Outline	Announcements	Points 000000000000000000000000000000000000	Logic	PL	FOL	DL
O	O		OO	0000000	00000000	000000000000

Basic introduction to logic Semantic Web (CSC751)

Ubbo Visser

Department of Computer Science University of Miami

September 7, 2023

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Outline	Announcements	Points	Logic	PL	FOL	DL
●		000000000000000000000000000000000000	00	0000000	00000000	0000000000000
Outline	9					

Announcements

2 Points to remember from previous discussion

3 Logic

- Propositional logic
- 5 First order logic

Outline	Announcements	Points 000000000000000000000000000000000000	Logic	PL	FOL	DL
O	•		OO	0000000	00000000	000000000000
Anno	ouncements					

Assignment

- Assignment #1
- Due on August 31st; before the class starts

Reading

- (Mandatory) Read the papers [BLHL01, GS16, BHN16, Hit21]
- (Mandatory) Read Chapter 1 of the textbook
- (Mandatory) Appendix C.
- (Optional) Read Chapter 9
- (Optional) Appendix B.

Outline	Announcements	Points	Logic	PL	FOL	DL
O	O	••••••••		0000000	00000000	0000000000000
Impo	rtant points					

The basic idea of the Semantic Web

- is to provide a conceptual framework for
 - Build models to capture the complexities of the world with simple methods through abstraction.
 - Compute meaningful conclusions through a reasoning mechanism.
 - Communicate unambiguous complex information though ontologies.

Outline	Announcements	Points	Logic	PL	FOL	DL
O	O	○●○○○○○○○○○○○○○○○○	OO	0000000	00000000	000000000000
Rasi	c ideas					

Compute meaningful conclusions^a

^ahttp://owl.man.ac.uk/2003/why/latest/

- $cat_owner \equiv person \sqcap (\exists has_pet.cat)$ (Cat owners have cat as pets)
- has_pet ⊑ likes (has pet is a subproperty of likes, so anything that has a pet must like that pet)
- $cat_{liker} \equiv person \sqcap (\exists likes.cat)$ (Cat owners must like a cat)
- Therefore, **Cat owners like cats.** (Justification: The subclass is inferred due to a subproperty assertion)

Outline	Announcements	Points	Logic	PL	FOL	DL
O		○○●○○○○○○○○○○○○○○	00	0000000	00000000	0000000000000
Basic	ideas					

Outline	Announcements	Points	Logic	PL	FOL	DL
O	O		OO	0000000	00000000	000000000000
Linked	Open Data,	05/2007				

Outline Announcements Points Logic PL FOL DL Linked Open Data, 03/2008 <

 Outline
 Announcements
 Points
 Logic
 PL
 FOL
 DL

 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 <

Linked Open Data, 09/2008

Linked Open Data, 03/2009

Outline O	Announcements	Points	Logic OO	PL 0000000	FOL 00000000	DL 0000000000000

Linked Open Data, 07/2009

Linked Open Data, 09/2010

Linked Open Data, 09/2011

Points

Announcements

Logic

PL

Linked Open Data, 01/2020

Linked Open Data, 08/2023

Outline	Announcements	Points	Logic	PL	FOL	DL
O	O	○○○○○○○○○○○○○○○○●	OO	0000000	00000000	000000000000

Theory Vs. Practice

"He who loves practice without theory is like the sailor who boards a ship without a rudder and compass and never knows where he may cast."

- Leonardo da Vinci

Obvious

"Obvious is the most dangerous word in mathematics."

- Eric Temple Bell

 Outline
 Announcements
 Points
 Logic
 PL
 FOL
 DL

 Logic:
 syntax, semantics, & models

... general properties

- O Logic provides an unambiguous and formal language to represent the world.
- **Q** Every logic has a proper **syntax** to define sentences in the language, and
- **()** the **semantics** defines the **meaning** of these sentences.
- A well define collection of sentences forms a knowledge base (KB).

