SPARQL Protocol and RDF Query Language (SPARQL)
Semantic Web (CSC751)

Ubbo Visser

UNIVERSITY
OF MIAMI

L)

Department of Computer Science

University of Miami

October 31, 2023

DA

QOutline

O Announcements

© In retrospect

© Query types

O Basics

owl:onProperty

rdf:rest

rdf:rest rdf:type

rdf:first

DA

Reading
e 7.1.1-7.1.8 [HKRO09]
Acknowledgement

@ Most of the examples in this lecture slides are borrowed from
SPARQL Query Language for RDF

http://www.w3.org/TR/rdf-sparql-query

User Interface & applications

Query:
SPARQL

Umfymg Logic

DA

OWL DL

Orphan C Human 1Y hasParent.—Alive
C

=5 -
<

rdf:first

Y

rdf:rest

owl:onProperty

rdf:rest
\

rdf:type
rdf:null

Query types

O Retrieve instances.

@ Retrieve subclasses.

© Retrieve subclasses, and their instances.

«O» «F»

DA

@ We have written a simple framework to query the knowledge base using Jena and Pellet API. It is
available in the class web site.

@ You can use this framework in your code as follows:

o W3C recommendation for querying RDF and RDFS.

preferred way is conjunctive queries.

@ We can use SPARQL to a certain extent to query OWL 2 DL knowledge bases. But the
Graph patterns

OWL (supported features) graphs.

| \

predicate or object. e.g.,

o SPARQL is based on matching graph patterns w.r.t. RDF, RDFS (supported features), or

o A graph pattern is similar to triple pattern, but with the option of variables in subject,
<http://family.org/family.owl#daughter>

<http://family.org/family.owl#hasParent> ?parent

o ?parent is a variable. This variable could also be written as $parent

Basic graph patterns

o A basic graph pattern (BGP) is a set of triple patterns written as a sequence of triple
patterns separated by a period if necessary.

o Therefore, BGP is a conjunction of triple patterns. e.g.,

@ There is no keyword for conjunction in SPARQL.

u]
|
1l
[
it

DA

Group graph patterns

@ A group graph pattern is a set of graph patterns delimited with braces. e.g.,

@ { 1} is the empty group graph pattern.

o Group graph patterns are used with other constructors, which we will see in few slides.

«O> «F>» « =>»

<

DA

Major query parts

© PREFIX : declares the namespace prefix,
@ SELECT : determines the general result format, and

© WHERE : actual query is initiated with group graph patterns.

o The result of a query is a set of bindings for the variables appearing in the SELECT

clause. These binding are shown in tabular format.

@ SELECT and WHERE clauses are like in SQL. But keep in mind that SPARQL and SQL are

very different languages.

v

DA

Queries with literals

o We have careful when matching literals. e.g.,

and

have different results.
o xsd data types:

«O> «4F>r «=)» «

>

DA

Queries with literals - continued

=S

=

it
a

DA

Blank nodes in query results

Blank nodes in graph patterns

o Blank nodes assert the existence of a corresponding element in the input graph, but they
do not provide any information about the identity of this element.
o Blank nodes cannot appear in a SELECT clause.

@ The scope of blank node is the BGP in which it appears. A blank node which appears
more than once in the same BGP stands for the same term.

DA

Constraints on variables

@ FILTER restricts variable bindings to those for which the filter expression evaluates to
true.

@prefix dc: <http://purl.org/dc/elements/1.1/>
@prefix : <http://example.org/book/>
@prefix ns: <http://example.org/ns#>

:bookl dc:title "SPARQL Tutorial"
:bookl ns:price 50
:book2 dc:title "The Semantic Web"
:book2 ns:price 23

PREFIX dc: <http://purl.org/dc/elements/1.1/>
PREFIX ns: <http://example.org/ns#>
SELECT ?title ?price
WHERE {
?x ns:price ?price
FILTER (?price < 30.5)
?x dc:title ?title
}

=> "The Semantic Web" 23

Constraints on variables

o Regular expression filter:

PREFIX dc: <http://purl.org/dc/elements/1.1/>
SELECT ?2title
WHERE
{
?x dc:title ?title
FILTER regex (?title, "~SPARQL")
}

=> SPARQL Tutorial

SPARQL Tutorial
o Group graph patters are used to restrict the scope of the FILTER.

@ FILTER is a restriction on solutions over the whole group in which it appears.

@ One can have multiple FILTER conditions in a group graph pattern. The result
equivalent to a single filter with conjuncted filter conditions.

@ FILTER can have very complex boolean conditions.

is

These graph patterns have same set of solutions

OPTIONAL graph patterns

o With OWA, the complete structures cannot be assumed in all RDF graphs (this is of the

ABox).

o Therefore, we need a way to extract the available information, even though some part of

the query pattern does not match.

