AN INCONSISTENCY SENSITIVE ARRANGEMENT
ALGORITHM FOR ALGEBRAIC CURVES

VYictor Milenkovic
Elisha Sacks

CSD TR #04-017
June 2004

An inconsistency sensitive arrangement algorithm for
algebraic curves

Victor Milenkovic Elisha Sacks
University of Miami Purdue University

Abstract

We present a robust arrangement algorithm for algebraic curves based on floating point
arithmetic. The algorithm generates a planar arrangement that is realizable by curves that are
close to the input. We bound the running time and error in terms of the number of inconsisten-
cies in the input. An inconsistency is a triple of monotonic curve segments that are assigned a
cyclic vertical order over an open interval by the numerical algorithms. The number of vertices
in the output is V = 2n + N + min(3kn, 0.5n2%) and the running time is O(V log ») for alge-
braic curves comprised of n monotonic segments with /V intersection points and k € O(n?)
inconsistencies. The maximum distance between the realization curves and the input curves
is € + 3ke where ¢ is the curve intersection accuracy. We show experimentally that k is zero
for generic inputs and is tiny for highly degenerate inputs. Hence, the algorithm running time
on real-world inpuls equals that of a standard sweep and the realization error equals the curve
intersection error. The mean/max e values are 10~12/10710 for curves of degree 40.

1 Introduction

We present a robust arrangement algorithm for algebraic curves based on floating point arithmetic.
An algebraic curve is the zero set of a polynomial F(z, y) with integer coefficients. A set of al-
gebraic curves partitions the zy plane into an arrangement: a combinatorial structure comprised
of cells, components of the plane away from curves; edges, smooth curve components away from
other curves; and vertices, non-smooth curve points or curve intersection points. Computing ar-
rangements is a core computational geometry task with diverse applications.

Arrangements can be computed by sweeping n curves with N intersections in O((n+N) logn)
time. This runtime bound assigns unit cost to geometric operations, such as partitioning a curve
Into segments, intersecting two curves, and sorting vertices along an axis. The operations reduce
to constructing algebraic numbers and computing the signs of polynomials at these numbers. The
classical techniques for manipulating algebraic numbers incur a computational cost that grows
rapidly with degree and bit complexity. The same problem arises in incremental insertion or in any
other arrangement algorithm.

The challenge is to compute arrangements quickly despite their algebraic complexity. One
research direction is to employ custom geometric algorithms, constructive root bounds, and floating
point filters. This approach has led to practical arrangement algorithms for lines, circles, conics,
and cubics. We present an altemate research direction that replaces algebraic computation with
numerical computation.

We employ a sweep algorithm to compute the points where curve segments cross and the
vertical y-order between crossings. The algorithm is purely combinatorial, except for calls to a
numerical crossing module that computes the crossings of a pair of segments by the homotopy
method: a proven algorithm that is orders of magnitude faster than algebraic computation and
whose error is tiny. The only other numerical operation is comparison of floating point numbers,
which is exact and has unit cost.

The drawback of the numerical approach is that even a tiny error in the crossing module output
can lead to an inconsistency among the pairwise vertical segment orders. Inconsistency means that
the pairwise orders are not extensible to a linear order, hence are not realizable by any input. The
canonical example is three segments in cyclic order over an z-interval. When the standard sweep
encounters inconsistencies, it can output an arrangement with a non-planar topology or a large
numerical error. Our algorithm solves this problem by detecting and correcting inconsistencies. It
outputs consistent vertical orders that are correct for a set of realization curves that are close to the
input curves.

Differences between the computed and true vertical orders are inconsequential. Suppose the
input models an object with accuracy «: the model is built from a prototype with a-accurate
measurements or the object is manufactured from the model with an @-accurate process. If the
realization curves are nearer than « to the input curves, our algorithm is indistinguishable from an
exact algorithm because our input is indistinguishable from an input for which our output is exact.
We show that the realization curves are nearer than 1070 units to the input, which is smaller than
any realistic « value.

Degenerate inputs are a concemn in amangement computation. Degeneracies occur when com-
binatorially distinct entities coincide geometrically, for example three curves meet at a point. They
complicate the task of constructing a cell arrangement from the sweep output, which is straightfor-
ward for generic input. This paper describes our sweep algorithm for generic input; a companion

2

paper describes an implemented arrangement algorithm that handles all degeneracies.

The advantage of the numerical approach is good asymptotic performance with small constant
factors that are independent of degree and bit complexity. The number of vertices in the output
is V = 2n + N + min(3%kn, 0.5n?) and the running time is O(V log n) for curves comprised of
n monotonic segments with N intersection points and & € O(n?) inconsistencies. The maximum
distance between the realization curves and the input is € + 3ke where ¢ is the curve intersection
accuracy. We call the algorithm inconsistency sensitive because the running time and the accuracy
are expressed in terms of k£ with optimal values at & = 0. We show experimentaily that & is zero
for generic inputs and is small for degenerate inputs. Hence, the running time on real-world inputs
equals that of a standard sweep and the realization error equals the curve intersection error. The
mean/max e values are 10712/107% for curves of degree 40.

The rest of the paper is organized as follows. Section 2 surveys prior work on arrangement
algorithms. Section 3 specifies the input to our sweep algorithm and sections 4 and 5 describe
the algorithm. Section 6 explains how to convert algebraic curves into the algorithm input format.
Section 7 presents empirical measurements of & and e. Section 8 discusses our results.

2 Prior work

Halperin [6] surveys arrangements with a focus on linear objects. Yap [20] surveys robust compu-
tational geometry with a focus on exact methods.

Keyser et al [9] compute arrangements of non-degenerate rational parametric curves with an
O(n?) algorithm. Arranging 12 curves of degree at most 4 with 80 bit coefficients takes 1142
seconds on a 400MHz Pentium 2. Halperin and Leiserowitz [7] compute arrangements of circles
by a perturbation method.

LEDA [10] and CGAL [4] compute arrangements of line segments via generalizations of Bent-
ley’s sweep algorithm that employ filtered rational arithmetic. Wein [18] extends the CGAL ar-
rangement algorithm to conics. Arranging 20 random conics takes 2 seconds on a 450MHz Pen-
tium 2. Berberich et al [2] extend the LEDA arrangement algorithm to conics. Arranging 60
random conics with 50 bit coefficients takes 49 seconds on a 846MHz Pentium 3. Eigenwillig et al
[3] extend the LEDA arrangement algorithm to cubics. Armranging 60/90/120/250 random cubics
with 100 bit coefficients takes 20/60/110/180 seconds on a 1.2GHz Pentium 3. Geismann et al [5]
compute arrangements of special quartics (used to compute arrangements of 3D quadratics) with
a sweep algorithm. Arranging 3 quartics with 30 bit coefficients takes 186 seconds on a Pentium
700. Wolpert [19] computes arrangements of nonsingular algebraic curves by an unimplemented
sweep algorithm.

Mourrain et al [16] compute arrangements of 3D quadratics by an unimplemented plane sweep
algorithm. Geismann et al [5, 17] compute arrangements of 3D quadratics. Keyser et al [8] com-
pute arrangements of low-degree sculpted solids without degeneracies.

