Basic introduction to logic Semantic Web (CSC751)

Ubbo Visser
Department of Computer Science
University of Miami

September 7, 2023

UNIVERSITY
OF MIAMI
】

Outline

(1) Announcements
(2) Points to remember from previous discussion
(3) Logic
(4) Propositional logic
(5) First order logic

The meaning triangle
Thing
(6) Description logic

Announcements

Assignment

－Assignment \＃1
－Due on August $31^{\text {st }}$ ；before the class starts

Reading

－（Mandatory）Read the papers［BLHL01，GS16，BHN16，Hit21］
－（Mandatory）Read Chapter 1 of the textbook
－（Mandatory）Appendix C．
－（Optional）Read Chapter 9
－（Optional）Appendix B．

Important points ...

The basic idea of the Semantic Web

- is to provide a conceptual framework for
(1) Build models to capture the complexities of the world with simple methods through abstraction.
(2) Compute meaningful conclusions through a reasoning mechanism.

Building models [Mae02]

(3) Communicate unambiguous complex information though ontologies.

Basic ideas ...

Compute meaningful conclusions ${ }^{a}$
${ }^{\text {a }}$ http://owl.man.ac.uk/2003/why/latest/

- cat_owner \equiv person \sqcap (\exists has_pet.cat) (Cat owners have cat as pets)
- has_pet $\sqsubseteq l i k e s$ (has pet is a subproperty of likes, so anything that has a pet must like that pet)
- cat_liker \equiv person \sqcap (\exists likes.cat) (Cat owners must like a cat)
- Therefore, Cat owners like cats. (Justification: The subclass is inferred due to a subproperty assertion)

Basic ideas ...

Communication [Mae02]

Linked Open Data, 05/2007

Linked Open Data, 10/2007

Linked Open Data, 11/2007

Linked Open Data，02／2008

Linked Open Data, 03/2008

\qquad
Linked Open Data, 09/2008

Linked Open Data, 03/2009

Linked Open Data, 07/2009

Linked Open Data, 09/2010

Linked Open Data, 09/2011

Linked Open Data, 08/2014

Linked Open Data, 02/2017

Legend
Cross Domain
Geography
Government
Life Sciences
Linguistics
Media
Publications
Social Networking
User Generated

Linked Open Data, 01/2020

Linked Open Data, 08/2023

Theory Vs. Practice

"He who loves practice without theory is like the sailor who boards a ship without a rudder and compass and never knows where he may cast."

- Leonardo da Vinci

Obvious

"Obvious is the most dangerous word in mathematics."

- Eric Temple Bell

Logic: syntax, semantics, \& models

general properties

(1) Logic provides an unambiguous and formal language to represent the world.
(2) Every logic has a proper syntax to define sentences in the language, and
(0) the semantics defines the meaning of these sentences.

- A well define collection of sentences forms a knowledge base (KB).

Meaning through models

Model

- We define the meaning of a sentence through models, i.e., the truth-value of a sentence in a world. (Later we introduce the notion of an interpretation).
- If there is a sentence α, we say, \mathbf{m} is a model of the sentence α, if α is true in \mathbf{m}. e.g., $\alpha \equiv(x+7=9)$; true in model $m=\{(x, 2)\}$
- We define the set of all models of $\alpha, \mathbf{M}(\alpha)$. e.g., $\alpha \equiv(x+7=y)$; true in set $\mathbf{M}(\alpha)=\{\{(x, 0),(y, 7)\},\{(x,-3),(y, 4)\}, \ldots\}$

Entailment (semantic relations between sentences)

We say a KB entails, i.e., one thing follows from another, a sentence $\alpha, \mathbf{K B} \models \alpha$ if and only if $\mathbf{M}(\mathbf{K B}) \subseteq \mathbf{M}(\alpha)$.
e.g., If $\mathbf{K B}=\{x=5\}$ then $\mathbf{K B} \models(x+1)=6$.