Outline O	Announcements	Points 000000000000000000000000000000000000	Logic ○●	PL 0000000	FOL 00000000	DL 000000000000
Mear	ning through	models				

Model

- We define the meaning of a sentence through **models**, i.e., the **truth-value** of a sentence in a **world**. (*Later we introduce the notion of an interpretation*).
- If there is a sentence α , we say, **m** is a **model of** the sentence α , if α is **true** in **m**. e.g., $\alpha \equiv (x + 7 = 9)$; **true** in model $m = \{(x, 2)\}$
- We define the set of all models of α , $\mathbf{M}(\alpha)$. e.g., $\alpha \equiv (x + 7 = y)$; true in set $\mathbf{M}(\alpha) = \{\{(x, 0), (y, 7)\}, \{(x, -3), (y, 4)\}, \ldots\}$

Entailment (semantic relations between sentences)

We say a KB entails, i.e., one thing follows from another, a sentence α , **KB** $\models \alpha$ if and only if $M(KB) \subseteq M(\alpha)$. e.g., If **KB** = {x = 5} then **KB** $\models (x + 1) = 6$.

Outline O	Announcements	Points 000000000000000000000000000000000000	Logic	PL ●000000	FOL 00000000	DL 000000000000
Prop	ositional Log	ic: Simplest logic	ever	•		

Semantics

- Represent **facts** in the world.
 - e.g., birds are flying machines is a fact, and the logic commits to either true or false.
- Such fact is given a proposition symbol, e.g., *P*, and models define the truth value of each symbol.
- A collection of facts create sentences through connectives. There are five connectives, ¬(negation), ∧(conjuction), ∨(disjunction), ⇒ (implication), ⇔ (biconditional)

Illustration [RN09]

 $\neg P$ true iff P is false in m $P \land Q$ is true iff both P and Q are true in m $P \lor Q$ is true iff either P or Q is true in m $P \Rightarrow Q$ is true unless P is true and Q is false in m $P \Leftrightarrow Q$ is true iff P and Q are both true or both false in m

Outline O	Announcements	Points 000000000000000000000000000000000000	Logic	PL ●000000	FOL 00000000	DL 000000000000
Prop	ositional Log	ic: Simplest logic	ever	•		

Semantics

- Represent **facts** in the world.
 - e.g., birds are flying machines is a fact, and the logic commits to either true or false.
- Such fact is given a proposition symbol, e.g., *P*, and models define the truth value of each symbol.
- A collection of facts create sentences through connectives. There are five connectives,¬(negation), ∧(conjuction), ∨(disjunction), ⇒ (implication), ⇔ (biconditional)

Illustration [RN09]

 $\neg P$ true iff *P* is false in *m* $P \land Q$ is true iff both P and Q are true in *m* $P \lor Q$ is true iff either P or Q is true in *m* $P \Rightarrow Q$ is true unless P is true and Q is false in *m* $P \Leftrightarrow Q$ is true iff P and Q are both true or both false in *m*

Outline O	Announcements O	Points 000000000000000000000000000000000000	Logic OO	PL ○●○○○○○	FOL 00000000	DL 0000000000000
Trı	uth table for conn	ectives				
Ρ,	$Q, \neg P, P \land Q, P$	$\lor Q, P \Rightarrow Q, P \Leftrightarrow Q$				

Logical equivalence [RN09]