3 Input specification

The mputs to the sweep algonithm are curve segments and a crossing module. We develop an al-
gorithm for unbounded curve segments in Section 4 and extend it to bounded monotonic segments

in Section 5. This section specifies the algorithm inputs.

3.1 Segments

A curve segment is a connected submanifold of the xy plane that is the graph of a continuous
function y = f(z) : I — R with I an interval. Let min.(f) = min(X(f)) and max.(f) =

max{I{f)). An unbounded segment has min,(f) = ~co and max,(f) = oo, a semi-bounded
segment has finite max.(f), and a bounded segment has finite min,(f} and max.(f).
The crossing module takes segments f and g and returns a crossing list (f,¢,71,72, ..., Tm)-

The r; are the crossing intersection points where f(r;) = g(r;) and f(z) — g(z) changes sign. The
function sgn(f, g,) expresses the sign of f(z)—g(z) for z € I(f)NI(g), equivalently the vertical
order of f(z) and g(z), according to the crossing list. Its value is —1 forz < r, Oforz =1, 1
for vy < x < ry, and so on. It is evaluated in logm time by binary search of the crossing list. If
f(z) > g(z) for = < 1y, the module returns the crossing list {g, f,71,72, .. .,Tm). In this case, we
evaluate sgn(f, g, z) by the rule sgn(f, g, x) = —sgn(g, f,).

The function sgn_ {f, g,) denotes the right limit of sgn(f, g,x) at z = r, and sgn_(f, g,7)
denotes the left limit. If = is not a crossing, sgn(f, g, z} = sgn, (f,g,z) = sgn_(f,g,z). Like
sgi, sgn, and sgn_ are evaluated in log m by binary search of the crossing list.

Inconsistency The crossing module is inconsistent for segments f, g,k at £ when it outputs
crossing lists for which sgn (f, g, z) = sgn_ (g, h, x) = sgn, (&, f, 7). The segments are in cyclic
vertical order according to the crossing lists, whereas the actual segments are linearly ordered.
The inconsistency occurs throughout the open interval (r, s) that is bounded by the closest cross-
ings/endpoints r < z and s > z in the three lists. We call such an interval an inconsistency. The
sweep algorithms in Sections 4 and 5 remove inconsistencies by adding and deleting crossings.

Assumptions
1. Crossing list construction is linear in the maximum number of crossings.

2. The crossing module is strongly e-accurate according to the following definition. Qur formal
results are independent of e: € is not a input parameter to our algorithms, and they are correct
for any value of e. They are useful because ¢ is tiny in practice.

Definition 3.1 Ler curves f,g have crossings r1,7s, ..., m and a corresponding sign function
sgn(f, (1B .‘I‘) = —Sgll(g, f: 3’)

1. sgn is 6,~accurate at z if sgn(f, g,) < 0 implies f(z) — g(z) < §,.

2. sgn is strongly (6., d,)-accurate if it is d,-accurate for all £ € [ry + 8,741 — &82) for
1=0,1,2,...,m, where rg = min(I{ f) NI(g)) — é; and 71,11 = max(I(f) N I(g))} + &-.

3. sgn is strongly §-accurate if it is strongly (65, 6,)-accurate and § = 6, + 6,

The notation {r; + d,7;+1 — 6] is the interval [r;,7:1,] shrunk by § > 0 from each end, but if
r; + & > 1y — 4, it denotes the single value (7; + r1)/2. This restriction prevents an accurate
crossing module from inserting spurious pairs of nearby roots in its output.

Crossing lists cannot model curves that intersect tangentially or over an interval. Neverthe-
Iess, these cases are allowed in the input. The crossing module maintains e-accuracy by omitting
tangential intersections and assigning non-zero signs on intervals of intersection.

3.2 Monotonic segments

A segment is monotonic when f : I(f} — L,(f) is bijective, where I.{f) (formerly I(f)) and
I,(f} denote the domain and range. Let min,{f) = min(IL,(f)) and max,(f) = max(I,(f)). The
segment connects two diagonal vertices of its bounding rectangle rect(f) = I.(f) x1 (f)- Anin-
creasing segment connects tail(f) = (min,(f), min,(f)) to head(f) = (max.(f), max,(f)) and
a decreasing segment connects tail(f) = (min;(f), max,(f)) to head(f) = (max.(f), min,(f)).

The monotonic segment crossing module takes f and g and retums a list of crossing points

T1,72,...,Tm € rect(f) N rect(g) whose 2-coordinates and y-coordinates are the crossing val-
ues for crossing lists in each coordinate direction. Let {f, g, 714,725, - - .,Tmg) be the x crossing
list. If f is increasing, the y crossing list is {g, f, Tyyy Ty, - -2 Tmy). If f is decreasing, it is

(f:9, Tmy Tm—1ys - - -, T1y). Sg0(f,g,) and sgn (f, g,y) are the sign functions of the z and y
crossing lists.

Suppose p is an endpoint of f. Let g be another segment such that I.(g) properly overlaps
I:(f) and p, € L.(g). Using sgn_, we can tell whether p is above or below g. If p = tail(f),
examine sgn,. , (f, g,pz), and if p = head(f), examine sgn__{(f, g, p;). The value —1 mean p is
below, and the value +1 means p is above. Similarly, we can use sgn,, to determine if p is left or
right of g such that p, € I,(g). If p € rect(g) and g is increasing, p is above g if and only if p is
left of ¢ and similarly if g is decreasing and/or p is below.

Assumptions
1. Crossing list construction is linear in the maximum number of crossings.
2. The crossing module is strongly e-accurate in z and y.

3. (General position) No three segments share an endpoint. No endpoint lies on another seg-
ment. If two segments share a tail p, no segment endpoint g can satisfy g, < p; and g, = p,.

4. If p is an endpoint of f and g, the f,h and g, h crossing lists agree on the left/right and
above/below status of p with respect to A.

5. If min,(f) = ming(g) and tail(f), < tail(g),, then sgn_, (f, g, min.(f)) = —1, and
similarly for max, and for the y-direction.

4 Unbounded segments

This section presents a sweep algorithm for unbounded curve segments, which need not be mono-
tonic. The algorithm uses a vertical sweep line + = r and three data structures.

5

b r

a

Figure 1: Sample sweep events at z = 7.

1. alist S of segments called the sweep list representing the order of the segments from lowest
to highest along the sweep line. S is implemented as a red-black binary tree whose inorder
traversal is the list order. The successor and predecessor of f in S are denoted suce(f) and

pred(f).

2. a priority queue P of events ordered by x: insert(f,r), insert f into S atz = r, or
swap(f,g,7), swap f with g in S at z = r. P is implemented as a standard heap data
structure with ties (equal) broken arbitrarily.

3. aset C of output crossing lists. C is implemented as a hash tree with key an unordered pair
of segments.

For sweep line = =, S is locally consistent if sgn (f, g,) = —1 for each pair f, g € S such that
g = succ(f). This invariant holds after all events at 7 are processed.