Propositional Logic: Simplest logic ever

Semantics

- Represent facts in the world.
e.g., birds are flying machines is a fact, and the logic commits to either true or false.
- Such fact is given a proposition symbol, e.g., P, and models define the truth value of each symbol.
- A collection of facts create sentences through connectives. There are five connectives, $\neg($ negation $), \wedge($ conjuction $), \vee($ disjunction $), \Rightarrow$ (implication), \Leftrightarrow (biconditional)

IIlustration [RN09]

```
\negP}\mathrm{ true iff P is false in m
P\wedgeQ is true iff both P and Q are true in m
P\veeQ is true iff either P or Q is true in m
P=>Q is true unless P is true and Q is false in m
P\LeftrightarrowQ is true iff P and Q are both true or both false in m
```


Propositional Logic: Simplest logic ever . . .

Semantics

- Represent facts in the world.
e.g., birds are flying machines is a fact, and the logic commits to either true or false.
- Such fact is given a proposition symbol, e.g., P, and models define the truth value of each symbol.
- A collection of facts create sentences through connectives. There are five connectives, $\neg($ negation $), \wedge($ conjuction $), \vee($ disjunction $), \Rightarrow$ (implication), \Leftrightarrow (biconditional)

Illustration [RN09]

$\neg P$ true iff P is false in m
$P \wedge Q$ is true iff both P and Q are true in m
$P \vee Q$ is true iff either P or Q is true in m
$P \Rightarrow Q$ is true unless P is true and Q is false in m
$P \Leftrightarrow Q$ is true iff P and Q are both true or both false in m

Truth table for connectives

$$
P, Q, \neg P, P \wedge Q, P \vee Q, P \Rightarrow Q, P \Leftrightarrow Q
$$

Logical equivalence [RN09]

$$
\begin{aligned}
(\alpha \wedge \beta) & \equiv(\beta \wedge \alpha) \quad \text { commutativity of } \wedge \\
(\alpha \vee \beta) & \equiv(\beta \vee \alpha) \quad \text { commutativity of } \vee \\
((\alpha \wedge \beta) \wedge \gamma) & \equiv(\alpha \wedge(\beta \wedge \gamma)) \quad \text { associativity of } \wedge \\
((\alpha \vee \beta) \vee \gamma) & \equiv(\alpha \vee(\beta \vee \gamma)) \text { associativity of } \vee \\
\neg(\neg \alpha) & \equiv \alpha \text { double-negation elimination } \\
(\alpha \Rightarrow \beta) & \equiv(\neg \beta \Rightarrow \neg \alpha) \quad \text { contraposition } \\
(\alpha \Rightarrow \beta) & \equiv(\neg \alpha \vee \beta) \quad \text { implication elimination } \\
(\alpha \Leftrightarrow \beta) & \equiv((\alpha \Rightarrow \beta) \wedge(\beta \Rightarrow \alpha)) \quad \text { biconditional elimination } \\
\neg(\alpha \wedge \beta) & \equiv(\neg \alpha \vee \neg \beta) \quad \text { De Morgan } \\
\neg(\alpha \vee \beta) & \equiv(\neg \alpha \wedge \neg \beta) \quad \text { De Morgan } \\
(\alpha \wedge(\beta \vee \gamma)) & \equiv((\alpha \wedge \beta) \vee(\alpha \wedge \gamma)) \text { distributivity of } \wedge \text { over } \vee \\
(\alpha \vee(\beta \wedge \gamma)) & \equiv((\alpha \vee \beta) \wedge(\alpha \vee \gamma)) \quad \text { distributivity of } \vee \text { over } \wedge
\end{aligned}
$$

and,
$\alpha \equiv \beta$ if and only if $\alpha \models \beta$ and $\beta \models \alpha$, i.e., $\mathbf{M}(\alpha) \equiv \mathbf{M}(\beta)$.

Inferences

Logical inference

- Inference is a procedure, i, that proves sentences from a KB.
- If a sentence α can be inferred from the KB using procedure i we say $\mathbf{K B} \vdash_{i} \alpha$. Then, i is sound when $\mathbf{K B} \vdash_{i} \alpha$ then $\mathbf{K B} \vDash \alpha$, and complete when $\mathbf{K B} \vDash \alpha$ then $\mathbf{K B} \vdash_{i} \alpha$. (Inference procedure derive a result in finitely many steps, . \vdash.)
- A sound and a complete inference procedure correctly answers any question inferred from the KB. $O\left(2^{n}\right)$.

