariant} 
{P satisfies rules (1)-(5)) 

The following sections define vertex shifting, edge cracking and the normali- 
zation invariant. Subsequent sections contain proofs that the assertions in this 
pseudocode are true and that the while-loop terminates. 

5.2.1. Vertex shifting 

Suppose we have a polygon P and a new vertex V not part of P. Shift each 
vertex of P which lies within E of V to coincide with the location of V ,  and 
eliminate any double edges introduced by this shifting. At this point, the 
polygon satisfies rule (1). Note that shifting a vertex involves identifying it with 
the vertex it has been shifted to (otherwise we would have multiple vertices at 
the same location). The polygon may fail to satisfy rule (2) because 

- the new vertex (and hence the shifted vertices) may be within E of an edge, 
- edges with a shifted vertex endpoint may have been moved to within E of a 

vertex. 
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These two sources of violations of rule (2) are mutually exclusive for the 
following reasons. An edge either has a shifted vertex as an endpoint or it does 
not. If it does not, it has not been changed, and thus only the first type of 
violation can occur. If the edge does have a shifted vertex as an endpoint, then 
after shifting it has V as an endpoint. Since every shifted vertex has been # 

shifted to V ,  any vertex which lies off the edge after shifting must be an 
unshifted vertex. 

5.2.2. Edge cracking 

Any edge which passes within E of a vertex violates rule (2) of the normaliza- 
tion rules. The following steps define a process called cracking which eliminates 
the offending edge. 

Step 1. Select all vertices that lie within E of the edge AB to be cracked. 
Step 2. Sort the vertices according to the position of their projections onto 

Step 3. Replace AB by edges AV,, V,V,, . . . , V,B, and eliminate any double 
AB.  Let the sorted list be V , ,  V,,  . . . , V,. 

edges that result. 

The basic idea is to crack edges until no edge is a candidate for cracking. 
Since edge cracking does not move vertices (although it may eliminate some), 
it does not introduce violations of rule (1). Cracking an edge may introduce 
more edges to be cracked, but if the algorithm terminates, the resulting object 
must satisfy rule (2). 

Incidentally, we may not be able to sort the vertices which lie near an edge if 
two of the vertices project to the same or nearly the same point. In this case, it 
can be shown that one of the two vertices must lie at least $ E  closer to the edge 
than the other. The more distant vertex can be left out of the list of vertices to 
be cracked to without resulting in a violation of the normalization invariant 
defined in the next section. 

5.2.3. Normalization invariant 

Designing an invariant for the pseudocode above is tricky because the partial 
results of vertex shifting and edge cracking do not necessarily satisfy rules (1) 
and (2). Without these, rules (3)-(5) cannot even be checked using finite 
precision. The solution to this problem is reminiscent of the hidden variable 
method described in Section 6. 

Definition 5.3. A polygonal approximation to an edge AB is a sequence of . 
edges, AC, ,  C,C,, . . . , C,B, such that each Ci lies within $ E of AB,  and the 
projections of the Ci on AB are in sorted order. 

* 
Definition 5.4. The normaZization invariant for the accommodation algorithm is 
defined as follows: polygon P satisfies the invariant if there exist polygonal 
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approximations to all the edges of P such that replacing each edge by its 
approximation results in a polygon which satisfies rules (3)-(5) (in the infinite 
precision domain). 

In order to prove that vertex shifting and edge cracking preserve the 
normalization invariant, we need the following theorem. 

Theorem 5.5. If AB is an edge and vertices VI, V,, . . . , V', lie farther than E 

from A and B but closer than ; E  to AB, then there exists a polygonal 
approximation to AB which passes to the left of any chosen subset of the Vi and 
passes to the right of the others. 