 $(\alpha \wedge \beta) \equiv (\beta \wedge \alpha)$ commutativity of \wedge $(\alpha \lor \beta) \equiv (\beta \lor \alpha)$ commutativity of \lor $((\alpha \land \beta) \land \gamma) \equiv (\alpha \land (\beta \land \gamma))$ associativity of \land $((\alpha \lor \beta) \lor \gamma) \equiv (\alpha \lor (\beta \lor \gamma))$ associativity of \lor $\neg(\neg \alpha) \equiv \alpha$ double-negation elimination $(\alpha \Rightarrow \beta) \equiv (\neg \beta \Rightarrow \neg \alpha)$ contraposition $(\alpha \Rightarrow \beta) \equiv (\neg \alpha \lor \beta)$ implication elimination $(\alpha \Leftrightarrow \beta) \equiv ((\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha))$ biconditional elimination $\neg(\alpha \land \beta) \equiv (\neg \alpha \lor \neg \beta)$ De Morgan $\neg(\alpha \lor \beta) \equiv (\neg \alpha \land \neg \beta)$ De Morgan $(\alpha \land (\beta \lor \gamma)) \equiv ((\alpha \land \beta) \lor (\alpha \land \gamma))$ distributivity of \land over \lor $(\alpha \lor (\beta \land \gamma)) \equiv ((\alpha \lor \beta) \land (\alpha \lor \gamma))$ distributivity of \lor over \land

and, $\alpha \equiv \beta$ if and only if $\alpha \models \beta$ and $\beta \models \alpha$, i.e., $\mathbf{M}(\alpha) \equiv \mathbf{M}(\beta)$.

Outline	Announcements	Points 000000000000000000000000000000000000	Logic	PL	FOL	DL
O	O		00	○○●○○○○	00000000	0000000000000
Infere	nces					

Logical inference

- Inference is a procedure, *i*, that proves sentences from a KB.
- If a sentence α can be inferred from the KB using procedure i we say KB ⊢_i α. Then, i is sound when KB ⊢_i α then KB ⊨ α, and complete when KB ⊨ α then KB ⊢_i α. (Inference procedure derive a result in finitely many steps, . ⊢ .)
- A sound and a complete inference procedure correctly answers any question inferred from the KB. $O(2^n)$.

Р	Q	$P \Rightarrow Q$	$Q \Rightarrow P$	$P \lor Q$	$\mathbf{KB} = P \land Q$		
true	true	true	true	true	true		
true	false	false	true	true	false		
false	true	true	false	true	false		
false	false	true	true	false	false		

Outline	Announcements	Points 000000000000000000000000000000000000	Logic	PL	FOL	DL
O	O		00	0000000	00000000	000000000000
Infere	nces					

Logical inference

- Inference is a procedure, *i*, that proves sentences from a KB.
- If a sentence α can be inferred from the KB using procedure i we say KB ⊢_i α. Then, i is sound when KB ⊢_i α then KB ⊨ α, and complete when KB ⊨ α then KB ⊢_i α. (Inference procedure derive a result in finitely many steps, . ⊢ .)
- A sound and a complete inference procedure correctly answers any question inferred from the KB. $O(2^n)$.

Illustrat	Illustration						
Р	Q	$P \Rightarrow Q$	$Q \Rightarrow P$	$P \lor Q$	$\mathbf{KB} = P \land Q$		
true	true	true	true	true	true		
true	false	false	true	true	false		
false	true	true	false	true	false		
false	false	true	true	false	false		

Outline	Announcements	Points	Logic	PL	FOL	DL
O	O	000000000000000000000000000000000000		○○○●○○○	00000000	000000000000
For t	heorem prov	ing				

Definitions

- A sentence is valid if it is true in all models (a.k.a. tautologies).
 e.g., true, P ∨ ¬P, (P ∧ (P ⇒ Q)) ⇒ Q.
- Deduction theorem: For any sentence α and β, α ⊨ β if and only if the sentence (α ⇒ β) is valid.
- A sentence is satisfiable if it is true in some model.
 e.g., P ∨ Q is satisfiable in m= {{P, true}, {Q, false}}.
- A sentence is unsatisfiable if it has no models.
 e.g., P ∧ ¬P.
- So we do inference: **KB** $\models \alpha$ if and only if (**KB** $\land \neg \alpha$) is unsatisfiable.
- Proof methods: Model checking (DPLL), or applying a sequence of inference rules.

