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o Assignment #1
o Due on August 31°; before the class starts
o (Mandatory) Read the papers [BLHL01, GS16, BHN16, Hit21]
o (Mandatory) Read Chapter 1 of the textbook
o (Mandatory) Appendix C.
o (Optional) Read Chapter 9

o (Optional) Appendix B.




The basic idea of the Semantic Web

@ is to provide a conceptual
framework for

© Build models to capture the
complexities of the world with
simple methods through
abstraction.

©Q Compute meaningful
conclusions through a reasoning sanaster
mechanism.

© Communicate unambiguous

complex information though
ontologies.

Building models [Mae02]

The meaning triangle
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Compute meaningful conclusions?

o cat_owner = person 1 (3has_pet.cat) (Cat owners have cat as pets)

o has_pet L likes (has pet is a subproperty of likes, so anything that has a pet must like
that pet)

o cat_liker = person Tl (Jlikes.cat) (Cat owners must like a cat)

@ Therefore, Cat owners like cats. (Justification: The subclass is inferred due to a
subproperty assertion)
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Basic ideas . ..

Communication [Mae02]
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BBC
Later + cem.
TOTP Web-
Central

‘@ ‘
Geo-
Jamendo names DBpedia

us
Census Warld

[NEw! |
Fact-
Data book
@
/- o P—\M-le =y Guten-

RDF Book
Mashup

DBLP

Hannover DA



Linked Open Data, 11/2007
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Linked Open Data, 02/2008
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Linked Open Data, 03/2008

Audio-
Scrobbler

Flickr
exporter

Jamendo
“ / =
names V @

us RDF Book
Census
Data [NEwW!]
riese

Mashup

RKE
Explorer

DA



Linked Open Data, 09/2008
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Linked Open Data, 09/2010
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Linked Open Data, 09/2011
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Linked Open Data, 08/2023




Theory Vs. Practice

“He who loves practice without theory is like the sailor who boards a ship without a rudder and
compass and never knows where he may cast.”

- Leonardo da Vinci

Obvious

“Obvious is the most dangerous word in mathematics.”
- Eric Temple Bell
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... general properties

Q Logic provides an unambiguous and formal language to represent the world

Q Every logic has a proper syntax to define sentences in the language, and
© the semantics defines the meaning of these sentences.

Q A well define collection of sentences forms a knowledge base (KB).
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o We define the meaning of a sentence through models, i.e., the truth-value of a sentence
in a world. (Later we introduce the notion of an interpretation).

o If there is a sentence «, we say, m is a model of the sentence «, if « is true in m.
e.g., a=(x+7=09); true in model m = {(x,2)}

o We define the set of all models of a, M(c).
eg., a=(x+7=y); true in set M(a) = {{(x,0), (v, 7)},{(x, =3), (v, 4)},...}

Entailment (semantic relations between sentences)

We say a KB entails, i.e., one thing follows from another, a sentence o, KB |= « if and only if
M(KB) C M(«).
e.g., If KB ={x =5} then KB | (x+ 1) =6.
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o Represent facts in the world.
e.g., birds are flying machines is a fact, and the logic commits to either true or false.

@ Such fact is given a proposition symbol, e.g., P, and models define the truth value of each
symbol.

@ A collection of facts create sentences through connectives. There are five
connectives,—(negation), A(conjuction), \V/(disjunction), = (implication), < (biconditional)

u]
)
I
n
it

DA



Propositional Logic: Simplest logic ever . .. _

o Represent facts in the world.
e.g., birds are flying machines is a fact, and the logic commits to either true or false.

@ Such fact is given a proposition symbol, e.g., P, and models define the truth value of each
symbol.