5.2.4. Proof of assertions 

Does vertex shifting preserye the invariant? Recall that vertex shifting intro- 
duces violations of rule (2) by either moving edges toward vertices or moving 
vertices toward edges, but not both at the same time. Since the shift distance is 
less than E ,  nothing get moved relative to something else by more than E .  Since 
the polygon satisfied rule (2) to start with, vertices and edges were separated 
by at least E before the shifting. Therefore after shifting, no vertex could have 
been moved a significant distance to the wrong side of an edge, certainly not as 
far as ; E .  Theorem 5.5 implies that there must exist polygonal approximations 
to the edges that pass by such vertices on the correct side, and thus the 
normalization invariant can be satisfied. 

If we wish to prove that cracking an edge preserves the normalization 
invariant, we must consider three classes of vertices: those which lie on the 
wrong side of the edge (in the infinite precision domain), those which lie within 
E of the edge (according to finite precision calculation), and those which lie 
further than E from the edge. All vertices in the first class must also belong to 
the second because the normalization invariant tells us that the edge need not 
be deflected more than i E to pass on the correct side of the vertices in the first 
class. Thus the vertices in the first class lie within i E of the edge, and therefore 
finite precision calculation will show them to be well within E of the edge. The 
cracking process replaces the edge with a chain of edges passing through the 
vertices in the second class. Since the second class includes the first class, the 
topological inconsistency caused by the first class will be eliminated by the new 
chain of edges. 

The new edges may pass to wrong side of previously consistent vertices, but 
those vertices must all belong to the third class because vertices in the first and 

from the eliminated edge by at most E .  Since the vertices in the third class were 
E distant from the eliminated edge, they cannot be more than a small distance 
to the wrong side of the new edges, certainly not as much as ; E .  As in the case 
of vertex shifting, Theorem 5.5 implies that the normalization invariant can be 
satisfied. 

i second class are part of the chain of new edges. The new edges are displaced 
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At the termination of accommodation, rule (l), rule ( 2 )  and the normaliza- 
tion invariant hold. Rules (1) and ( 2 )  imply that vertices and edges are 
separated by at least E .  The normalization invariant implies that there is some 
way of replacing each edge with a poIygonal path such that the resulting object 
satisfies rules (3 )- (5 ) .  But the polygonal path does not stray further than ; E  ? 

from the edge. Therefore, replacing the paths with the edges themselves should 
result in an object that satisfies rules (1)- (5) .  

5.2.5. Termination of edge cracking 

The only thing remaining to show is that edge cracking does indeed terminate. 
In the edge cracking stage of the accommodation algorithm, the choice of the 
next edge to crack is arbitrary. There is a way of ordering the choices so as to 
assure termination of cracking. We can first perform those crackings which will 
increase the area of polygonal region. Then, we can perform the crackings 
which will decrease the area. It can be shown that a cracking that decreases the 
area cannot create the need for a cracking that increases the area. Since the set 
of vertices is fixed and finite, there are only a finite number of edge configura- 
tions, one of which will have the largest area and one, the smallest area. Thus 
both the area-increasing stage and the area-decreasing stage will terminate. 

While edges are being cracked, thk polygonal region may not have an area, 
even in infinite precision, because the polygon does not necessarily satisfy rules 
(3 )- (5 ) .  The polygon whose existence is implied by the normalization invariant 
does have an area, but it is not unique. The area we seek is the limit of valid 
approximating polygons whose total edge lengths tend to a minimum. Inciden- 
tally, it is the opinion of the author that edge cracking terminates regardless of 
the order the edges are cracked. 

5.3. Error bounds 

We have shown that accommodation can be performed correctly, but how 
much error does it introduce? The measure of error is the area of discrepancy 
between the original polygonal region and the new normalized region. 

Vertex shifting introduces a small amount of error. It can be shown that the 
region of discrepancy has area at most EP where p is the length of the 
perimeter. 