Outline	Announcements	Points 000000000000000000000000000000000000	Logic	PL	FOL	DL
O	O		OO	○○○○●○○	00000000	0000000000000

Inference

- Modus Ponens: $\frac{\alpha, \ \alpha \Rightarrow \beta}{\beta}$.
- And-Elimination: $\frac{\alpha \land \beta}{\alpha}$ or $\frac{\alpha \land \beta}{\beta}$
- Bidirectional-Elimination: $\frac{\alpha \Leftrightarrow \beta}{(\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)}$ and $\frac{(\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)}{\alpha \Leftrightarrow \beta}$.
- Sound and complete for propositional logic.

Resolution

- When sentences are in **Conjunctive Normal** Form (CNF).
- Repeated application of resolution rule, $\begin{array}{c} p_{1} \vee \ldots \vee p_{k} \vee \ldots \vee p_{n}, q_{1} \vee \ldots \vee \ldots q_{n} \\
 \hline l_{1} \vee \ldots p_{m} \vee \ldots \vee l_{i-1} \vee l_{i+1} \vee \ldots \vee l_{k} \vee m_{1} \vee \ldots \vee m_{j-1} \vee m_{j+1} \vee \ldots \vee m_{n} \\
 e.g., Rain \Rightarrow Wet, Wet \Rightarrow Slippery \\
 \hline \pi R \vee W, \neg W \vee S \\
 \neg R \vee S \\
 , i.e, Rain \Rightarrow Slippery.
 \end{array}$

CNF steps; eliminate

• $\alpha \Leftrightarrow \beta$ with $(\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha).$

2
$$\alpha \Rightarrow \beta$$
 with $\neg \alpha \lor \beta$.

- Move \neg inwards; $\neg(\neg \alpha) = \alpha$, and De Morgan $\neg(\alpha \land \beta) \equiv (\neg \alpha \lor \neg \beta),$ $\neg(\alpha \lor \beta) \equiv (\neg \alpha \land \neg \beta).$
- Apply distribution law; $(\ldots \lor \ldots) \land (\ldots \lor \ldots) \land \ldots$

Outline O	Announcements O	Points 000000000000000000000000000000000000	Logic	PL ○○○○○●○	FOL 00000000	DL 000000000000
Logica	l reasoning					

... with inference

- Complete.
- Need to search through an exponentially large space.
- 3-CNF, SAT is NP-complete (Theory of Computation). So there is unlikely a polynomial time algorithm.
- So we see for special sentences that are **easy** to prove.

Horn clauses

- There is **at most** one positive symbol.
- (conjunction of symbol) \Rightarrow symbol. e.g., $(P \land Q \land R) \Rightarrow S$, i.e., $\neg (P \land Q \land R) \lor S$, $\neg P \lor \neg Q \lor \neg R \lor S$.
- Modus Ponens is complete for Horn clauses. Therefore, we use forward and backward chaining inference algorithms.

Outline	Announcements	Points 000000000000000000000000000000000000	Logic	PL	FOL	DL
O	O		OO	○○○○○○●	00000000	000000000000

Forward chaining

Some details

- FC is data-driven and automatic. e.g., object recognition
- BC is goal-driven and used in problem-solving. e.g., Where is the Ungar building?

<ロト < 部 ト < 注 ト < 注 ト 三 三 のへで</p>

Outline	Announcements	Points 000000000000000000000000000000000000	Logic	PL	FOL	DL
O	O		00	0000000	●○○○○○○○	0000000000000
First	order logic					

... real world consists of

- Objects, e.g., Sam, Ubbo, ...
- Relations, e.g., Ubbo isTheAdvisorOf Sam, ...
- Functions, e.g., SamHead = head(Sam), ...

Syntax

- Constants: e.g., Sam, Ubbo, UniversityOfMiami, ...
- Variables: e.g., *x*, *y*, *z*, . . .
- Predicates: e.g., isMemberOf, >, =, ...
- Functions: e.g., SamHead = head(Sam), ...
- Connectives: $\neg, \land, \lor, \Rightarrow, \Leftrightarrow$
- Quantifiers: ∃, ∀
- Always keep in mind that Constants, Predicates, and Functions are **just symbols**. There is **no** meaning on their own.