The algorithm is as follows. Initialize P with insert(f;, —oo) fori = 1,2,...,n. Initialize S
and C to be empty. While P is not empty, dequeue an event and process it.

insert(f, r}: Set the sweep line to x = 7 and insert f into S. If S is empty, set root(S) = f,
else if sgn (f,root(S),r) = —1, insert f recursively into left(S), else insert f recursively into
right(S). Rebalance S as necessary. If f is not the first element of S, then pred(f), f is a newly
adjacent pair. If f is not the last element of S, then f,succ(f) is a newly adjacent pair. For each
newly adjacent pair «, v, add {u, v) to C and invoke the crossing module for u, v to obtain the input
crossing list {u,v,71,72,...,7m). Enquene into P each comesponding input swap event for u, v:
swap(f, g,m1), swap(g, f,72), swap(f, g, 73), etc.

swap(f, g,7): Set the sweep line to £ = 7 and check if g = suce(f) in S. If not, discard this
event. Otherwise, swap the positions of f and g in S. Look up the crossing list for f, g in C and
append 7 to it. If g is not the first element in .S, the pair pred(g)}, g is newly adjacent. Similarly,
fysuce(f) if f is not the last element. For each newly adjacent pair u, v, if C' does not contain
a crossing list for u, v, add {u, v} to C, invoke the crossing module on u, v, and enqueue into P
input swap events for u,v with r; > 7. If sgn_(u,v,7) = 1 (&, v not locally consistent}, enqueue
swap(u, v, 7) into P. We call this event an immediate swap.

Figure | illustrates the algorithm, The S order is a, b, ¢, d when swap(b, ¢, r) is processed. The
swap is executed because ¢ = succ(b), 7 is appended to the (b, ¢} crossing list in C, b and ¢ are
swapped in S, and the S order becomes g, ¢, b, d. The freshly adjacent pairs are a, ¢ and b,d. An
immediate swap(b, d,7), is enqueued because sgn (b, d,r) = 1. These segments were inserted
in S in sgn order and crossed at 7' < r, but the crossing module calculated » < 7/, so their first
adjacency occurred after they should have swapped. Regular swap(d, b, s) and swap(a, ¢,) events
are also enqueued. The immediate swap is executed next, then the swap at s, then the swap at ¢.

After the sweep is complete, the state of S and C corresponds to a new crossing module. To
obtain the crossing list for f, g, look up the pair in C' and return its entry if it exists. If f, g does
not have an entry in C, retumn {f, g) if f comes before g in S and (g, f} if it comes after. Let sgn’
be the new output sign function for this new crossing module.

4.1 Correctness and Complexity

Lemma 4.1 Immediately after insert(f,r) is executed, f is locally consistent with respect to its

neighbors: sgn_(pred(f), f) = —1if f is not first and sgn (f,suce(f)) = —1 if f is not last.
Immediately after swap(f, g,)} is executed, sgn_ (g, f,r) = —1.

Proof. The tree insertion preserves local consistency because if f is not the first element in S,
then pred(f) is the root e of the lowest subtree S* containing f in right(5"). Since the algorithm
inserted f in right(S), sgn(f, e,r) = 1 and thus sgn(e, f, 7} = —1. Similarly, the successor.

The sign of sgn, (f, g, x) alternates at crossings of f, g: sgn, (f,g,71) = 1, sgn,(f,g,72) =
-1, ..., and hence sgn, (g, f,71) = sgn.{f,g,72) = sgn(g, f,73) = --- = —1. Therefore, the
input swaps swap(f, g,71), swap(g, f,72), swap(f,g,73), ... satisfy the claim. An immediate
swap swap(f, g,r) is enqueued only if sgn (f,g,7) = 1 and therefore sgn_ (g, f,7) = —1. D

Let S(z) denote the the state of S after all events at r < z are processed but before any event
at s > =z is processed.

Lemma 4.2 S(z) is locally consistent for all .

Proof. It suffices to consider z = r at which an event occurs. Consider the different ways a
pair f, g can become adjacent in S. By the previous lemma, the events insert(f,), insert(g, r),
or swap(g, f,r) have sgn (f,g,7) = —1 as a post-condition. If f,g became newly adjacent
as a result of another event at £ = r, consider the last time they became newly adjacent. If
sgn(f,g,7) = 1, an immediate swap swap(f, g,r) would have been enqueued and eventually
processed, making the order g, f instead of £, g. Therefore, sgn(f, g,r) = —1.

Finally, if f, g were adjacent prior to any event at ¢ = r being processed, assume inductively
that S(g) is locally consistent, where g < r is the previous event value. The pair f, g cannot have
an input crossing at r; € (g, r] because the algorithm checks every newly adjacent pair for future
swaps and engueues them. The swap swap(f, g, ;) would have been executed and made the order

g, f instead of f,g at z = r. Therefore, sgn,(f,g,7) = sgn(f,g,7) = sgn,(f,9,q). By the
inductive assumption, sgn {(f,g,¢g) = —1. O

Lemma 4.3 sgn!, (f, 9,2) = —1 if and only if f precedes g in S(z).

Proof. If the pair f, g has no entry in C, the output crossing list is determined by their order in
S(oo), the final S. Since f, g does not appear in C, they did not swap, and so their order in S(z) is
the same.

Suppose f, g has the entry {f,g,71,72,...,7m) € C. (If {9, fi71,72,...,Tm) € C, switch
the roles of f and g and use the fact that sgn’(f, g, z} = —sgn'(yg, f,z).) Suppose ry,...,7 < z
and £ < Ti41,...,Tm. By definiton, the value of sgn’(f, g,z) is —1 if 4 is even and 1 if ¢ is odd.
However, each r; corresponds to a swap in 5 executed at = = r;. Therefore, f comes before g in
S(x) if and only if ¢ is even. O

Lemma 4.4 If sgn (f,g,2) # sgn!, (f, g,%), there exist segments a,b, ¢, d such that f,a,b and
g,c,d are inconsistent at z.

Proof. Suppose sgn, (f, g,z) = 1 and sgn’, (f, g,) = —1. By the previous lemma, f comes
before g in S(z). Let L be the sublist of S{z) from f to g. By Lemma4.2,ifh € Land i # g,
then sgn . (h, suce(h),z) = —1.

Repeat the following step: if the neighbors of some h € L, h # f and h # ¢, satisfy
sgn, (pred(h), suce(h), z) = ~1, remove h from L. (Here we are calculating pred (%) and succ(h)
relative to current state of L.) Do this in any order until there are no such h. Every three con-
secutive elements in L must now be inconsistent at . We call such an L a minimal locally con-
sistent list from f to g at . Lemma 4.2 implies that L contains three or more elements because
sgn, (f,9,2) = 1 and f precedes g in L. The first three elements, f,a, b are inconsistent at z, as
are the last three elements ¢, d, g (although these might be the same three elements if [L| = 3). O

Theorem 4.5 1) The number of segment endpoints (at Z-00) plus output segment crossings is V =
2n + N + min(3kn,0.5n%) and the running time is O(V log), where N is the number of input
crossings and k = O(n®} is the number of input inconsistencies. 2) The output is consistent. 3) If
the input has no inconsistencies, then sgn’ = sgn.

Proof.

1) There are n insert events and N input swap events. The next paragraph shows that at most V'
events are executed, as opposed to discarded. Since each executed event can enqueue no more than
two immediate swap events, the total number of events processed is n + IV -+ 2V < 3V. Therefore,
there are O(V') tree and queue operations, for a total running time of O(V log n).