@ OPTIONAL provides this facility. If the graph pattern does not match, it does not create

bindings, but does not eliminate the solution as well.

ta

a
a
a

glo
b

@prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#> .

rdf:type foaf:Person .

foaf:name "Alice"

foaf:mbox <mailto:alice@example.com> .
foaf:mbox <mailto:alice@work.example> .
rdf:type foaf:Person .

foaf:name "Bob"

OPTIONAL example

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?name ?mbox
WHERE {

?x foaf:name ?name
OPTIONAL { ?x foaf:mbox ?mbox }

| name | mbox

| "Alice" | <mailto:alice@example.com>
| "Alice" | <mailto:alice@work.example>
I " Bob n |

-

@ Normally, we start with a graph pattern P1 and then apply OPTIONAL to another graph
pattern P2 that follows it.

OPTIONAL properties

© OPTIONAL is a binary operator.
@ OPTIONAL is left-associative.

@ OPTIONAL has higher precedence that conjunction.

«O> «4F>r «=)» «

>

DA

FILTER in OPTIONAL

@ The group graph pattern following the OPTIONAL can be as complex as possible.

:bookl
:book2
:book2
:book3
:book3

dc

ns

ns

<http:

ttitle
dc:

title

:price
dc:

title

:price

@prefix dc: <http://purl.org/dc/elements/1.1/>
@prefix
@prefix ns: <http://example.org/ns#> .

//example.org/book/>

"SPARQL Tutorial"

"A New SPARQL Tutorial"
42

"The Semantic Web"

23

FILTER in OPTIONAL example

PREFIX dc: <http://purl.org/dc/elements/1.1/>
PREFIX ns: <http://example.org/ns#>
SELECT ?title ?price
WHERE {
?x dc:title ?title
OPTIONAL {
?xX ns:price ?price
FILTER (?price < 30)

| title | price |

| "SPARQL Tutorial" | |

| "A New SPARQL Tutorial" |

| "The Semantic Web" | 23

Multiple OPTIONAL

@prefix foaf: <http://xmlns.com/foaf/0.1/>

_:a foaf:name "Alice"

_:a foaf:homepage <http://work.example.org/alice/>
_:b foaf:name "Bob"

_:b foaf:mbox <mailto:bob@work.example>

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?name ?mbox ?hpage
WHERE { ?x foaf:name ?name .
OPTIONAL { ?x foaf:mbox ?mbox . }
OPTIONAL { ?x foaf:homepage ?hpage . }

| "Alice" | | <http://work.example.org/alice/>

| "Bob" | <mailto:bob@work.example> |

.

@prefix ex: <http://example.org/>
@prefix dc: <http://purl.org/dc/elements/1.1/>
@prefix ns: <http://example.org/ns#>

ex:bookl dc:creator ex:smith
ex:bookl dc:title "Semantic Web"
ex:bookl ns:price 30

ex:book2 dc:creator ex:jones
ex:book2 dc:title "SPAROL"

ex:book3 dc:creator ex:doyle.
ex:book3 ns:price 34

ex:book4 dc:title "RDE"
ex:book4 ns:price 50

-

u]

|
I
I

i

PREFIX ex: <http://example.org/>
PREFIX dc: <http://purl.org/dc/elements/1.1/>
PREFIX ns: <http://example.org/ns#>
Ahkhkhhkhkhhkhhkhhhkhhhkhrhhhhhhkhkhkhhrdhhdhrdhhhkhkhkhkhxhhkhx*k
SELECT ?book ?title
WHERE { ?book dc:creator ?author .

OPTIONAL { ?book dc:title ?title .}

{ ?book ns:price ?price .}

}

Ak hkhhkhkhkhkhhkhkhhkhhhkhrdrhkhhhkhhkhkhkkhhkhkhkrdrhkhhrkhkhhkhxkxkx*k
SELECT ?book ?title
WHERE { { ?book dc:creator Zauthor .

OPTIONAL { ?book dc:title ?title .} }

{ ?book ns:price ?price .}

}
dhkhkhkhkhkhkhkhkhkhkhkhkkhkhkhkhkhhhhkhkhhkhkhkhkhkkhkhkhhkrhhhhkhkhkkhhkkhhkxkxk
SELECT ?book ?title
WHERE { ?book dc:creator 2author .

OPTIONAL { { ?book dc:title ?title .}
{ ?book ns:price ?price .} }

}

Rk ik kS ki ki

UNION

@ UNION provides the facility to form disjunction of graph patterns, such that one of several
graph patterns may match. All the alternative matching patterns are returned.