@ A collection of facts create sentences through connectives. There are five
connectives,—(negation), A(conjuction), \V/(disjunction), = (implication), < (biconditional)
lllustration [RNO9]
=P true iff P is false in m
P A Q is true iff both P and Q are true in m
PV Q is true iff either P or Q is true in m
P = Q is true unless P is true and Q is false in m
P < Q is true iff P and Q are both true or both false in m
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Truth table for connectives
P,Q,-P,PANQ,PVQRP=QP<=Q

Logical equivalence [RNQ9]

(anp) = (B/ra) commufativity of A
(v @) = (fVa) commutativity of v
((anB)rny) = (an(BAy)) associativity of A
((avpB)vy) = (Vv (BVy)) associativity of vV
—(—a) = a double-negation elimination
(a = B) = (-8 = —a) contraposition
(o = B) = (—av @) implication elimination
(a & B) = ((a = B)A (B = «)) biconditional elimination
“(anp) = (-aVv ) DeMorgan
(Vv @) = (—an—F) DeMorgan
(an(BVy) = ((anB)V (any)) distributivity of A over V
(aVv(BA7Y) = ((avB) A (avy)) dstributivity of v over A
and,
a=Qifand only if a =5 and 8 = @, i.e,, M(a) = M(5).

= = = =roar



Logical inference
o Inference is a procedure, i, that proves sentences from a KB.

o If a sentence « can be inferred from the KB using procedure i we say KB F; .. Then, i is

sound when KB F; o then KB = «, and complete when KB |= o then KB F; a.
(Inference procedure derive a result in finitely many steps, .+ .)

@ A sound and a complete inference procedure correctly answers any question inferred from
the KB. O(2").
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Inferences

Logical inference

o Inference is a procedure, i, that proves sentences from a KB.

o If a sentence « can be inferred from the KB using procedure i we say KB F; .. Then, i is

sound when KB F; o then KB = «, and complete when KB |= o then KB F; a.
(Inference procedure derive a result in finitely many steps, .+ .)

@ A sound and a complete inference procedure correctly answers any question inferred from
the KB. O(2").

y

lllustration

P=Q | Q=P | PVQR | KB=PAQ
true true true true true true
true | false | false true true false
false | true | true false true false
false | false | true true false false




o A sentence is valid if it is true in all models (a.k.a. tautologies).
e.g., true, PV =P, (PA(P= Q)= Q.

o Deduction theorem: For any sentence a and 3, « |= 3 if and only if the sentence
(v = B) is valid.

@ A sentence is satisfiable if it is true in some model.
e.g., PV Q is satisfiable in m= {{P, true}, { Q, false}}.

o A sentence is unsatisfiable if it has no models.
eg., PN-P.

@ So we do inference:
KB = « if and only if (KB A—a) is unsatisfiable.

o Proof methods: Model checking (DPLL), or applying a sequence of inference rules.
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Inference

o Modus Ponens: & 9=8

B
o And-Elimination: 22 or o“%ﬁ
o Bidirectional-Elimination: <0 and (0=04(=0)
@ Sound and complete for propositional logic.

CNF steps; eliminate

Oacsin
. . . a= p)N(p = a).
o When sentences are in Conjunctive Normal )
Form (CNF). Q o= g with —aV S.
o Repeated application of resolution rule, Q Move — inwards; =(-a) = a,
p1V...Vpe V...V pn,qiV...V...qn and De Morgan
I1V...p,,-,\/...V/,',lV/,'+1V...V/k\/m1\/...ij,1ij+1V..,an' - A = (=a V.~
e.g., Rain = Wet, Wet = Slippery (A B) _ (na B
—“RVW,-WVS - . . —\(a Vv ,8) = (—|a N —|,3)
———pgve —  i.e, Rain = Slippery.

© Apply distribution law;
(.Vo )AL VL)AL

.

] = =
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... with inference

o Complete.
@ Need to search through an exponentially large space.

o 3-CNF, SAT is NP-complete (Theory of Computation). So there is unlikely a polynomial
time algorithm.

@ So we see for special sentences that are easy to prove.

Horn clauses

@ There is at most one positive symbol.
o (conjunction of symbol) = symbol.
eg, (PNQAR)=S ie, 7(PAQAR)VS, -PV-QV-RVS.