All n insertions are executed. A pair f, g with input crossing list {f,g,71,...,7sm) can swap
at most once per interval [—oo, 71}, [r1,72), - - -, [Tm, 00) because sgn (f, g, z) is invariant on each
interval. If a swap is executed, sgn, will have the correct value, so another swap will not be
enqueued in the interval. Nominally, f and g should swap m times, but if they have an extra
swap in [—c0, 1), then ¢ must come before f in S(—o00). By Lemma 4.3, sgn’, (g, f, —00) = —1,
but according to the input crossing list, sgn, (g, f, —co) = 1. By Lemma 4.4, there must be an
inconsistency involving f. Each of k inconsistencies involves three segments, and each segment is
inn — 1 pairs. Therefore, there are at most 3k(n — 1} extra swaps. Other the other hand, there are
no more than n{n — 1)/2 pairs. Therefore the number of extra swaps is at most min{(3kn, 0.5n2),
and the total number of executed events is n + N + min(3kn, 0.5n%).

There are O(n®) triples of segments. If the maximum number of crossings per pair is m, there
are O((nm)?) possible inconsistencies, since each inconsistency occurs over a maximal interval
that is free of f, g, h crossings. We assume that m is a constant to obtain the simplified result
k = O(n®).

2) Given z and and a triple of segments f, g, h, suppose sgn’(f, g, z) = sgn’(g, h,) = —1. By
Lemma 4.3, f precedes g and g precedes h in S(z). Therefore f precedes b, and sgn’(f, h, z) =
—1. Therefore, sgn’(h, f,z) # —1, and there is no inconsistency.

3) If sgn # sgn’, there exists = and segments f, g such that sgn(f, g, z) # sgn’(f,g,2). By
Lemma 4.4 there must be an inconsistency. The claim is the contrapositive. O

4.2 Accuracy

The input crossing module is assumed strongly e-accurate according to Definition 3.1. The output
is trivially strongly e-accurate when k& = 0 by Theorem 4.5. It might be possible to prove that sgn’
is always strongly d-accurate for small 4, perhaps O(ke). We prove a weaker claim: if the input
is strongly accurate for small ¢, the output is weakly accurate for small §, as defined below. This
claim suffices for our main purpose, which is to prove realizability.

Definition 4.1 Let segments f, g have crossings r1,7a, ..., 7 and a corresponding sign function
sg(f, g, z).

1. sgnis weakly (4., ,)-accurate iffor all z € I{f)N1(g) there exists =’ such that |z’ —z| < &,
and sgn is d,-accurate at x' (Definition 3.1, Part 1).

2. sgn is weakly é-accurate if it is weakly (8, 0,)-accurate and § = 6, + 6,

Strong (4., 6,)-accuracy implies weak (., 8,)-accuracy because each z € [ry, ri1,] lies within &,
of some z' € [r; 4 J, 741 — &;). The converse is false, hence the terms strong and weak.

Theorem 4.6 If sgn is strongly e-accurate with k > 0 inconsistencies, sgn’ is weakly € + 3ke-
accrrate.

Proof. Suppose sgn'(f,g,z) = —1 butsgn(f,g,z) =1. Let L= {(hy = f, hg, ha,... .y = g)
be a minimal locally consistent list from f to g as constructed in the proof of Lemma 4.4. Suppose
« is far from any crossing. Since h;(z)—hi;1(z) < eforl < i < [-1, itfollows that f(z)—g(x) =
hi(z) — hi(z) < (I — 1)e. Now, every three consecutive segments in L are inconsistent. Therefore
k2> 1—2and ({ — 1)e < ¢+ ke. Therefore, sgn is weakly (0, € + ke)-accurate at z.

- 'This proof fails when z is near one of the boundaries of an inconsistency. Let [rimin, max] be
an interval of inconsistency. We need to find an £’ < z that is near z and that avoids the intervals
["min: T'min + €] @nd [7nae — €, Tmax] for each inconsistency. The combined length of the excluded
intervals is 2ke, so z’ can be chosen within 2ke of z.

Ifsgn(f, g,«') = 1 and sgn’(f, g,2') = —1, the error at =’ is 8, = e+ ke by the argument in the
first paragraph, since 2 is far from any relevant crossing. From the previous paragraph, §; = 2ke,
and sgn’ is weakly (2ke, € + ke)-accurate.

If sgn(f, g, z") = —1, there exists = within ¢ of 2’ such that f(z)—g(z) < € < ke, since k > 1.
It follows that [z” — z| < |2” — 2’| + |2’ — 2| < €+ 2ke. So sgn’ is weakly (e + 2ke, ke)-accurate.

If sgn’(f, g,2") = 1, there must be an event swap(g, f,7) for 2’ < r < =z, which implies
that sgn, (f, g,7) = —1. Move =’ just to the right of r and apply the result of the previous para-
graph. If =’ were greater than z, this reasoning would not work: swap(f, g,) does not imply that
sgn_(f,g,7) = —1 because the algorithm cannot advance crossings, just postpone them. [

4.3 Realizability

Let dist(p, f) denote the distance from point p to segment f: the minimum over z of |p—(z, f(z))|.

Definition 4.2 Given a segment f, real z, and § > 0, define,

near(f,z,8) = {y|dist{(z,vy), f) < 6}
below(f,z,6) = near(f,z,8) U[—oo0, f(z)],
above(f,z,8) = near(f,z,8) U[f(z),o0]

In effect, near(f, x, §) denotes the interval of i values near f(z), taking into account the slope of
f: asteep segment will have a longer y interval near it.

Definition 4.3 Given a sign function sgn(f, g,) on segments f and g:
1. sgn is é-realizable at x if sgn(f, g,) < 0 implies above(f, z, 8} N below(g, =, 8) # B;

2. sgn is ¢-realizable if sgn(f, g, x) is 8-realizable for all x.
Lemma 4.7 Weak (8., 6,)-accuracy implies 8, + 6,-realizability.

Proof. Suppose sgn(f,g,z) < 0, and let z’ satisfy the definition of weak (4, é,)-accuracy.
The set of points {z'} x near(f, 2, §,) lies within §, of f. The set of points {z} x near(f,z’, ,)
is |z — 2’| < 4, to the left or right and therefore lies with é; + 4, of f. Hence,

near(f,z',4,) C near(f,z,d: +).

It follows that,
above(f,z',6,) C above(f, z,d; -+ 4,),

and similarly for below and for g. We have f(z'} € near(f,z',4d,) C above(f,z',d,) by the
definition of near and f(z') € below(g,z’,d,) by the definition of (6., ,)-accurate. Therefore,
above(f,z', 8,) Nbelow(g,z’, ,) # §. By the subset relationships shown above, above(f, z, §,. +
d,)} Nbelow(g,z,d. + 4,)) # 0. D

Theorem 4.8 Suppose sgn is consistent and é-realizable at x for segments g1, 4ga, - - -, gn SHch
that sgn(gi, 95,2) = ~1for1 < i < j < n There existy; < y2 < -+ < yu such that for
1 <i<j<ny € below(g;, z,6) and y; € above(g;, =, d).