@prefix dcl0: <http://purl.org/dc/elements/1.0/>
@prefix dcll: <http://purl.org/dc/elements/1.1/>

ta dclO:title "SPARQL Query Language Tutorial"
:a dclO:creator "Alice"

:b dcll:title "SPARQL Protocol Tutorial"
:b dcll:creator "Bob"

:c dclO:title "SPARQL"
:c dcll:title "SPARQL (updated)"

A\

PREFIX dclO: <http://purl.org/dc/elements/1.0/>
PREFIX dcll: <http://purl.org/dc/elements/1.1/>
SELECT ?title
WHERE { { ?book dclO:title ?title }
UNION

{ ?book dcll:title ?title }

| "SPARQL"

"SPARQL

|
(updated) "

|
| "SPARQL Query Language Tutorial”

.

UNION example

PREFIX dcl0: <http://purl.org/dc/elements/1.0/>
PREFIX dcll: <http://purl.org/dc/elements/1.1/>
SELECT ?author ?title
WHERE { { ?book dclO:title ?title
?book dclO:creator ?author . }
UNION
{ ?book dcll:title ?title
?book dcll:creator 2author . }
}
| author | title
| "Alice" | "SPARQL Query Language Tutorial" |
| "Bob" | "SPARQL Protocol Tutorial"

u]

|
I
I

i

Semantic of UNION
@ UNION is a binary operator.
@ Group graph patterns are evaluated independently and combine the results using set
theoretic union.
@ We have to decide whether to use same variable in each alternative, as this decision
provides different results.

v
UNION example

SELECT ?x 2y
WHERE { {?book dclO:title ?x} UNION {?book dcll:title 2y} }

| x Iy |

| | "SPARQL (Updated)" |

| "SPARQL Query ..." | [

Properties of UNION

@ UNION is left-associative.
@ UNION and OPTIONAL have same precedence.

© UNION has higher precedence than conjunction.
o Commutative

@ Associative

u]
|
1l
[
it

DA

{ {sl pl ol} UNION {s2 p2 o2}
OPTIONAL {s3 p3 o3}
}
<=>
{ { {sl pl ol} UNION {s2 p2 o2}
} OPTIONAL {s3 p3 o3}
}

{

}
<=>
{ {

{sl pl ol} OPTIONAL {s2 p2 ol} UNION {s3 p3 o3}
{

OPTIONAL {s4 p4 o4} OPTIONAL {s5 p5 o5}

{ {sl pl ol} OPTIONAL {s2 p2 ol}
} UNION {s3 p3 o3}

} OPTIONAL {s4 p4 o4}
} OPTIONAL {s5 p5 o5}

.

UNION and conjunction

«O» «F»

it
a

DA

KB Queries with data values

PREFIX ex: <http://example.org/>

PREFIX dc: <http://purl.org/dc/elements/1.1/>
PREFIX ns: <http://example.org/ns#>

SELECT ?book ?title ?price

WHERE
{
{ ?book dc:creator ex:smith . ?book dc:title ?title
UNION
{ ?book dc:creator ex:jones .}
{ ?book ns:price ?price . }
}
| book | title | price |
| <http://example.org/book3> | | 35

| <http://example.org/book2> | | 30

.

PREFIX ex: <http://example.org/>

PREFIX dc: <http://purl.org/dc/elements/1.1/>
PREFIX ns: <http://example.org/ns#>

SELECT ?book ?title ?price

WHERE

{

{ ?book dc:creator ex:smith . ?book dc:title ?title . }

UNION
{ ?book dc:creator ex:jones . ?book ns:price ?price . }
}
| book | title | price
| <http://example.org/bookl> | "Semantic Web"|
| <http://example.org/book3> | | 35
| <http://example.org/book2> | | 30

More about FILTER and special operators

@ FILTER supports =, >, <, >, <, and != operators.
o Each operator is defined for all datatype that SPARQL supports. e.g., xsd:dataTime

o All literals that have different datatypes are not compatible with prior operators, but =
and !|=.

o But, they produce an error if unknown datatypes are given.

o Multiple filter conditions are combined with && (logical and), || (logical or) and ! (logical
not).

@ Conjunction: can be expressed with multiple FILTER within one graph pattern.

o Disjunction: a graph pattern could be split into multiple alternative patterns that use
equal conditions with one of filter part.

o Supports numerical operators, +, -, *, and /, only if the variable are bounded in a
meaningful way.

u]
|
I
ul
i

Unary operators

BOUND (2)

true if A is a bounded variable

isURI (A)

true if A is a URI

iSBLANK (A)

true if A is a blank node

iSLITERAL (A)

true if A is a RDF literal

STR (R) maps RDF literals or URIs to the corresponding
lexical representation of type xsd:string
LANG (A) returns language code of an RDF literal as

xsd:string, or an empty string if no such set-
ting is specified

DATATYPE (A)

returns the URI of an RDF literal datatype of the
value “xsd:string” for untyped literals with-
out language setting; not applicable to literals
with language setting

sameTERM (A, B)

true if A and B are the same RDF terms (direct
term comparison)