Inferences

Logical inference

- Inference is a procedure, i, that proves sentences from a $K B$.
- If a sentence α can be inferred from the KB using procedure i we say $\mathbf{K B} \vdash_{i} \alpha$. Then, i is sound when $\mathbf{K B} \vdash_{i} \alpha$ then $\mathbf{K B} \vDash \alpha$, and complete when $\mathbf{K} \mathbf{B} \models \alpha$ then $\mathbf{K} \mathbf{B} \vdash_{i} \alpha$. (Inference procedure derive a result in finitely many steps, . \vdash.)
- A sound and a complete inference procedure correctly answers any question inferred from the KB. $O\left(2^{n}\right)$.

Illustration

P	Q	$P \Rightarrow Q$	$Q \Rightarrow P$	$P \vee Q$	$\mathrm{~KB}=P \wedge Q$
true	true	true	true	true	true
true	false	false	true	true	false
false	true	true	false	true	false
false	false	true	true	false	false

For theorem proving

Definitions

- A sentence is valid if it is true in all models (a.k.a. tautologies).
e.g., true, $P \vee \neg P,(P \wedge(P \Rightarrow Q)) \Rightarrow Q$.
- Deduction theorem: For any sentence α and $\beta, \alpha=\beta$ if and only if the sentence $(\alpha \Rightarrow \beta)$ is valid.
- A sentence is satisfiable if it is true in some model. e.g., $P \vee Q$ is satisfiable in $\boldsymbol{m}=\{\{P$, true $\},\{Q$, false $\}\}$.
- A sentence is unsatisfiable if it has no models.

$$
\text { e.g., } P \wedge \neg P \text {. }
$$

- So we do inference:
$\mathbf{K B} \models \alpha$ if and only if $(\mathbf{K B} \wedge \neg \alpha)$ is unsatisfiable.
- Proof methods: Model checking (DPLL), or applying a sequence of inference rules.

Inference

- Modus Ponens: $\frac{\alpha, \alpha \Rightarrow \beta}{\beta}$.
- And-Elimination: $\frac{\alpha \wedge \beta}{\alpha}$ or $\frac{\alpha \wedge \beta}{\beta}$
- Bidirectional-Elimination: $\frac{\alpha \Leftrightarrow \beta}{(\alpha \Rightarrow \beta) \wedge(\beta \Rightarrow \alpha)}$ and $\frac{(\alpha \Rightarrow \beta) \wedge(\beta \Rightarrow \alpha)}{\alpha \Leftrightarrow \beta}$.
- Sound and complete for propositional logic.

Resolution

- When sentences are in Conjunctive Normal Form (CNF).
- Repeated application of resolution rule,
$\frac{p_{1} \vee \ldots \vee p_{k} \vee \ldots \vee p_{n}, q_{1} \vee \ldots \vee \ldots q_{n}}{T_{1} \vee \ldots p_{m} \vee \ldots \vee I_{i-1} \vee I_{i+1} \vee \ldots \vee I_{k} \vee m_{1} \vee \ldots \vee m_{j-1} \vee m_{j+1} \vee \ldots \vee m_{n}}$.
e.g., Rain \Rightarrow Wet, Wet \Rightarrow Slippery
$\frac{\neg R \vee W, \neg W \vee S}{\neg R \vee S}$, i.e, Rain \Rightarrow Slippery.

CNF steps; eliminate

(1) $\alpha \Leftrightarrow \beta$ with
$(\alpha \Rightarrow \beta) \wedge(\beta \Rightarrow \alpha)$.
(2) $\alpha \Rightarrow \beta$ with $\neg \alpha \vee \beta$.