Edge cracking, on the other hand, can introduce quite a considerable 
amount of error. In certain pathological cases, the entire region can disappear! . 
The worst-case error is of order nsp where n is the number of vertices in the 
object. The worst case occurs when each vertex is nearly within E of some 
other vertex, and thus a single vertex shift can cause a cascade of edge * 

cracking. If the vertices and edges are separated by at least 2~ to start with, the 
region of discrepancy has area at most EP as in the case of vertex shifting. 
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5.4. Implementing the union 

As an illustration of how accommodation can be used to implement operations 
on polygonal regions, let us consider the union: given polygonal regions P and 
Q, we wish to generate the region which represents the set of points lying in 
either P or Q. 

The first step is to accommodate Q to all the vertices of P by repeated calls to 
the accommodation function. Then P must be accommodated to the vertices of 
Q. 

At this point, the intersection points can be calculated and inserted. If edge 
AB of P and edge CD of Q intersect at point I ,  then replace AB by AI and ZB 
and replace CD by CZ and ID. Polygons P and Q must be accommodated to the 
new vertex I .  

Finally, by applying the topological winding number function to the mid- 
points of edges, determine which edges of P lie outside or on the boundary of 
Q and which edges of Q lie outside or on the boundary of P. These are the 
edges of the union region. 

As presented, this algorithm is rather inefficient. However an optimization 
similar to the one mentioned at the end of Section 5.1 can be made. If an edge 
is shown to be part of the boundary of the union polygonal region, then any 
edge connected to it via unshared vertices (vertices of P or of Q but not of 
both) is part of the boundary also. 

5.5. Advantages, disadvantages, and an implementation 

This particular example shows that data normalization is a viable method for 
correctly implementing geometric algorithms with finite precision. Unfortu- 
nately, many properties of the infinite precision domain are lost by normaliza- 
tion. The resulting objects are indeed planar and polygonal, but each normali- 
zation introduces a bounded amount of error which can be measured as the 
area of the discrepancy between the normalized and unnormalized regions. 
The total error in a sequence of operations grows with the number of 
normalizations, and it can be quite large in the worst case. The order of 
application of accommodation and edge cracking is arbitrary, and the result of 
the algorithm depends on the order in which these operations are applied. 
Data normalization is also difficult to generalize to more complex domains, 
such as curved objects. Still, the polygonal region modeling system summarized 
here is robust and satisfies well defined properties. A version of the im- 
plementation is a part of a modeling system for the VLSI manufacturing 

(r process designed at IBM Yorktown [4]. To date is has not failed in any way. 

6. Hidden Variable Method 
L 

We illustrate the hidden variable method by applying it to the problem of 
determining the topological arrangement of n lines represented by their 
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Fig. 11. Arrangement of lines. 

\ 
0 

V 
' 1  

Fig. 12. Difficult case for arrangement algorithms. 

equations. The output of the algorithm is a set of (finite precision) vertex 
locations and a data structure representing the topology of the arrangement 
(see Fig. 11). 

The common methods currently used for calculating arrangements [l, 21 are 
sensitive to round-off error. Figure 12 shows a configuration that can occur 
under the model of finite precision arithmetic used by this paper. If the 
implementation calculates that lines L,  and L, intersect at V and that line L lies 
above V as shown, then L ought to intersect line L, before line L , .  Yet with the 
value of E shown, L could intersect L, at V, and L, at V,, with V, appearing well 
before V, on L.  The positions of V ,  V, and V, are impossible to reconcile with a 
planar topology. 

* 

6.1. Arrangements 

Formally, the input of the arrangement algorithm is a set of line equations 22 
expressed in finite precision. The output of the algorithm contains, 

- a set of vertices Y, 
- a set of edges 8, 
- some symbolic representation 9 of the topological arrangement of the 

vertices and edges (Guibas and Stolfi [3] have devised a very good 
representation in their paper about creating Voronoi diagrams). 

Each vertex has a numerical location ( x ,  y ) .  Each edge in 8 is associated 
with a bundle of lines (a subset of 2) which represents, by definition, the lines 

L 
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that contain that edge. The vertex endpoints of an edge must satisfy the line 
equations of the lines in that edge’s bundle with an error no greater than E .  