Proof. For1 <1 < n, define

h=i j=n
Y: = [} above(gn, z,8) N () below(g;, z,).
h=1 =i

The set Y; is an intersection of intervals, and each pair of intervals has non-empty intersection for
the following reasons. A pair of above intervals have non-empty intersection, and similarly each
pair of below intervals. By definition of near, above(g;, z, 8) Nbelow(g;, z, §) = near(g;, z, §). By
definition of d-realizable, for h % j, above(gs, z,8) N below(g;,z, §) # 0.

Since each pair of intervals intersects, all pairs must have a common element (interval version
of Helley's theorem), and Y; is non-empty. Let i; = min(Y;). These y; satisfy the final clause
of the theorem. All we need to show is that y; < ;). However, the construction of Y;,; has
below(g:11, z, &) replaced by above(g;11, z, §), which cannot decrease the minimum. O

10

Definition 4.4 An x-monotonic curve is a continuous curve whose intersection with each vertical
line x = a is either a single point or, for a finite number of vertical lines, a vertical line segment,
pq with pz = gs.

Just as a curve segment is equivalent to a continuous function ¥ = f(z), an x-monotonic curve
is equivalent to a piecewise continuous function y = f(z) whose discontinuities are filled in with
vertical lines segments.

Definition 4.5 A set fl, fo, ..., fn of x-monotonic cirves realizes a sign function sgn if for 1 <
i < j < n and for every z for which f;(z) and f;(z) are continuous the following holds:

sgu(fi, fj,2) < 0 implies fi(c) < fi(z) and sgn(f;, f;,x) > O implies fi(z) > fi(z).

The x-monotonic curves cross where sgn says they do, but they can overlap along a vertical line
segment at the crossing.

Theorelp 4:9 Letsgn on fr, fo,..., fn be consistent and d-realizable. There exist x-monotonic
CHrves fl,.’ fos ..., fu that realize sgn such that f; lies within 8 of f, for 1 < i < n (for all z,
dist((z, fi(x)), fz) < 6).

Proof. Given a curve g, we state as mathematical fact that the set of points

{r|p € below(g) and dist(p, g) =}

is a continuous curve: the lower J-level set of g.

For each z not a crossing, f(z) takes on the value of y; given in Theorem 4.8, where f = g; (f
is the ith curve in the vertical order at z). We claim that the resulting function is continuous away
from crossings. The construction of the lemma sets f (z) equal to upper envelope (maximum)
of lower é-level sets of g3, 492,...,9;. As long as f = g; does not cross another curve, the list
g1, 92, - . -, §i—1 might change order, but the set gy, gs, . - ., g; will stay the same. The maximum of
a set of continuous functions is continuous.

At a crossing = = 7 (indeed at any z), the limits f_(r) and f, (r) of f(z) from the left and
right both lie in above(f,r,8) and below(f,r, d). Therefore they and the interval between them
lies in near(f, r, §), and thus all of f (even its vertical segments) lie within § of f. O

Corollary 4.10 The output of the sweep algorithm is a crossing module for a consistent sign func-
fion realized by x-monotonic curves fi, fa, ..., fy that lie with e + 3ke of f1, fa, ..., fu.

Proof. Part 2 of Theorem 4.5 implies that the output sign function is consistent. Apply Theo-
rem 4.9 to the results of Theorem 4.6 and Lemma 4.7. O

The realization curves have vertical segments, whereas the input curves are monotonic in z.
There is no geometric significance to vertical segments. Moreover, the sweep algorithm applies to
x-monotonic curves with minor changes. Although the realization curves in the proof overlap over
short intervals, this overlap is eliminated by a simple perturbation.

11

5 Bounded segments

This section describes a sweep algorithm for (bounded or unbounded) monotonic segments that
matches the performance of the unbounded segment algorithm. Section 5.1 extends the sweep to
semi-bounded segments. Section 5.2 extends it to bounded segments, but without an error bound.
Section 5.3 derives an error bound for specialized bounded segments that have a tree structure.
Section 5.4 handles monotonic segments by combining these results.

5.1 Semi-bounded segments

The unbounded segment sweep extends to semi-bounded segments with the following changes.

Initialization Add events remove(f;, max.(f;)): remove f; from Satz =rforl <i < nto
the initial state of P. Ties are broken arbitrarily, except that removes come before swaps.

Execution Upon dequeuing remove(f, 7) from P, delete f from S. If e = pred(f) and succ{f) =
g in S prior to this deletion, e and g become freshly adjacent. If either max,(e) = r or max,(g) =
r where 7 = max.(f), nothing needs to be done because an upcoming remove event will remove
one of these segments. Otherwise, treat the freshly adjacent pair the same as those arising from

swaps.

Correctness and Complexity During the sweep, the n additicnal remove events create up to n
additional newly adjacent pairs, which are treated as in the original algorithm. Therefore, there are
no additional crossings and the running time is still O(V log n).

Accuracy The proof of accuracy in Theorem 4.6 employs shifts to the left, which presents no
problems for segments whose domains are only bounded on the right.

5.2 Bounded segments

The algorithm for semi-bounded segments extends to bounded segments.
Initialization No change.

Execution Ties are broken by processing inserts after swaps and removes. The sweep list S is
represented as a persistent binary tree. When f, g lack an entry in the output C, their crossing list
is constructed based on their initial order at z = max(min.(f), min;(g)), which is obtained from
S in log n time.

Correctness and Complexity The proofs of correctness and complexity do not depend on hav-
ing all insertions at z = —oo, and therefore they hold as before.

12

Figure 2: Branching segments.

Accuracy The proof of accuracy fails when the leftward shift reaches the left endpoint of a
bounded segment. As far as we know, the numerical error of f with respect to ¢ at £ = min,(f)
may be unbounded, at least for a short z interval.

5.3 Branching segments

Since we could not prove an inconsistency-sensitive error bound for bounded segments, let us
generalize semi-bounded segments differently. A forest of binary trees of curve segments defines
a set of semi-bounded branching segments. The root of each tree is a semi-bounded segment and
all other nodes are segments bounded on the left. Since the root of each tree staris to the left at
z = —oco and the children extend to the right to increasing z, the children of a node f are denoted
lower(f) and upper(f). However, if there is only one child, it it denoted child(f). If g is a child
of f, the pair f, g must satisfy three continuity conditions. Let r = max,(f).

1. ming(g) =r.
2. If ming(h) < r < max,(h), thensgn_(f, h,7) =sgn, (g, h,7).
3. If ¢’ is a child of f’ and max. (') = r (= min(g')), then sgn_(f, f/,r) = sgn, (9,¢", 7).

Each tnput g is a subset of a semi-bounded segment §, which denotes the union of g with its
ancestors in its tree. If § # R, for < min(max,(g), max,(h)), sgn(g, k, z) is well-defined and
continuous between segments of g and A thanks to the three continuity conditions. However, if f is
the nearest common ancestor of g and , theng = h = f forz < max.{f). Suppose g arises from
the lower child of f (lower(f) C g) and A arises from the upper child (upper(f) C %). Then for
T < max.(f), define sgn(g, &,) = —1. In other words, we imagine g and % to contain separate
copies of f with g’s copy slightly lower than &’s copy. The resulting sgn function is strongly ¢-
accurate: for z < max;(f), g(z) = f(z) < f(z) + ¢ = h(z) + € for any € > 0. Figure 2 shows
a forest of 11 segments in 3 trees that defines the 6 branching segments a, bed, bee, fg, fhij, and
fhik.