- Move \neg inwards; $\neg(\neg \alpha)=\alpha$, and De Morgan
$\neg(\alpha \wedge \beta) \equiv(\neg \alpha \vee \neg \beta)$,
$\neg(\alpha \vee \beta) \equiv(\neg \alpha \wedge \neg \beta)$.
(1) Apply distribution law;
$(\ldots \vee \ldots) \wedge(\ldots \vee \ldots) \wedge \ldots$

Logical reasoning

with inference

- Complete.
- Need to search through an exponentially large space.
- 3-CNF, SAT is NP-complete (Theory of Computation). So there is unlikely a polynomial time algorithm.
- So we see for special sentences that are easy to prove.

Horn clauses

- There is at most one positive symbol.
- (conjunction of symbol) \Rightarrow symbol.

$$
\text { e.g., }(P \wedge Q \wedge R) \Rightarrow S \text {, i.e, } \neg(P \wedge Q \wedge R) \vee S, \neg P \vee \neg Q \vee \neg R \vee S \text {. }
$$

- Modus Ponens is complete for Horn clauses. Therefore, we use forward and backward chaining inference algorithms.

Forward chaining

Some details

- FC is data-driven and automatic. e.g., object recognition
- $B C$ is goal-driven and used in problem-solving. e.g., Where is the Ungar building?

First order logic

real world consists of

- Objects, e.g., Sam, Ubbo, ...
- Relations, e.g., Ubbo isTheAdvisorOf Sam, ...
- Functions, e.g., SamHead $=$ head(Sam), \ldots

Syntax

- Constants: e.g., Sam, Ubbo, UniversityOfMiami,
- Variables: e.g., x, y, z, \ldots
- Predicates: e.g., isMemberOf, $>,=, \ldots$
- Functions: e.g., SamHead $=$ head(Sam), \ldots
- Connectives: $\neg, \wedge, \vee, \Rightarrow, \Leftrightarrow$
- Quantifiers: \exists, \forall
- Always keep in mind that Constants, Predicates, and Functions are just symbols. There is no meaning on their own.

Semantics

Models in FOL

- Bit more complicated that propositional logic.
- Models contain
(1) a set of objects,
(2) a set of relations between objects (truth value mapping), and
(3) a set of functions that map objects to other objects.
- An interpretation provides the meaning of objects, relations and functions. It provides
(1) a mapping from constant symbols to model objects,
(2) a mapping from predicate symbols to model relations, and
(3) a mapping from function symbols to model functions.
- An interpretation is a model of a set of axioms if all the axioms are evaluated to true in the interpretation.
- Logical consequence: β is a logical consequence of $\alpha, \alpha \models \beta$, if for all I with $I \models \alpha$, we also have $I=\beta$. i.e., what implicit knowledge the KB entails.
- We refrain from using function as it is not used within the context of Semantic Web.

Semantics in more detail

Models one more time [Hor10]

- A model (a.k.a. an interpretation or a structure) is a pair $I=\left(D, .^{I}\right)$ with a set $D \neq \emptyset$ called the domain of I, and an interpretation function . ,
(1) C^{\prime} is an element of D for C, a constant,
(2) v^{\prime} is an element of D for v, a variable,
(0) P^{\prime} is a subset of D^{n} for P, a predicate of arity n.

Semantics

Evaluation［Hor10］

－Truth value of a given model $I=\left(D, .^{\prime}\right)$
（1）$P\left(t_{1}, \ldots, t_{n}\right)$ is true iff $\left.<t_{1}^{\prime}, \ldots, t_{n}^{\prime}\right\rangle \in P^{\prime}$ ，
（2）$P \wedge Q$ is true iff P is true and Q is true，
－$\neg P$ is true iff P is false．
E．g．，

Cat（Felix）	true
Cat（MyMat）	false
\neg Mat（Felix）	true
sits－on（Felix，MyMat）	true
Mat（Felix）\vee Cat（Felix）	true

$$
\begin{array}{|l|}
\hline D=\{a, b, c, d, e, f\} \\
\operatorname{Felix}^{I}=a \\
\operatorname{MyMat}^{I}=b \\
\operatorname{Cat}^{I}=\{a, c\} \\
\operatorname{Mat}^{I}=\{b, e\} \\
\operatorname{Animal}^{I}=\{a, c, d\} \\
\text { sits-on }^{I}=\{\langle a, b\rangle,\langle c, e\rangle\} \\
\hline
\end{array}
$$