Outline	Announcements	Points 000000000000000000000000000000000000	Logic	PL	FOL	DL
O	O		OO	0000000	○●○○○○○○	0000000000000
Seman	tics					

Models in FOL

- Bit more complicated that propositional logic.
- Models contain
 - a set of objects,
 - 2 a set of relations between objects (truth value mapping), and
 - **(3)** a set of **functions** that map objects to other objects.
- An interpretation provides the meaning of objects, relations and functions. It provides
 - I a mapping from constant symbols to model objects,
 - 2 a mapping from predicate symbols to model relations, and
 - a mapping from function symbols to model functions.
- An interpretation is a model of a set of axioms if all the axioms are evaluated to true in the interpretation.
- Logical consequence: β is a logical consequence of α , $\alpha \models \beta$, if for all I with $I \models \alpha$, we also have $I \models \beta$. i.e., what implicit knowledge the KB entails.
- We refrain from using function as it is not used within the context of Semantic Web.

Outline	Announcements	Points	Logic	PL	FOL	DL
O	O	000000000000000000000000000000000000	OO	0000000	○○●○○○○○	0000000000000
Sema	ntics in mor	e detail				

Models one more time [Hor10]

A model (a.k.a. an interpretation or a structure) is a pair I = (D, .') with a set D ≠ Ø called the domain of I, and an interpretation function .',

- C' is an element of D for C, a constant,
- 2 v' is an element of D for v, a variable,
- **(a)** P' is a subset of D^n for P, a predicate of arity n.

Outline O	Announcements	Points 000000000000000000000000000000000000	Logic 00	PL 0000000	FOL ○○○●○○○○	DL 0000000000000
Sema	ntics					

Evaluation [Hor10

- Truth value of a given model I = (D, .')

 - **2** $P \land Q$ is **true** iff *P* is true and *Q* is true,
 - $\bigcirc \neg P \text{ is true iff } P \text{ is false.}$

E.g.,

Cat(Felix)	true
Cat(MyMat)	false
\neg Mat(Felix)	true
sits-on(Felix, MyMat)	true
$Mat(Felix) \lor Cat(Felix)$	true

$$D = \{a, b, c, d, e, f\}$$

Felix^I = a
MyMat^I = b
Cat^I = {a, c}
Mat^I = {b, e}
Animal^I = {a, c, d}
sits-on^I = {\langle a, b \rangle, \langle c, e \rangle}

Outline	Announcements	Points 000000000000000000000000000000000000	Logic	PL	FOL	DL
O	O		00	0000000	○○○○●○○○	0000000000000
Seman	ntics					

Evaluation [Hor10]

- Truth value of a given model I = (D, .')
 - $\exists x.P \text{ is true iff there exist an extended interpretation } .'' \text{ such that } .' \text{ and } .'' \text{ differ w.r.t } x, and P \text{ is true in } (D, .'') (Existential quantification).}$
 - **②** $\forall x.P$ is **true** iff there exist an extended interpretation .^{*l'*} such that .^{*l*} and .^{*l'*} differ w.r.t *x*, and *P* is true in (D, .^{*l'*}) (Universal quantification).