@ Modus Ponens is complete for Horn clauses. Therefore, we use forward and backward
chaining inference algorithms.
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Forward chaining

P=Q
LAM = P
BAL = M
AAP = L
AAB = L
A

B

(@

0

Some details

o FC is data-driven and
automatic. e.g., object
recognition

o BC is goal-driven and used in

problem-solving. e.g., Where
is the Ungar building?
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... real world consists of
o Objects, e.g., Sam, Ubbo, ...

o Relations, e.g., Ubbo isTheAdvisorOf Sam, ...
o Functions, e.g., SamHead = head(Sam), ...

Syntax

o Constants: e.g., Sam, Ubbo, UniversityOfMiami, ...
o Variables: e.g., x,y,z, ...

o Predicates: e.g., isMemberOf, >, =, ...

o Functions: e.g., SamHead = head(Sam), ...
Connectives: -, A\, V, =, <

o Quantifiers: 3,V

@ Always keep in mind that Constants, Predicates, and Functions are just symbols. There
is no meaning on their own.
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Models in FOL

o Bit more complicated that propositional logic.

@ Models contain

© a set of objects,
Q a set of relations between objects (truth value mapping), and
© a set of functions that map objects to other objects.

An interpretation provides the meaning of objects, relations and functions. It provides
© a mapping from constant symbols to model objects,
© a mapping from predicate symbols to model relations, and
© a mapping from function symbols to model functions.

An interpretation is a model of a set of axioms if all the axioms are evaluated to true in
the interpretation.

Logical consequence: f3 is a logical consequence of o, o |= 3, if for all | with | = «, we
also have | = . i.e., what implicit knowledge the KB entails.

We refrain from using function as it is not used within the context of Semantic Web.




Models one more time [Hor10]

o A model (a.k.a. an interpretation or a structure) is a pair | = (D,.") with a set D # ()
called the domain of /, and an interpretation function J
@ C'is an element of D for C, a constant,
@ V' is an element of D for v, a variable,
@ P'is a subset of D" for P, a predicate of arity n.

E.g., D ={a,b,c,d,e, f}, and
Felix! = a .
MyMat! = b -

Cat’ = {a,c}

Mat! = {b, e} v
Animal’ = {a, ¢, d} .
sits-on’ = {<aa b>v <cv e>} .

u]
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Evaluation [Horl0]

o Truth value of a given model | = (D,.")
Q P(t1,...,t,) is true iff < t{,... th > P!,
Q P AQ is true iff P is true and Q is true,
© —P is true iff P is false.

Eg., D ={ab,cde
Cat(Felix) true Feli :r{_, ade S}
Cat(MyMat) false o _IG

. MyMat® — b
—Mat(Felix) true I
) _ Cat’ = {a,c}
sits-on(Felix, MyMat) e Mat! = {b, ¢}
Mat(Felix) v Cat(Felix) e Animal’ = {a, ¢, d}
sits-on’ = {(a, b), (¢, €)}
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Evaluation [Hor10]

o Truth value of a given model | = (D,.")

© 3Ix.P is true iff there exist an extended interpretation J
and P is true in (D, .'/) (Existential quantification).

Q Vx.P is true iff there exist an extended interpretation J
and P is true in (D, .'/) (Universal quantification).

such that ./ and ."" differ w.r.t X,

such that ./ and ."" differ w.r.t X,

E.g., D {ﬂ,b, c, d,e, j}
Jdz.Cat(z) el — a
Va.Cat(x) false MyMat” = b
Jz.Cat(x) A Mat(z) false

Cat’ = {a, ¢}

Mat’ = {b, e}

Animal’ = {a,c, d}
sits-on’ = {(a, D), (¢, €)}

Vz.Cat(z) — Animal(x) true

(z)
Vz.Cat(z) — (Jy.Mat(y) A sits-on(z,y)) .-

DA



Evaluation [Hor10]
o Given a model / and a formula F, / is a model of F (I = F), iff F is true in /.
o A formula F is satisfiable iff 3 a model / such that | = F.

o A formula entails another formula G (F = G), iff every model of F is also a model of G.