Semantics

Evaluation [Hor10]

- Truth value of a given model $I=\left(D, .^{\prime}\right)$
(1) $\exists x . P$ is true iff there exist an extended interpretation.!'such that ! and !' differ w.r.t x, and P is true in (D, I^{\prime}) (Existential quantification).
(2) $\forall x . P$ is true iff there exist an extended interpretation.!' such that.! and !' differ w.r.t x, and P is true in (D, I^{\prime}) (Universal quantification).

```
E.g.,
\existsx.Cat(x)
\forallx.Cat(x)
\exists x . \operatorname { C a t } ( x ) \wedge \operatorname { M a t } ( x )
\forallx.Cat (x) }->\mathrm{ Animal(x)
\forallx.Cat(x) ->(\existsy.Mat (y)\wedge sits-on (x,y)) true
```

$$
\begin{array}{|l|}
\hline D=\{a, b, c, d, e, f\} \\
\operatorname{Felix}^{I}=a \\
\operatorname{MyMat}^{I}=b \\
\operatorname{Cat}^{I}=\{a, c\} \\
\operatorname{Mat}^{I}=\{b, e\} \\
\text { Animal }^{I}=\{a, c, d\} \\
\text { sits-on }^{I}=\{\langle a, b\rangle,\langle c, e\rangle\} \\
\hline
\end{array}
$$

Semantics

Evaluation [Hor10]

- Given a model I and a formula F, I is a model of $F(I \models F)$, iff F is true in I.
- A formula F is satisfiable iff \exists a model I such that $I \models F$.
- A formula entails another formula $G(F \models G)$, iff every model of F is also a model of G. $(I \vDash F \Rightarrow I \models G)$.

E.g.,

$$
\begin{aligned}
& M \models \exists x \cdot \operatorname{Cat}(x) \\
& M \not \models \forall x \cdot \operatorname{Cat}(x) \\
& M \not \models \exists x \cdot \operatorname{Cat}(x) \wedge \operatorname{Mat}(x) \\
& M \models \forall x \cdot \operatorname{Cat}(x) \rightarrow \operatorname{Animal}(x) \\
& M \models \forall x \cdot \operatorname{Cat}(x) \rightarrow(\exists y \cdot \operatorname{Mat}(y) \wedge \operatorname{sits-on}(x, y))
\end{aligned}
$$

$$
\begin{array}{|l|}
\hline D=\{a, b, c, d, e, f\} \\
\operatorname{Felix}^{I}=a \\
\operatorname{MyMat}^{I}=b \\
\operatorname{Cat}^{I}=\{a, c\} \\
\operatorname{Mat}^{I}=\{b, e\} \\
\operatorname{Animal}^{I}=\{a, c, d\} \\
\text { sits-on }^{I}=\{\langle a, b\rangle,\langle c, e\rangle\} \\
\hline
\end{array}
$$

One more example [Hor10]

E.g.,

```
    \(\operatorname{Cat}(\) Felix \() \models \exists x . \operatorname{Cat}(x) \quad(\operatorname{Cat}(\) Felix \() \wedge \neg \exists x . \operatorname{Cat}(x)\) is not satisfiable)
    \((\forall x . \operatorname{Cat}(x) \rightarrow \operatorname{Animal}(x)) \wedge \operatorname{Cat}(\) Felix \() \models \operatorname{Animal}(\) Felix \()\)
    \((\forall x\).Cat \((x) \rightarrow \operatorname{Animal}(x)) \wedge \neg \operatorname{Animal}(\) Felix \() \models \neg \operatorname{Cat}(\) Felix \()\)
\(\mathbf{x} \quad \operatorname{Cat}(\) Felix \() \models \forall x\).Cat \((x)\)
\(\boldsymbol{x}\) sits-on(Felix, Mat1) \(\wedge\) sits-on(Tiddles, Mat2) \(\models \neg\) sits-on(Felix, Mat2)
\(\mathbf{x}\) sits-on(Felix, Mat1) \(\wedge\) sits-on(Tiddles, Mat1) \(\models \exists \exists^{2} x\).sits-on \((x\), Mat1)
```