Initialization Initialize P with insert(f, —oo) for every semi-bounded segment and one of the
following for each semi-bounded or bounded segment f: remove(f,), replace(f, child(f), 7), or
branch(f,lower(f), upper(f),). These events correspond to f having zero, one, or two children.

13

Execution Upon dequeuing replace(f, g, 7), replace f by g in S. For branch(f, g, h,), replace
f by the sublist g, h in S. Thanks to the three continuity conditions, no immediate swap can occur,
Check the (up to three) newly adjacent pairs of segments for future crossings and enqueue swaps
as appropriate.

Correctness and Complexity Thanks to the continuity conditions, replace and branch events
preserve local consistency. The effect of these events is the same as a remove followed by one or
two locally consistent insertions. Therefore, the output complexity and running time remain the
same.

Accuracy Since each bounded segment f is now part of a semi-bounded segment f, the proof
of accuracy does not fail when it attempts to shift past the left end of f. Instead, it shifts onto the
parent of f in the tree. Hence, the output is € + 3ke-accurate as in the semi-bounded case.

54 Monotonic segments

We combine the prior algorithms to handle monotonic segments. We sweep the segments in the
y direction (horizontal sweep line) with the bounded segment algorithm. This sweep enables us
to convert the input into branching segments by splitting segments and adding horizontal line seg-
ments. We sweep the branching segments to obtain accurate output crossing lists. The inaccuracy
of the y sweep manifests itself in erroneous splits, which increase the running time by a constant
factor, but is isolated from the output accuracy.

Using sgn,, and the sweep algorithm for bounded segments, conduct a y-sweep of f1, f, ..., fa-
Do the following for each segment f € {f1, f2,. .., fa} whose tail £ = tail(f) is not equal to the
head head(g) of some other segment g. When the algorithm encounters ¢ = tail(f) at the event
insert(f) (increasing) or remove(f) (decreasing), record the predecessor g of f in S: g is imme-
diately to the left of f at ¢ but not connected to it. After this sweep, we know (approximately)
for each each such segment f the first segment g that a horizontal ray extending leftward from
t = tail(f) will hit. By assumption 3 in Section 3.2, this ray does not pass through a segment
endpoint before hitting g.

Each such ray is a semi-bounded constant segment & with max.(h) = ¢, and ¢ right of g. The
latter is true because the sweep is locally consistent and hence sgn, (g, f,t,) = —1. Calculate
the crossing z = 7 of intersection between g and h and define p = (r,t,). Split g into g, and
g> at p such that tail(g) = tail(g), head(g<) = tail(g>) = p and head(g.)} = head(g). Set
min; (k) = p. (h now connects p to £), but if there was no segment to the left of ¢ = tail(f) (f
was the first element in S at ¥ =), I remains semi-bounded. Although one monotonic g might
be split by multiple fs, there are at most 7 splits. The result is up to 2n monotonic segments and
up to n bounded or semi-bounded constant segments.

Now construct a set of branching segments, based on common endpoints, out of the 3n seg-
ments. If head(f) is not the tail of another segment, f is a leaf. If head(f) = tail(g) for exactly
one segment g, then g = child(f). If head(h) = tail(f) = tail(g) where f and g are not horizontal
and sgn__(f, g, minz(f)) = —1, then f = lower() and ¢ = upper(h). If g was split into g. and
g by h at p = head(g.) = tail{g-) = tail(h) and if ¢ is decreasing, then g>. = lower(g.) and
h = upper(g.), but if g is increasing, then h = lower(g.) and g, = upper(g<). The roots of the

14

/ S
d
~ (a) (®)

Figure 3: Branching segment construction: (a) input; (b) output.

trees are the set of semi-bounded constant segments: tail rays that do not hit a monotonic segment.
Assumptions 3-5 in Section 3.2 imply that the branching segments satisfy the three continuity
conditions. Figure 3 shows segments e, b, ¢, d, e with horizontals hy, hq, 23 that generate branching
segments k@, bbs, bohocccs, and b hochae.

Run the sweep algorithm in z for branching segments on the 3n segments. In generating the
output set of crossing lists, ignore swaps between monotonic and constant segments. Match the
remaining swaps to the original monotonic segments (in case one or both monotonic segments
were split). The output crossings of the sweep algorithm are consistent and ¢ + 3ke-realizable.
Discarding nrelevant crossings involving added constant segments k does not change this fact.

Analysis The y-sweep has running time in O(V logn). Its output complexity is O(V), but that
does not matter since we only use the y-sweep to calculate n horizontal line segments. In the
subsequent z-sweep, a bounded constant segment £ (representing horizontal segment pt} might
intersect some segment e, but this can only happen if the y-sweep is inconsistent. If e is supposed
to be between g and f at y = ¢, (sgn,(g,e,t;) = sgn,(e, f,1,) = —1) but the y-sweep does
not place e there, the y-sweep is inconsistent, and either sgn,(f, e, t,) = 1 or sgm; (e, g,,) = 1.
However, this means we can construct a minimal locally consistent list, and the first (or last) three
segments in this chain are inconsistent and involve e. We charge this inconsistency with the extra
intersection. Since only three segments belong to an inconsistency, a particular inconsistency can
only be charged three times for every . So the number of spurious intersections of a particular
constant segment 2 with all monotonic segments in the z-sweep is bounded by 3%, and since
there are n added constant segments (horizontal rays or segments), the total number of spurious
intersections is at most 3kn. Thought experiments convince us that a single inconsistency might
cause {}(n) intersections with horizontal line segments, and so this is probably the best we can
prove. On the other hand, a particular constant segment A can intersect at most » monotonic
segments and only those whose tails are to the left of max.(h) for a total of at most n(n — 1)/2
crossings. Therefore there are at most min(3kn, 0.5n%) extra crossings, and the extra running time
is O(logn) per extra crossing.

15

Figure 4: Algebraic curves.

6 Algebraic curves

This section shows that the sweep algorithm applies to algebraic curves. We describe the curves,
explain why they satisfy the assumptions of Section 3.2, and describe numerical algorithms for
partitioning them into monotonic segments and for computing crossing lists.

Structure A point on the algebraic curve F(z,y) = 0 is regular when VF is nonzero and
is singular otherwise. The regular points partition into 1D manifolds, called branches, that are
topological circles or lines. Two branches meet at a singular point. We rule out a degenerate
singular point whose Hessian matrix has a zero eigenvalue. The curve partitions into monotonic
segments that meet at z turming points where £}, = 0 or at y turning points where F,, = 0.

Figure 4 shows two algebraic curves. Curve 1 consists of three branches: a topological circle
and two topological lines (the left/right loops of a horizontal figure 8) that meet at singular point c.
The monotonic segments of the figure 8 are ab, bd, de, ag, g f, fe. The segments bd and g f intersect
at ¢. Curve 2 consists of two unbounded monotic segments. The curves intersect at v and s.