(IEF=1EG).

E.g., D {ﬂ,, b, C, d, €, f}
M =3z Cat(z) Felix! = a

M - Va.Cat(x) MyMat’ — b

M £ Jz.Cat(x) A Mat(z) C‘s‘lt‘r = {a,c}

M |= Vz.Cat(x) — Animal(z) M;Lf — {b, e}

M |=Vz.Cat(z) — (3y.Mat(y) A sits-on(z, y)) Animal’ = {a,c d}

sits-on’ = {(a, b), (¢, €)}

u]
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One more example [Hor10]

E.g.
v Cat(Felix) |- 32.Cat(z) (Cat(Felix) A =32.Cat(x) is not satisfiable)
v (Vz.Cat(x) — Animal(z)) A Cat(Felix) |= Animal(Felix)
v (Vz.Cat(z) — Animal(x)) A 2Animal(Felix) = ~Cat(Felix)
X Cat(Felix) |- Va.Cat(x)
X sits-on(Felix, Matl) A sits-on(Tiddles, Mat2) |= —sits-on(Felix, Mat2)
% sits-on(Felix, Mat1) A sits-on(Tiddles, Mat1) |- 3% sits-on(z, Mat1)

Note that 32", 3=" are called counting quantifiers.
323x.Cat(x) = Ix, y,z.Cat(x) A Cat(y) N Cat(z) Ax £y Ax#z Ny #z
3=2x.Cat(x) = Vx,y,z.Cat(x) A Cat(y) A Cat(z) == x=yVx=2zVy =z




... just one more example

Vx(Exam(x) = Vy(hasExaminer(x,y) = Professor(y)))

Examiners of an exam must be professors.

If Exam' = D € N, hasExaminer’ = {(n, m)|n < m}, Professor' = {n+ n|n € D}, then under
this interpretation, every non-negative integer n we have that m > n is an even number.
Correct interpretation are all models of the formula.

u]
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Why do we need Description Logic? Tha_

Decidability

o We know that a deduction calculus (a.k.a. inference procedure) is sound if T = F implies
T = F. It is complete if T = F implies T - F.

o FOL is semi-decidable, i.e., when T |= F implies T = F. This means that we can have a
concrete algorithm that terminates and returns the correct answer. However, when T (£ F
then the deduction algorithm is generally unbounded.

o Decision procedure: a sound and a complete algorithm that is guaranteed to terminate
on all inputs. Therefore,

o Description logic deals only with decidable fragments of FOL.
@ We say DL is in the family of C2, i.e., FOL with two variables and counting quantifiers.

So which decidable fragments do | have to work with?
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DL syntax

DL FOL Example Note
Concept (or | unary predi- | Cat, Animal, | Equivalent to
Class) names | cates Person FOL  unary

predicates
Property binary predi- | isAdvisorOf, Equivalent to
names cates loves FOL  binary

predicates
Individual constants Sam, Ubbo, | Equivalent
names Felix, to FOL con-

stants

o = = =

DA



@ Conjunction I1; which is interpreted as the set intersection.

Negation —; which is interpreted as the set complement.
Disjunction LI; which is interpreted as the set union.

Universal restriction VR.C,

Existential restriction 3R.C,

Number restriction > nR, < nR, and, = nR.

Subsumption C; which is interpreted as the material implication.

Equivalence =; which is interpreted as the equivalence.

Role inclusions o.

o Terminological axioms (TBox) introduce names for complex descriptions.

o Assertional formalisms (ABox) states properties of individuals. This is also know as grounded
facts.

u]
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DL syntax
Special concepts

o T; Thing, the most general concept.

o |; Nothing, inconsistent concept.
[llustrations (one/two free variables)
DL FOL
Doctor L Lawyer Doctor(x) V Lawyer(x)
Rich 1 Happy Rich(x) A Happy(x)
Cat M IsitsOn.Mat Jy(Cat(x) A sitsOn(x, y))
loves™ loves(y, x)
hasParent o hasBrother

3z (hasParent(x, z) A hasBrother(z, y))