The arrangement is limited to a bounding box which represents the max- 
imum allowable magnitudes of the x- and y-coordinates. For every line in 9, 
the set of edges it contains forms a single unbroken chain from one end of the 
bounding box to the other. 

P 

6.2. Ideal case 

Ideally we want there to exist a hidden, infinite precision set of lines 2’’ and 
vertices “I” which are “close to” the input lines 2’ and the output vertices “tr 
and which truly satisfy the topological arrangement 9. Formally, there ‘must 
exist mappings from 2’ to 2’’ and from “I‘ to ”I” which satisfy the following 
properties 

(1) The line mapping is many-to-one and thus partitions 2’ into equivalence 

(2) The vertex mapping is one-to-one. 
(3) Each bundle must be an equivalence class of the line mapping. In this 

way, the mapping from 2’ to 2’’ induces a mapping from 8 to 2” -each  edge is 
mapped to the unique element of 2’’ to which all the lines in that edge’s bundle 
are mapped. 

(4) If a vertex is an endpoint of an edge, the image of that vertex under the 
vertex mapping must lie on the line to which the induced edge mapping maps 
the edge. 

(5) The elements of 9’ and “tr’ are indeed arranged according the topology 
9. 

classes-lines which map to the same line in 2’’-are equivalent. 

The reader can compare this ideal case with the practically realizable 
approximations of Sections 6.4 and 6.5. 

Unfortunately, finite precision computations very probably do not have the 
power to assure the ideal result. Only an infinite precision algebraic system will 
always generate arrangements of lines that satisfy every theorem of Ebclidean 
geometry. If it is not possible to model geometric lines using finite precision, 
we must choose a plane curve to model which has some but not all the 
properties that lines have. This paper focuses on a defining property of lines 
called monotonicity. The curves modeled by the hidden variable method in this 
section satisfy weaker properties called xy-monotonicity and approximate 

L monotonicity. 

6.3. Monotonicity 

We can generalize the one-dimensional property monotonicity to two-dimen- 
sional curves and sequences of points. 
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Definition 6.1. The property u-monotonicity, where u is a nonzero direction 
vector in the plane, is defined for ordered sets of points such as curves and 
sequences. Let y(t) be a curve in the plane. The curve y is u-monotonic if the 
inner product of u and y(t) is either nondecreasing or nonincreasing with t. The 
definition for sequences of points is analogous. I 

Intuitively, this definition states that u-monotonic curves and sequences tend 
in only one direction parallel to u and do not backtrack. 

A curve or sequence can be monotonic with respect to more than one 
direction. For example, if a curve or sequence is monotonic with respect to the 
direction of the x-axis and the direction of the y-axis, then it is said to be 
xy-monotonic. It is decidable using only finite precision calculations whether a 
sequence is xy-monotonic because xy-monotonicity can be checked using only 
comparisons of x-coordinates against other x-coordinates and y-coordinates 
against other y-coordinates. Finite precision comparisons (in particular floating 
point comparisons) are always accurate. 

If a curve or sequence is u-monotonic with respect to all direction vectors u,  
then it is simply said to be monotonic. Lines are the only monotonic curves, 
and a monotonic sequence of points is always collinear. 

Finally, a curve is approximately.monotonic if it does not backtrack more 
than E with respect to any direction. 

Definition 6.2. A one-dimensional function f is approximately nondecreasing if 

s > t implies f(s) > f( t) - E .  

The definition of approximately nonincreasing is analogous. A two-dimensional 
curve is approximately monotonic if it is either approximately nonincreasing or 
approximately nondecreasing with respect to every direction vector. 

In Fig. 13 we see an example of an approximate monotonic curve which 
approximates a line. 

In order to implement the hidden variable method, we will proceed from the 
bottom up. The system design described in the next section models xy- 
monotonic curves, and the arrangements generated by this lower-level system 
satisfy only a few geometric properties. The higher-level design described in 

Fig. 13. Approximate monotonic curve. 
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the subsequent section uses the lower-level system as a subroutine. This 
higher-level system models approximate monotonic curves, and the arrange- 
ments it generates satisfy a larger set of properties included axioms and 
theorems of Euclidean geometry. 