Note that $\exists \geq n, \exists \leq n$ are called counting quantifiers.

```
\exists\geq3}x.\operatorname{Cat}(x)\equiv\existsx,y,z.Cat(x)\wedge\operatorname{Cat}(y)\wedge\operatorname{Cat}(z)\wedgex\not=y\wedgex\not=z\wedgey\not=
\exists\leq2}x.\operatorname{Cat}(x)\equiv\forallx,y,z.Cat(x)\wedge\operatorname{Cat}(y)\wedge\operatorname{Cat}(z)=>x=y\veex=z\veey=z
```

just one more example
$\forall x(\operatorname{Exam}(x) \Rightarrow \forall y($ hasExaminer $(x, y) \Rightarrow \operatorname{Professor}(y)))$
Examiners of an exam must be professors.
If Exam ${ }^{\prime}=D \in \mathbb{N}$, hasExaminer ${ }^{\prime}=\{(n, m) \mid n \leq m\}$, Professor ${ }^{\prime}=\{n+n \mid n \in D\}$, then under this interpretation, every non-negative integer n we have that $m \geq n$ is an even number.
Correct interpretation are all models of the formula.

Why do we need Description Logic? Thank you for asking

Decidability

- We know that a deduction calculus (a.k.a. inference procedure) is sound if $T \vdash F$ implies $T \models F$. It is complete if $T \models F$ implies $T \vdash F$.
- FOL is semi-decidable, i.e., when $T \models F$ implies $T \vdash F$. This means that we can have a concrete algorithm that terminates and returns the correct answer. However, when $T \not \equiv F$ then the deduction algorithm is generally unbounded.
- Decision procedure: a sound and a complete algorithm that is guaranteed to terminate on all inputs. Therefore,
- Description logic deals only with decidable fragments of FOL.
- We say DL is in the family of C2, i.e., FOL with two variables and counting quantifiers.
- So which decidable fragments do I have to work with?

DL syntax

Signature

DL	FOL	Example	Note
Concept (or Class) names	unary predi- cates	Cat, Animal, Person	Equivalent to FOL unary predicates
Property names	binary predi- cates	isAdvisorOf, loves	Equivalent to FOL binary predicates
Individual names	constants	Sam, Ubbo, Felix,	Equivalent to FOL con- stants

DL syntax

Operators

- Conjunction Π; which is interpreted as the set intersection.
- Negation \neg; which is interpreted as the set complement.
- Disjunction \sqcup; which is interpreted as the set union.
- Universal restriction $\forall R . C$,
- Existential restriction $\exists R$. C,
- Number restriction $\geq n R, \leq n R$, and, $=n R$.
- Subsumption \sqsubseteq; which is interpreted as the material implication.
- Equivalence \equiv; which is interpreted as the equivalence.
- Role inclusions o.

\{T/A\}Box

- Terminological axioms (TBox) introduce names for complex descriptions.
- Assertional formalisms (ABox) states properties of individuals. This is also know as grounded facts.

DL syntax

Special concepts

- T; Thing, the most general concept.
- \perp; Nothing, inconsistent concept.

Illustrations (one/two free variables)

DL	FOL
Doctor \sqcup Lawyer	$\operatorname{Doctor}(x) \vee \operatorname{Lawyer}(x)$
Rich \sqcap Happy	$\operatorname{Rich}(x) \wedge \operatorname{Happy}(x)$
Cat $\sqcap \exists$ sitsOn.Mat	$\exists y(\operatorname{Cat}(x) \wedge \operatorname{sitsOn}(x, y))$
loves $^{-}$	$\operatorname{loves}(y, x)$
hasParent \circ hasBrother	$\exists z($ hasParent $(x, z) \wedge$ hasBrother $(z, y))$

DL syntax

Illustrations: TBox [Hor10]

DL:

Rich $\sqsubseteq \neg$ Poor	(concept inclusion)
Cat $\sqcap \exists$ sits-on.Mat \sqsubseteq Happy	(concept inclusion)
BlackCat \equiv Cat $\sqcap \exists$ hasColour.Black	(concept equivalence)
sits-on \sqsubseteq touches	(role inclusion)
Trans(part-of)	(transitivity)