E.g.,		$D=\{a,b,c,d,e,f\}$
$\exists x. \operatorname{Cat}(x)$	true	$\mathrm{Felix}^{I} - a$
$\forall x. \operatorname{Cat}(x)$	false	$M_{y}M_{et}I = h$
$\exists x. \operatorname{Cat}(x) \wedge \operatorname{Mat}(x)$	false	$\begin{aligned} \text{Felix}^{I} &= a \\ \text{MyMat}^{I} &= b \\ \text{Cat}^{I} &= \{a, c\} \end{aligned}$
$\forall x. \operatorname{Cat}(x) ightarrow \operatorname{Animal}(x)$	true	$\operatorname{Mat}^{I} = \{b, e\}$
$\forall x. \mathrm{Cat}(x) \to (\exists y. \mathrm{Mat}(y) \land \mathrm{sits-on}(x, y))$		Animal ^I = { a, c, d } sits-on ^I = { $(a, b), (c, e)$ }
		sits-on ^I = { $\langle a, b \rangle, \langle c, e \rangle$ }

Outline	Announcements	Points 000000000000000000000000000000000000	Logic	PL	FOL	DL
O	O		OO	0000000	○○○○○●○○	000000000000
Sema	ntics					

Evaluation [Hor10]

- Given a model I and a formula F, I is a model of F $(I \models F)$, iff F is true in I.
- A formula *F* is **satisfiable** iff \exists a model *I* such that $I \models F$.
- A formula entails another formula G ($F \models G$), iff every model of F is also a model of G. ($I \models F \Rightarrow I \models G$).

E.g.,	$D = \{a, b, c, d, e, f\}$
$M \models \exists x. \operatorname{Cat}(x)$	$egin{aligned} D &= \{a, b, c, d, e, f\} \ ext{Felix}^I &= a \ ext{MyMat}^I &= b \end{aligned}$
$M \not\models \forall x. \operatorname{Cat}(x)$	$M_{v}M_{et}I = h$
$M \not\models \exists x. \operatorname{Cat}(x) \land \operatorname{Mat}(x)$	$Cat^{I} = \begin{bmatrix} a & a \end{bmatrix}$
$M \models \forall x. \operatorname{Cat}(x) \to \operatorname{Animal}(x)$	$\operatorname{Cat}^{I} = \{a, c\}$ $\operatorname{Mat}^{I} = \{b, e\}$
$M \models \forall x. \operatorname{Cat}(x) \rightarrow (\exists y. \operatorname{Mat}(y) \land \operatorname{sits-on}(x, y))$	$\operatorname{Mat} = \{0, e\}$
	Animal = $\{a, c, a\}$
	Animal ^{<i>I</i>} = { <i>a</i> , <i>c</i> , <i>d</i> } sits-on ^{<i>I</i>} = { $\langle a, b \rangle, \langle c, e \rangle$ }

Outline O	Announcements O	Points 000000000000000000000000000000000000	Logic	PL 0000000	FOL 00000000	DL 000000000000

One more example [Hor10]

E.g.,

- ✓ $Cat(Felix) \models \exists x.Cat(x)$ (Cat(Felix) $\land \neg \exists x.Cat(x)$ is not satisfiable)
- $\checkmark \quad (\forall x. \operatorname{Cat}(x) \to \operatorname{Animal}(x)) \land \operatorname{Cat}(\operatorname{Felix}) \models \operatorname{Animal}(\operatorname{Felix})$
- $\checkmark (\forall x. \operatorname{Cat}(x) \to \operatorname{Animal}(x)) \land \neg \operatorname{Animal}(\operatorname{Felix}) \models \neg \operatorname{Cat}(\operatorname{Felix})$
- \checkmark Cat(Felix) $\models \forall x.Cat(x)$
- **x** sits-on(Felix, Mat1) \land sits-on(Tiddles, Mat2) $\models \neg$ sits-on(Felix, Mat2)
- **x** sits-on(Felix, Mat1) \land sits-on(Tiddles, Mat1) $\models \exists^{\geq 2} x$.sits-on(x, Mat1)

Note that $\exists^{\geq n}, \exists^{\leq n}$ are called counting quantifiers. $\exists^{\geq 3}x.Cat(x) \equiv \exists x, y, z.Cat(x) \land Cat(y) \land Cat(z) \land x \neq y \land x \neq z \land y \neq z$ $\exists^{\leq 2}x.Cat(x) \equiv \forall x, y, z.Cat(x) \land Cat(y) \land Cat(z) \Rightarrow x = y \lor x = z \lor y = z.$