6.4. Lower level: Modeling xy-monotonic curves 

I The system described in this section treats the input lines as xy-monotonic 
curves. The hidden variables of the problem are the unrepresented shapes of 
xy-monotonic curves which approximate the input data lines. The system 
derives vertex locations and a topological structure such that the hidden curves 
pass through the derived vertices and are arranged according to the derived 
topology. 

6.4.1. Definition: xy-monotonic arrangement 

The following formally describes a valid arrangement of xy-monotonic curves. 
It can be compared with the ideal case in Section 6.2. 

(1) As before, the edges contained by a given line form a chain from one 
boundary of the bounding box to the other. The vertices in each chain must 
form an xy-monotonic sequence of points. 

(2) Each edge maps to an xy-monotonic curve which has the same endpoints 
as the edge. 

(3) The curve belonging to an edge does not deviate by more than E from 
any of the lines in the bundle of that edge, and it does not intersect any other 
curve except at its endpoints. 

Since each line in 2 contains an unbroken chain of edges, the curves of these 
edges can be joined to form one long monotonic curve with the same endpoints 
on the boundary as the line and which stays within of the line. The value 

(XYM stands for “xy-monotonic”) can be set to twelve times the 
maximum error in the calculated distance from a point to a line. 

6.4.2. Some terminology 

For the purposes of describing xy-monotonic sequences, let us define the 
following order relations among points in the plane. Define the relations n, s, e ,  
and w, pronounced “is north of”, “is south of”, “is east of”, and “is west of”, 
respectively. 

L (x17 y M x 2 ,  Y2) iff Y 1 2 Y 2  9 

(x19 Y M X 2 ,  Y 2 )  iff Y1 S Y 2  7 

(x12 y J e b 2 ,  Y2) iff x1 =-2 7 

(x12 Yl)W(X,, y2) iff x ,  <x2 , 

The relations nw, ne, sw, and se, pronounced “north-west”, “north-east”, 
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“south-west”, and “south-east”, respectively, are formed by combinations of 
the operations above. 

6.4.3. Line resolution 

The algorithm for generating models of xy-monotonic curves is called line 
resolution. The following pseudocode works only for lines with positive slope- 
those which leave the bounding box north-east of the point at which they enter 
the box. Furthermore, the lines must be oriented so that points north or west 
of the line lie to the left of the line and points south or east of the line lie to the 
right of the line. 

In the general case, lines can be re-oriented to conform to the orientation 
condition above. The code for lines with negative slopes is analogous. Not 
included here is the method for discovering and calculating the intersection of 
negative slope lines with positive slope lines. This case is very simple to model 
because a positive slope (x nondecreasing, y nondecreasing) xy-monotonic 
curve and a negative slope ( x  nondecreasing, y nonincreasing) xy-monotonic 
curve can intersect in at most a single vertical or horizontal line segment. 

The state of the algorithm is stored in a data structure keyed by a vertex and 
a line and expressed as SIDE(V, L ) .  For each vertex V and line L ,  SIDE(V, L )  
returns a record containing a two-bit field with possible values: unknown, left, 
right, or on (left and right). The function LEFT(V, L )  gives access to the first bit 
and has value true if SIDE(V, L )  is left or on. The function RIGHT(V, L )  gives 
access to the second bit and has value true if SIDE(V, L )  is right or on. Finally, 
the function ON(V, L )  accesses the logical and of both bits, and it has value true 
if SIDE(V, L )  is on. 

The function EVAL(V, L )  evaluates the signed distance between the vertex V 
and the line L using finite precision arithmetic. In the ideal case LEFT(V, L )  
would be synonymous with a nonnegative value for EVAL(V, L ) .  However, in 
the presence of round-off error, we can only manage the following approxima- 
tion conditions. 

s 

- LEFT(V, L )  implies that EVAL(V, L )  > - sXyM, 
- RIGHT(V, L )  implies that EVAL(V, L )  < sXyM, 
- ON(V, L )  implies that (EVAL(V, L)I < cXYM. 