Equivalent FOL:

$$
\begin{aligned}
& \forall x .(\operatorname{Rich}(\mathrm{x}) \rightarrow \neg \operatorname{Poor}(\mathrm{x})) \\
& \forall \mathrm{x} .(\operatorname{Cat}(\mathrm{x}) \wedge \exists \mathrm{y} .(\operatorname{sits}-\mathrm{on}(\mathrm{x}, \mathrm{y}) \wedge \operatorname{Mat}(\mathrm{y})) \rightarrow \operatorname{Happy}(\mathrm{x})) \\
& \forall \mathrm{x} .(\operatorname{BlackCat}(\mathrm{x}) \leftrightarrow(\operatorname{Cat}(\mathrm{x}) \wedge \exists \mathrm{y} .(\operatorname{has} \operatorname{Colour}(\mathrm{x}, \mathrm{y}) \wedge \operatorname{Black}(\mathrm{y}))) \\
& \forall \mathrm{x}, \mathrm{y} .(\operatorname{sits}-\mathrm{on}(\mathrm{x}, \mathrm{y}) \rightarrow \operatorname{touches}(\mathrm{x}, \mathrm{y})) \\
& \forall \mathrm{x}, \mathrm{y}, \mathrm{z} .((\operatorname{sits}-\mathrm{on}(\mathrm{x}, \mathrm{y}) \wedge \operatorname{sits}-\mathrm{on}(\mathrm{y}, \mathrm{z})) \rightarrow \operatorname{sits-on}(\mathrm{x}, \mathrm{z}))
\end{aligned}
$$

DL syntax

Illustrations: TBox

- Woman \sqsubseteq Person ; ?
- Person \equiv HumanBeing; ?
- hasWife \sqsubseteq hasSpouse; $\forall x, y$ (hasWife $(x, y) \Rightarrow$ hasSpouse (x, y)
- hasSpouse \equiv marriedWith; ?
- hasParent \circ hasBrother \sqsubseteq hasUncle; $\forall x, y(\exists z((\operatorname{hasParent}(x, z) \wedge($ hasBrother $(z, y))) \Rightarrow$ hasUncle(x, y)))

Illustrations: ABox [Hor10]

BlackCat(Felix)	(concept assertion)
Mat(Mat1)	(concept assertion)
Sits-on(Felix,Mat1)	(role assertion)

- Person(mary); Person(john)
- hasChild(john, mary);

DL semantics

Semantics [Hor10]

- Directly using FOL model theoretic view.

Interpretation function $\mathcal{I} \quad$ Interpretation domain $\Delta^{\mathcal{I}}$

DL semantics [Hor10]

Semantics

- The interpretation / directly extends to concept expressions

$$
\begin{aligned}
& (C \sqcap D)^{\mathcal{I}}=C^{\mathcal{I}} \cap D^{\mathcal{I}} \\
& (C \sqcup D)^{\mathcal{I}}=C^{\mathcal{I}} \cup D^{\mathcal{I}} \\
& (\neg C)^{\mathcal{I}}=\Delta^{\mathcal{I}} \backslash C^{\mathcal{I}} \\
& \{x\}^{\mathcal{I}}=\left\{x^{\mathcal{I}}\right\} \\
& (\exists R . C)^{\mathcal{I}}=\left\{x \mid \exists y .\langle x, y\rangle \in R^{\mathcal{I}} \wedge y \in C^{\mathcal{I}}\right\} \\
& (\forall R . C)^{\mathcal{I}}=\left\{x \mid \forall y \cdot(x, y) \in R^{\mathcal{I}} \Rightarrow y \in C^{\mathcal{I}}\right\} \\
& (\leqslant n R)^{\mathcal{I}}=\left\{x \mid \#\left\{y \mid\langle x, y\rangle \in R^{\mathcal{I}}\right\} \leqslant n\right\} \\
& (\geqslant n R)^{\mathcal{I}}=\left\{x \mid \#\left\{y \mid\langle x, y\rangle \in R^{\mathcal{I}}\right\} \geqslant n\right\}
\end{aligned}
$$