Segmentation We employ a sweep to partition a curve into monotonic segments and to compute
their vertical order. The events are the turning and singular points, which are computed by solving
F =F =0and F = F, = 0. The x coordinates of these points partition the z axis into
intervals on which there are a fixed number of monotonic segments. Two segments start or end at
an z tumning point. One ends and another starts at a y tuming point. Two swap vertical order at a
singular point. A segment could also start or end at a vertical asymptote, but we ignore this case
because it can be eliminated by choosing a random coordinate system.

Sweep updates use equation solving to find the relevant segments. The y values of the sweep
segments at T = zp are computed by solving F(zy, ¥), sorting the roots, and assigning the sorted
roots to the segments, which are stored in y order. At a start point p (and at z = —c0), we insert
the new segment between the segments whose y values bracket p,. At an end point, we remove
the segment whose y value is closest to p,,. At a singular point, we swap the two segments whose
y values are closest to p,,.

16

Solver We solve algebraic equations (one univariate or two bivariate) by the homotopy method
[15], which finds all the roots with high probability given a randomized starting point. The rare
failures are corrected with restarts. The algorithm converges quadratically at simple roots and the
root accuracy is bounded by the condition times the unit roundoff error of about 10716, At multiple
roots, convergence is linear and the accuracy can be lower. For generic input, multiple roots arise
solely when we solve F(zg,y) at a sweep event (g, yg) and 7 is 2 double root. We factor y —
out of F{zy,y) and solve the reduced polynomial for the other, simple roots.

Crossing module We compute crossing lists for all segment pairs belonging to the curves F, G
when the first list is requested. We solve F, G = 0, assign each root to a pair of segments, and
construct the lists. The list for segments f, g is defined over the intersection of their = ranges,
I{f) N I(g). The roots assigned to f, g split I{f) N I(g) into intervals. We compute the vertical
order of f and g on each interval by comparing their 3 values at the midpoint. The roots where the
vertical order does not change are dropped and the rest are formed into a crossing list.

A special case occurs when F' equals G. In this case, segments f and g cross at singular points
that they share in common.

Justifications for Assumptions The following are justifications for the assumptions made in
Section 3.2 on page 5.

1. Crossing list construction is linear in the maximum number of crossings, which equals the
square of the algebraic degree of the curves by Bezout's theorem. Theory ensures a polyno-
mial bound. The experiments in the next section show that the actual running time increases
slightly with algebraic degree. We can enforce the assumption by bounding the degree.

2. The crossings module is strongly e-accurate. The segments can be expressed as analytic
functions f(z) and g(z) by the implicit function theorem. Suppose the roots r; of h(z) =
f(z) — g(x) are approximated as s;. The sgn value is correct outside the intervals [ry, s;] (or
[s:, 73]). Consider one interval Ir, s|. The homotopy method ensures that |h{s)| < € where
e is the floating point rounding unit (about 10716 for ANSII double float). Since i(r) = 0,
Taylor's theorem yields

, R'(r) » 3
h{s) = H'(r)e+ — et O(e*}
with e = s — . The quantity |h'(r)| is the tangent of the angle at which & intersects the
axis. Figure 5a shows the generic case where the angle is bounded away from zero, the linear
Taylor term dominates, e = k(s)/|h'(r)|, and [e] = O(e). The crossing module is e-accurate
with §; = € and §, = 0 because every point in [r, 5] is within ¢ of the complement of [r, 5]
where sgn is correct. The error at s, v & eh’(r}, is unbounded because b can intersect the
axis arbitrarily steeply. Figure 5b shows a non-generic, tangential intersection where |h'(7))|

is small, the quadratic term dominates, e == /2h(s)/h"(r), and |e| = O(+/€). The crossing

module is e-accurate with §; = 0 and §, = ¢ because h(z) = O(¢) in [r, 5]. The error at s is
bounded, v &= ¢.

3. General position is a standard computational geometry assumption. It holds with probability
one for random algebraic curves. Furthermore, we only assume pairwise general position:
three or more segments are allowed to intersect at a common point.

17

h(x))
[/ L R
| r e s *

(a) (b)

Figure 5: Strong e-accuracy: (a) transverse intersection; (b) tangential intersection.

4. Crossing lists agree on left/right and above/below. We decide these relations once for every
point/segment pair and force the crossing lists to be consistent with the decisions.

5. If two segments have equal tail © values, their initial vertical order is determined by their tail
y values. We force the crossing lists to respect this condition.

7 Experiments

We estimated the e-accuracy of the crossing module in four ways and obtained identical results:
the max e was 10~1° for polynomials of degree 1-10 and the average/max were 10712/1071? for
degree 11-40. First, we selected random doubles 7y, ...,74 € {—1, 1], expanded the polynomial
p(z) ={z —r1}-- - (x —rq), computed its roots sy, . . . s, with the crossing module, and estimated
¢ at each root as min(}r; — s/, |p(s:)|). We generated 100 polynomials for d = 1, ..., 40. Second,
we forced the polynomials to have a double root by setting r4 to 1. Third, we used polynomials
with random coefficients in [—1,1]. This is a general sampling technique, since any polynomial
can be expressed in this format by rescaling. Fourth, we used the system f(z) = g(y) = 0 with f
and g as in the first experiment and with d = 1, ..., 15. Although the algebraic degree of the roots
is d?, the ¢ values are comparable to those of one degree d polynomial.

We estimated the number of inconsistencies in several types of arrangement problems. We
generated 1000 random curves of degree d, constructed their arrangement, and repeated the exper-
iment 50 times. The algorithm never found an inconsistency for d = 1, 2, 3,4, 5, 6, 10, 15 despite
the large number of crossings, for example 47511 on a typical set of 1000 quartics. Nor were there
any inconsistencies for 1000 random horizontal and vertical line segments, which are common in
VLSI, mechanical design, and other applications.

We generated 200 random line segments and perturbed the segment endpoints by a random
number in [—4, §] to obtain 200 pairs of nearly identical segments. We checked all 10.5 million
triples of segments for inconsistencies and obtained 0.06% inconsistent for § = 0.001 and none
for § = 0.1,0.0001,107%,1071%. We generated 200 near-identical line segments by perturbing the
endpoints of a single segment, generated all triples, and obtained no inconsistencies.

We generated 200 random polynomials ¥ = f(z) of degree d then modified their constant
terms to make them go through the point p = (1,2). The polynomial f{z) was replaced with
g(z) = f(z) — f(1), so that g(1) = 0 except for rounding error. We counted the inconsistencies
among all 1.3 million triples of polynomials and obtained none for ¢ = 1, 5% ford = 2, 39%
ford = 3, 42% for d = 4, 48% for d = 5, 54% for d = 6, 58% for d = 10, and 60% for
d = 15. The roots were computed by Laguerre’s method. We repeated the experiments with
random implicit polynomials and obtained 60% inconsistent triples for degree 2 and higher. The

18

roots were computed by the homotopy methed. The maximum width of an inconsistent interval
was 1019 over all the experiments. The running time per root was roughly constant.

We perturbed the constant terms of the polynomials by a random number in [—4, §] and obtained
0.003% inconsistencies instead of 48% for d = 5 and § = 1078, 0.1% instead of 66% for d = 15
and § = 1078, and 3.5% for d = 15 and § = 10710,

We conclude that inconsistencies are vanishingly rare in generic input and in many structured,
hence degenerate, inputs. The only case where we found many inconsistencies is among triples of
curves that almost meet at a point. The curves form a tiny triangle with 4 inconsistent vertex orders
and 2 consistent orders. As d increases, the floating point resolution of the triangle decreases until
the vertex order becomes essentially random at d = 15, that is 60% inconsistent versus 66% for a
random choice of 4 out of 6 orders.