To these we add the following logical conditions. 

- P nw Q and LEFT( Q ,  L )  implies that SIDE(P, L )  = left. 
- P’ se Q’ and RIGHT(Q’, L )  implies that SIDE(P’, L )  = right. 

Figure 14 illustrates the rationale for these conditions. 
The following three procedures make up the line arrangement algorithm. 
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C 

Fig. 14. Logical conditions on SIDE(P, L). 
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INSERT-VERTEX(VerteX v )  
For each line L 

If there exists vertex VLEFT such that 
(V nw VLEFT and LE~(VL,FT 7 L ) )  

If there exists vertex V,,,,, such that 
(V se VRI,,T and RIGHT(VR,,,T, L ) )  

LEFT(V, L )  + true 

RIGHT(V, L ) true 
If SIDE(V, L )  = unknown 

if EVAL(V, L )  2 0 

else 
LEFT(V, L )  + true 

RIGHT(V, L )  +- true 

boolean FIND-INTERSECTION() 
{See Figure 15.) 
If there exists line L , ,  L, and vertex VI, V, such that 

LEFT(V,, L , )  and RIGHT(V,, L , )  and 
RIGHT(V, , L2)  and LEFT(V, , L,)  

{Check if intersection exists already.} 
If there does not exist vertex VI such that 

VI ne V, and VI sw V, and 
O W ,  , L,  and O W ,  7 L2) 

vertex VI = CALCULATE-INTERSECTION(L,, L,, V, , V,) 
ON(V,, L , )  f- true 
ON(VI, L,)  true 
INSERT-VERTEX(~,) 
return true 

return false 

RESOLVE-LINES(set-0f line LINES) 
{Bounding box has four lines and four vertices.} 
CREATE-BOUNDING-BOX() 
While FIND-INTERSECTION() 
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Fig. 15. Intersection condition. 

6.4.4. Discussion and proof 

The intersection condition in FIND-INTERSECTION is illustrated in Fig. 15. Lines 
L,  and L, must intersect within the rectangle with diagonal points V, and V2.  
What is more important is that even if L, and L, were replaced by xy- 
monotonic curves, the curves would still have to intersect within the rectangle. 
Incidentally, V, or V, can lie on one of the lines, but if either vector lies on both 
lines then it could act as VI. 

w e  have not seen yet how to implement CALCULATE-INTERSECTION using 
finite precision arithmetic. In most cases, the straightforward method of solving 
simultaneous line equations results in valid intersection. In the rare'case that 
this calculated intersection point ZC lies outside the rectangle, a small vertical 
(or horizontal) shift will take it to a point ZR on the boundary of the rectangle, 
as depicted in Fig. 16. The actual details of this algorithm are somewhat 
tedious, but in all cases a point ZR can be found that lies within the rectangle 
and satisfies, 

Figure 17 illustrates another type of problem we may encounter. If 
RIGHT(V, L , )  and RIGHT(V, L,)  and ZR se V ,  then we cannot set SIDE(ZR, L , )  
and SIDE(ZR, L,) equal to on. In this case we simply throw away ZR and use V 
as the vertex of intersection. 

As in the case of edge cracking, there is the question of whether the 

Fig. 16. Calculated intersection lies outside of rectangle. 
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Fig. 17. Vertex V invalidates calculated intersection ZR. 

algorithm terminates. Each intersection adds a new vertex, but there are only a 
finite number of finite precision vertex locations inside the bounding box; thus 
the process of finding intersections must stop. Of course, one can find much 
better bounds. 