DL semantics

Semantics

- Given an interpretation $I=\left(D, .^{\prime}\right)$
- $I=C \sqsubseteq D$ iff $C^{\prime} \subseteq D^{\prime}$,
- $I \vDash C \equiv D$ iff $C^{\prime}=D^{\prime}$,
- $I \vDash C(a)$ iff $a^{\prime} \in C^{\prime}$,
- $I \models R(a, b)$ iff $<a^{\prime}, b^{\prime}>\in R^{\prime}$,
- $I \models<$ TBox, $A B o x>$ iff for every axiom $a_{x} \in T B o x \cup A B o x, I \models a_{x}$, and
- a DL knowledge base is TBox plus ABox, which is written as $K=\langle T B o x, A B o x\rangle$.
- We say K is satisfiable iff \exists an interpretation (or model) I s.t $I \models K$,
- A concept C is satisfiable w.r.t. K, iff $\exists I=\left(D, .^{\prime}\right)$ s.t $I \vDash K$ and $C^{\prime} \neq \emptyset$.
- K entails an axiom, $K \models a_{x}$ iff for every model I of $K, I \models a_{x}$, i.e., $I \models K$ implies $I \models a_{x}$.

DL expressivity: Many different DLs

ALC: smallest possibly closed DL

- TBox expressions:
- Subclass relationship, \sqsubseteq, and equivalence, \equiv.
- Conjunction, \sqcup, disjunction, \sqcap, and negation \neg.
- Property restriction, \forall, and \exists.
- Also, T, and \perp. e.g., ProudParent \equiv Person $\sqcap \forall$ hasChild.(Doctor $\sqcup \exists$ hasChild.Doctor)

DL expressivity

Other extensions

- $A L C+$ role chains $=S R$. Role chains include
- hasParent o hasBrother \sqsubseteq hasUncle (also include top property and bottom property)
- Transitivity; (hasAncestor ० hasAncestor $\sqsubseteq ~ h a s A n c e s t o r) ~(~) ~$
- Role hierarchies; (hasFather \sqsubseteq hasParent)
- O - nominals (closed classes) (MyBirthdayGuests $=\{$ bill,john,mary $\})$
- I - inverse roles; (hasParent \equiv hasChild- $)$
- Q - quantified cardinality restrictions (Car $\sqsubseteq=4$ hasTyre.T)

Complexity [HKR09]

- ACL; ExpTime.
- SHIQ, SHOQ, and SHIO; ExpTime.
- SHOIQ; NExpTime.
- SROIQ; N2ExpTime.
- $S R O I Q^{D}$; We learn about this family next week, when we talk about ontologies.

Acknowledgement

Acknowledgement

The majority of the slides for this course have been prepared by Saminda Abeyruwan.

Abraham Bernstein，James Hendler，and Natalya Noy．
A new look at the Semantic Web．
Communications of the ACM，59（9）：35－37， 2016.
Tim Berners－Lee，James Hendler，and Ora Lassila．
The Semantic Web．
Scientific American，284（5）：34－43，May 2001.
囯 Birte Glimm and Heiner Stuckenschmidt．
15 Years of Semantic Web：An Incomplete Survey．
KI－Künstliche Intelligenz，30（2）：117－130， 2016.
Pascal Hitzler．
A Review of the Semantic Web．
Communications of the ACM，64（2）：76－83，February 2021.
囦 Pascal Hitzler，Markus Krötzsch，and Sebastian Rudolph． Foundations of Semantic Web Technologies．
Chapman \＆Hall／CRC， 2009.
T
Ian Horrocks．
Description Logic：A formal foundation for languages and tools．Tutorial at the Semantic Technology Conference（SemTech）．San Francisco，California，USA．
http：
／／www．cs．ox．ac．uk／people／ian．horrocks／Seminars／seminars．html\＃tutorials， 2010.

Alexander D．Maedche．
Ontology Learning for the Semantic Web．
Kluwer Academic Publishers，Norwell，MA，USA， 2002.
固 S．J．Russell and P．Norvig．
Artificial Intelligence：A Modern Approach．
Prentice Hall，3rd edition， 2009.