DL syntax

[llustrations: TBox [Hor10]

DL:
Rich C —Poor (concept inclusion)
Cat M Jsits-on.Mat C Happy (concept inclusion)
BlackCat = Cat M JhasColour_Black (concept equivalence)
sits-on C touches (role inclusion)
Trans(part-of) (transitivity)

Equivalent FOL:

Vx.(Rich(x) = —Poor(x))

Vx.(Cat(x) A y.(sits-on(x,y) A Mat(y)) — Happy(x))
Vx.(BlackCat(x) +» (Cat(x) A Jy.(hasColour(x,y) A Black(y)))
Vx,y.(sits-on(x,y) — touches(x,y))

Vx,y,z.((sits-on(x,y) A sits-on(y,z)) — sits-on(x,z))




lllustrations: TBox

@ Woman C Person ; ?

Person = HumanBeing; 7
hasWife C hasSpouse; Vx, y(hasWife(x, y) = hasSpouse(x, y)
hasSpouse = marriedWith; ?

hasParent o hasBrother C hasUncle; Vx, y(3z((hasParent(x, z) A (hasBrother(z, y))) =
hasUncle(x, y) ))

4

[llustrations: ABox [Hor10]

BlackCat(Felix) (concept assertion)
Mat(Mat1) (concept assertion)
Sits-on(Felix,Mat1) (role assertion)

@ Person(mary); Person(john)
@ hasChild(john, mary);




Semantics [Hor10]
o Directly using FOL model theoretic view.
Interpretation function T
Individuals i e AT

Interpretation domain AT

Concepts CZC AT

Lawyer ----
Doctor ~-.

Vehicle ~.__

Roles rf C AT x AT :
hasChild

owns

DA



DL semantics [Hor10]

Semantics

@ The interpretation / directly extends to concept expressions

(cnD)Y =cInp?

(CcuD)Y =cTupt

(—|C')I= L\I\CI

{z}t = {«*}

(FR.CYL = {z | Fy.(x,y) € RE Ay € CL}
(VR.C)t = {z | Vy.(z, y)ERzﬂyECI}
(<nR): = {z | #{y | {x,y) € R*} < n}
(znR)T = {z | #{y | (x,y) € RT} > n}

E DA



Semantics

o Given an interpretation | = (D,.")

I=CcCDiffc'cD,

I=C=Diff C'=D',

I C(a) iff a' € C',

I = R(a,b) iff < &', b >c R/,

| =< TBox, ABox > iff for every axiom ax € TBox U ABox, | |= ax, and

a DL knowledge base is TBox plus ABox, which is written as K =< TBox, ABox >.

o We say K is satisfiable iff 3 an interpretation (or model) / s.t | E K,
o A concept C is satisfiable w.r.t. K, iff 3/ =(D,.') st/ |= K and C' # 0.
o K entails an axiom, K |= a, iff for every model | of K, | |£ a4, i.e., | = K implies | |= ay.
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ALC: smallest possibly closed DL

o TBox expressions:

Subclass relationship, C, and equivalence, =.
Conjunction, LI, disjunction, 1, and negation —.
Property restriction, V, and 3.

Also, T, and L.

e.g., ProudParent = Person M V hasChild.(Doctor LI 3 hasChild.Doctor)
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@ ALC + role chains = SR. Role chains include

o hasParent o hasBrother T hasUncle (also include top property and bottom property)
o Transitivity; (hasAncestor o hasAncestor C hasAncestor)
o Role hierarchies; (hasFather C hasParent)

@ O - nominals (closed classes) (MyBirthdayGuests = {bill,john,mary})
o | - inverse roles; (hasParent = hasChild™)

o Q - quantified cardinality restrictions (Car = =4hasTyre.T)

o ACL; ExpTime.

o SHIQ, SHOQ, and SHIO; ExpTime.
o SHOIQ; NExpTime.

o SROIQ; N2ExpTime.

o SROIQP; We learn about this family next week, when we talk about ontologies.

] = =
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