The output of the line resolution algorithm is a set of values for SIDE(V, L )  
which defines a topology. To convert to the form in Section 6.4.1, we need to 
introduce edges and bundles. After line resolution, the set of vertices ON a 
given line can be ordered into a monotonic sequence. By definition, the edges 
in the topology join consecutive vertices in such sequences. For any given edge 
AB in the topology, the bundle for that edge is the set of lines L which satisfy 
ON(A, L )  and ON(B, L ) .  

Theorem 6.3. After the termination of line resolution on a set of lines, the values 
of SIDE(V, L )  define a topology. For this topology, there exist xy-monotonic 
curves which satisfy the conditions of Section 6.4.1. 

The proof of this theorem involves constructing the xy-monotonic curves 
using infinite precision calculations. The essential step of the proof shows that 
if two curves intersect, then the condition of function FIND-INTERSECTION can 
be satisfied. Since the line resolution has terminated, this condition cannot 
hold. 

6.5. Higher level: Approximate monotonic curves 

The previous section solves for the arrangement of xy-monotonic curves. This 
result is unsatisfactory for general purposes because the form of such curves 
varies with orientation, Horizontal or vertical xy-monotonic curves are much 

of the previous section allow “lines” (chains of xy-monotonic curves) to 
intersect more than once or even have sections in common. In these ways, 
xy-monotonic curves differ considerably from the lines they are supposed to 
model. A second application of the hidden variable method is necessary to 
arrive at a model which more closely matches the ideal case in Section 6.2. 

i “flatter” than those with orientation angle closer to 45 degrees. The conditions 
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The result of this higher-level design is the same as the ideal case except that 
the hidden curves are approximate monotonic curves instead of lines. Thus in 
the definition in Section 6.2 the set Y’ of hidden lines is replaced by a set ,d of 
hidden approximate monotonic curves. The only additional condition is that 
the elements of d must not deviate by more than from the lines they 
represent. 

i 

6.5.1. Tiled highways 

Using the xy-monotonic curve modeling system, this design solves a trans- 
formed problem. It replaces each line by a pair of parallel lines, each 
distant from the original. The value is at least four times the error value 

of the lower-level system. The higher-level system then solves the 2n-line 
problem using the xy-monotonic system with its smaller error value E ~ ~ ~ .  The 
resulting arrangement is a set of tiled highways, a term which is based on the 
observation that each line has become a strip cut up by intersecting strips. In 
Fig. 18 the shaded area is the tiled highway for line L of Fig. 11, and the 
polygons within the shaded area are the tiles of that highway. 

Each tile represents a region within of a certain subset of 2, and thus 
the existence of a common tile to the highways of lines L , ,  L,,  . . . , L, ,  
symbolically answers the numeric qiestion: is there a vertex within of 
these lines? The difficult numeric work has been done by the first stage. 

A partial ordering can be defined among tiles on the same highway. 

Definition 6.4. Let A and B be tiles on the highway of some line L .  Let u be the 
unit vector parallel to L.  If each vertex of B has a larger u-component than any 
vector in A ,  then B > A .  Define B Z- A as the opposite of A > B .  

The evaluation of the condition B > A  involves the finite precision vector 
inner product. Even so, this partial order is transitive. The relation A B is not 
transitive, however, but it is introduced as a notational convenience. 

Fig. 18. Tiled highways. 
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6.5.2. Paths on the tiled highways 

For each highway, we can create a path that “walks” from one end to the 
other. This path is purely symbolic (its vertices have no defined numerical 
location). We can use the following operations to create such paths: 

- Split an internal edge of the highway at a new vertex. 
-Add an edge joining two such vertices which are on the boundary of a 

common tile. 

Vertices created by the crossing of paths (from different highways) can be 

The paths on the highways must satisfy the following rules: 

(1) A path does not leave its highway, and it crosses tile A before tile B only 

(2) The path does not cross any edge more than once. 
(3) The path does not cross itself. 

The second condition assures that there are only a finite number of such 
paths. Actually, a proof is required that the second condition does not 
eliminate any meaningful paths; in the case of line modeling it does not 
because pairs of lines do not cross more’than once. The proof is not included 
here. Figure 19 shows a close-up of four paths and the intersections between 
them. 