1angMATCHES (A, B)

true if the literal A is a language tag that
matches the pattern B

REGEX (A, B)

true if the regular expression B can be matched
to the string A

PREFIX ex: <http://example.org/>
SELECT ?book

WHERE
{
{ ?book ex:isPublishedBy <http://crc-press.com/uri> . }
OPTIONAL { ?book ex:author ?2author .}
FILTER(DATATYPE (?author) = <http://www.w3.0rg/2001/XMLSchema#string>)

}

PREFIX ex: <http://example.org/>
SELECT ?book
WHERE
{
?book ex:title ?title
FILTER(REGEX (?title, "“Foundations of"))

-

o Tabular representation is useful for processing results sequentially.

o If the structure and mutual relations of objects in the results set are more important, RDF
representation of the results is more appropriate.

@ CONSTRUCT returns an RDF graph specified by a graph template.

@ ASK tests whether or not a graph pattern has a solution. This returns whether or not a
solution exists.

u]
|
1l
[
it

DA

Example CONSTRUCT

@prefix ex: <http://example.org/>

ex:alice ex:email "alicelexample.org"
ex:alice ex:email "a.miller@example.org"
ex:alice ex:phone "123456789"

ex:alice ex:phone "987654321"

PREFIX ex: <http://example.org/>
CONSTRUCT {

_1dl ex:email ?email

_1dl ex:phone ?phone

_idl ex:person ?person . }
WHERE

{

?person ex:title ?email . ?person ex:phone ?phone.

_y ex:email "alicelexample.org";
ex:phone "123456789"; ex:person ex:alice

Example ASK

@ To narrow down the result set.

o Modifiers controls the details regarding the form and size of result lists.

@ Most constructs affects only results obtained with SELECT.

ORDER BY | sort in ascending order based on the meaningful
bounded variable.

DESC sort by descending order

ASC sort by ascending order

LIMIT maximum results

OFFSET staring position for piecewise retrieval of results

DISTINCT | remove repetitions from result set

DA

Order of application

@ All the parameters are allowed to be combined. Therefore, SPARQL defines the following

processing steps:
o Sort results based on ORDER BY.

o Remove non selected variables from the result set (projection).
o Remove duplicate results.

o Remove the number of initial results as specified by OFFSET.
o Remove all results after the number specified by LIMIT.

o LARQ: combination of ARQ and Lucene. This is a specific example.

DA

http://jena.sourceforge.net/ARQ/lucene-arq.html

PREFIX ex: <http://example.org/>
SELECT ?book ?price

WHERE

{

?book ex:price ?price
}
ORDER BY ?price
KA KA A A A A Ak hkhkhkhkhkhkhhkhkhkhkhkhkdkhA Ak A A A Ak xkx
SELECT ?book ?price
WHERE
{
?book ex:price ?price
}
ORDER BY ASC (?price)
KA KA A A A A Ak hkhkhkhkhkhkhkhkhkhhkhkhkhkhkhkhk A A Ak xx
SELECT =
WHERE
{
?2s ?p 20
}
ORDER BY ?s LIMIT 5 OFFSET 25

The Manchester OWL

DL Query
@ Searching in a classified ontology using Manchester OWL syntax.
o It is based on OWL abstract syntax and DL style syntax.

@ Supports some, only, value, min, exactly, max, and, or, and not.
@ Supports data values and datatypes with XSD facets.

o Lets see an example based on photography ontology (OWL 2).

u]
|
1l
[
it

DA

http://ceur-ws.org/Vol-216/submission_9.pdf
http://www.cs.miami.edu/~visser/csc751-files/photography.owl

@ Which equipment can reduce blur?
Equipment and reduces some Blur

o What types of lens is a 35-120mm?
Lens and

(hasMinEffectiveFocallength value 35)
(hasMaxEffectiveFocallength value 120)

some DepthOfField)

@ Which adjustments can | use to increase the exposure without affecting the depth of field?
Adjustment and increases some Exposurelevel and not (affects

and

1 http://protegewiki.stanford.edu/wiki/DLQueryTab

@ Person and hasAge some nonNegativelnteger

@ Person and hasAge some int[>40]

@ Person and hasAge some int[>10,<40]

Since Protégé 5.6.x: add datatype (e.g. xsd:int)

Acknowledgement

Acknowledgement
The slides for this course have been prepared by Saminda Abeyruwan.

DA

Pascal Hitzler, Markus Krétzsch, and Sebastian Rudolph.
Foundations of Semantic Web Technologies.
Chapman & Hall/CRC, 2009.

DA