Although degenerate, small triangles occur in some applications. For example, consider the
layout problem of cutting a maximum number of clothing parts from a strip of fabric. Every
part will touch two other parts (or the strip boundary) in an optimal configuration, which implies
that three contact curves intersect in every three-part configuration space. In mechanical design,
redundancy and symmetry can generate intersecting triples of contact curves. Even so, these de-
generacies and the inconsistencies they cause will be confined to small regions, and it is hard to
conceive of a practical input for which inconsistencies will even double the running time of the
entire arrangement construction.

8 Conclusions

We have presented a robust arrangement algorithm for algebraic curves based on floating point
arithmetic. Its performance is analyzed in terms of the number & of combinatorial inconsistencies
that occur due to numerical computation. The running time and output size match those of the
standard sweep algorithm with exact, unit-cost algebraic computation, plus a term that is linear in
k and quadratic in the input size. We have presented extensive experimental evidence that % is zero
in generic input and is tiny even in degenerate input, hence that the actual running time matches
the standard sweep with floating point algebraic computation. Furthermore, the running time and
error bounds appear to depend on clusters of inconsistencies. If the & inconsistencies are pairwise
separated by more than ¢ in z and ¥, then their running time cost is linear in k and their accuracy
cost is constant.

Inconsistency sensitive analysis is a new computational geometry paradigm that we plan to
explore further. The first step is to generalize our algorithm to algebraic curve segments and to
construct generic embeddings. Our next goal is to construct and manipulate the configuration
spaces of rigid planar parts, which are key to algorithmic part layout, mechanical design, and path
planning. Another goal is solid modeling with explicit and implicit surfaces. In both cases, the
computational geometry task is to arrange surface patches of high degree.

We also plan to develop iterative algorithms that cascade geometric computations, meaning
that the output of each iteration is the input to the next iteration. Many non-geometric numerical
algorithms use cascading, for example Newton’s method. We believe that geometric algorithms
would also use cascading extensively if there were an effective way to implement it. For example,
Milenkovic uses cascaded numerical geometric operations in part layout [14, 11, 13]. However,
one can construct any algebraic expression by cascading two simple geometric constructions: (1)

19

Jjoin two points to form a line and (2) intersect two lines [1, 12]. This suggests that exact geometric
cascading is as hard as exact scientific computing, which is untenable. Inconsistency sensitive al-
gorithms could make cascading practical by replacing this exponential factor with a small constant.

Acknowledgments

Research supported by NSF grants 11S-0082339 and CCR-0306214, and by the Purdue University
Center for Graphics, Geometry, and Visualization.

References

[1] Behnke, Bachmann, Fladt, and Kunle. Fundamentals of Mathematics, Volume II: Geometry.
MIT Press, Cambridge, MA, 1974.

[2] Eric Berberich, Amo Eigenwillig, Michael Hemmer, Susan Hert, Kurt Mehlhorn, and Elmar
Schomer. A computational basis for conic arcs and boolean operations on conic polygons. In
Rolf H. Méhring and Rajeev Raman, editors, Algorithms - Esa 2002, 10th Annual European
Symposium, volume 2461 of Lecture Notes in Computer Science, pages 174-186, Rome,
Italy, 2002. Springer.

[3] Amo Eigenwillig, Lutz Kettmer, Elmar Schomer, and Nicola Wolpert. Complete, exact, and
efficient computations with cubic curves. In Proceedings of the 20th ACM Symposium on
Computational Geometry, 2004.

[4] Eyal Flato, Dan Halperin, Iddo Hanniel, Oren Nechushtan, and Eti Ezra. The design and
implementation of planar maps in CGAL. The ACM Journal of Experimental Algorithmics,
5(13), 2000.

[5] Nicola Geismann, Michael Hemmer, and Elmar Schomer. Computing a 3-dimensional cell
in an arrangement of quadrics: exactly and actually! In Proceedings of the 17th ACM Sym-
posium on Computational Geometry, pages 264-273, 2001.

[6] Dan Halperin. Robust geometric computation. In J. E. Goodman and J. O’Rourke, editors,
Handbook of discrete and compurational geometry. CRC Press, Boca Raton, FL, second
edition, 2004.

[7] Dan Halperin and Eran Leiserowitz. Controlied perturbation for arrangements of circles. In
Proceedings of the 19th ACM Symposium on Computational Geomelry, pages 264-273, San
Diego, 2002.

[8] John Keyser, Tim Culver, Mark Foskey, Shankar Krishnan, and Dinesh Manocha. ESOLID—
a system for exact boundary evaluation. Computer-Aided Design, 36(2).175-193, 2004.

[9] John Keyser, Tim Culver, Dinesh Manocha, and Shankar Krishntan, Efficient and exact ma-
nipulation of algebraic points and curves. Computer Aided Design, 32:649-662, 2000.

[10] K. Melhom and S. Néher. The LEDA platform for combinatorial and geometric computing.
Cambridge University Press, 1999.

20

[11] V.]. Milenkovic. Rotational polygon containment and minimum enclosure using only robust
2d constructions. Computational Geometry: Theory and Applications, 13:3-19, 1999,

[12] Victor J. Milenkovic. Shortest path geometric rounding. Algorithmica, 27(1):57-86, 2000.

[13] Victor J. Milenkovic. Densest translational lattice packing of non-convex polygons. Compu-
tational Geometry: Theory and Applications, 22:205-222, 2002.

[14] VJ. Milenkovic and K. Daniels. Translational polygon containment and minimal enclo-
sure using mathematical programming. International Transactions in Operational Research,
6:525-554, 1999.

[15] Alexander P. Morgan. Selving Polynomial Systems Using Continuation for Scientific and
Engineering Problems. Prentice-Hall, Englewood Cliffs, NJ, 1987.

[16] Bemard Mourrain, Jean-Pierre Técourt, and Monique Teillaud. Sweeping an arrangement of
quadrics in 3d. In Proceeding of the 19th European Workshop on Computational Geometry,
pages 31-34, 2003.

[17] Elmar Schémer and Nicola Wolpert. An exact and efficient approach for computing a cell in
an arrangement of quadrics. Computational Geomerry: Theory and Application, 2003. To
appear in Special Issue on Robust Geometric Algorithms and their Implementations.

[18] Ron Wein. High-level filtering for arrangements of conic arcs. In Rolf H. Mohring and
Rajeev Raman, editors, Algorithms - Esa 2002, 10th Annual European Symposium, volume
2461 of Lecture Notes in Computer Science, pages 884-895, Rome, Italy, 2002. Springer.

[19] Nicola Wolpert. Jacobi curves: computing the exact topology of arrangements of non-
singular algebraic curves. In Proceedings of the 11th ACM Symposium on Algorithms, pages
532-543, 2003.

[20] Chee Yap. Robust geometric computation. In J. E. Goodman and J. O’Rourke, editors,

Handbook of discrete and computational geometry. CRC Press, Boca Raton, FL, second
edition, 2004.

21