6.5.3. Converting to standard form 

As one would expect, the paths correspond to approximate monotonic cumes, 
and the points at which paths cross are the vertices in the topology. All other 
vertices of the tiled highway “scaffolding” (to mix a metaphor) are ignored. 

reused. At most four edges can meet at any other type of vertex. 

i f A S B .  

/ 

Fig. 19. Constructing paths on the tiled highways. 
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The finite precision location of each topological vertex is not crucial, but one 
can always find a point inside the appropriate tile by calculating the mean of 
the tile’s vertex locations. The edges of the topology join consecutive vertices 
on the paths. One question remains: how can more than one line in 2 map to 
the same path? It turns out that if several lines are close, then it is possible for 
one path to lie within the highways of all of them. If such a path exists, it can 
represent all these lines. 

1 

1 

Theorem 6.5. For each set of paths, there exist an set of ideal vertex locations 
and approximate monotonic curves that satisfy the topology of the paths. For all 
lines represented by a path , the curve corresponding to that path does not deviate 
by more than from any of these lines. 

This result is pretty obvious because we have constrained each path to stay 
within of its lines and to pass through tiles in a way that does not violate 
the partial ordering on tiles. 

6.5.4. Satisfying other properties 

We can enumerate all sets of paths that lead to approximate monotonic curve 
models. All of these have planar topology, but among these we can choose 
those which satisfy the condition, two paths cross at once, which is analogous 
to the axiom of geometry that two lines intersect in at most one point. We can 
choose to satisfy other results such as Desargue’s or Pappus’ theorems if we 
wish. 

Even after satisfying various geometric properties of lines, there will still be 
a number of possible sets of paths to choose from. Among these we can choose 
the one which minimizes the size of d first and minimizes the number of 
vertices second. If more than one set of paths is minimal, we can estimate the 
“strain”, maximum or total deviation from the lines in 2, and choose the set of 
paths that minimizes this deviation measure. 

The combination of the two stages of the hidden variable method can thus 
generate a topological arrangement which satisfies a set of useful geometric 
properties and minimizes the topological complexity in doing so. 

7. Conclusion 

The methods of data normalization and the hidden variable method both allow 
correct finite precision implementations which satisfy a set of useful properties. , 
In Section 5 we saw how a polygonal region could be maintained in a 
normalized state, with edges and vertices separated by a lower bound distance 
E ,  so that numerical tests would yield correct topological results. The modeling b 

system described in that section generates only valid planar polygonal regions 
as the result of operations such as union and rotation or translation in the 
plane. Unfortunately, the normalization step may displace an edge many times 
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the distance E ,  and thus normalization can introduce a large deviation from the 
true infinite precision result. 

The hidden variable method described in Section 6 models approximations 
to geometric lines. These approximations deviate at most E from the lines they 
represent. It is a small step, involving only symbolic calculations, from an 
algorithm for calculating arrangements of lines to a polygonal region modeling 
system. Such a modeling system would only introduce a small error dependent 
on the number of lines, not the number of operations. In addition, it would 
maintain useful properties such as the collinearity of widely separated vertices. 

Normalization has the advantage that it is simpler, but it has the potential to 
introduce more error and it does not retain as many properties of the ideal 
implementation. The hidden variable method allows more properties to be 
retained, and it is theoretically interesting in the manner in which it reasons 
about unspecifiable values. The system in Section 5 is suitable for modeling the 
growing and shrinking of regions which represent components in the fabrica- 
tion of VLSI devices. For line-oriented problems, such as the design of 
buildings and bridges, the methods of Section 6 are more suitable. The 
normalization method is also very difficult to generalize to more complex 
domains such as objects with curves or curved surfaces. In the future, I will 
apply the hidden variable method to the problem of modeling these more 
complex objects, in particular, planar objects bounded by conic sections and 
solid objects bounded by quadric surfaces. 

1 
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