Outline	Announcements	Points 000000000000000000000000000000000000	Logic	PL	FOL	DL
O	O		00	0000000	○○○○○○○●	0000000000000

... just one more example

 $\forall x(Exam(x) \Rightarrow \forall y(hasExaminer(x, y) \Rightarrow Professor(y)))$ Examiners of an exam must be professors. If $Exam^{I} = D \in \mathbb{N}$, $hasExaminer^{I} = \{(n, m) | n \leq m\}$, $Professor^{I} = \{n + n | n \in D\}$, then under this interpretation, every non-negative integer n we have that $m \geq n$ is an even number. Correct interpretation are all models of the formula.

Decidability

- We know that a deduction calculus (a.k.a. inference procedure) is **sound** if $T \vdash F$ implies $T \models F$. It is **complete** if $T \models F$ implies $T \vdash F$.
- FOL is semi-decidable, i.e., when T ⊨ F implies T ⊢ F. This means that we can have a concrete algorithm that terminates and returns the correct answer. However, when T ⊭ F then the deduction algorithm is generally unbounded.
- **Decision procedure**: a sound and a complete algorithm that is guaranteed to terminate on all inputs. Therefore,
- Description logic deals only with decidable fragments of FOL.
- We say DL is in the family of C2, i.e., FOL with two variables and counting quantifiers.
- So which decidable fragments do I have to work with?

Outline O	Announcements O	Points 000000000000000000000000000000000000	Logic	PL 0000000	FOL 00000000	DL ○●○○○○○○○○○○
DL s	yntax					

Signature

DL	FOL	Example	Note	
Concept (or	unary predi-	Cat, Animal,	Equivalent to	
Class) names	cates	Person	FOL unary	
			predicates	
Property	binary predi-	isAdvisorOf,	Equivalent to	
names	cates	loves	FOL binary	
			predicates	
Individual	constants	Sam, Ubbo,	Equivalent	
names		Felix,	to FOL con-	
			stants	

Outline O	Announcements	Points 000000000000000000000000000000000000	Logic 00	PL 0000000	FOL 00000000	DL 000000000000
DL s	yntax					

Operators

- Conjunction □; which is interpreted as the set intersection.
- Negation \neg ; which is interpreted as the set complement.
- Disjunction \sqcup ; which is interpreted as the set union.
- Universal restriction $\forall R.C$,
- Existential restriction ∃R.C,
- Number restriction $\geq nR$, $\leq nR$, and, = nR.
- Subsumption \sqsubseteq ; which is interpreted as the material implication.
- Equivalence \equiv ; which is interpreted as the equivalence.
- Role inclusions o.

$\{T/A\}Box$

- Terminological axioms (TBox) introduce names for complex descriptions.
- Assertional formalisms (ABox) states properties of individuals. This is also know as grounded facts.

Outline	Announcements	Points 000000000000000000000000000000000000	Logic	PL	FOL	DL
O	O		00	0000000	00000000	○○○●○○○○○○○○
DL s	yntax					

Special concepts

- \top ; Thing, the most general concept.
- \perp ; Nothing, inconsistent concept.

Illustrations (one/two free variables)

DL	FOL
Doctor 🗆 Lawyer	$Doctor(x) \lor Lawyer(x)$
Rich ⊓ Happy	$Rich(x) \land Happy(x)$
Cat ⊓ ∃sitsOn.Mat	$\exists y (Cat(x) \land sitsOn(x, y))$
loves [_]	loves(y, x)
hasParent \circ hasBrother	$\exists z \text{ (hasParent}(x, z) \land hasBrother}(z, y))$

Outline O	Announcemer O	nts Points 000000000000000000000000000000000000	Logic 00	PL 0000000	FOL 00000000	DL 000000000000000000000000000000000000	5
DI	_ syntax						
1	Illustrations: T	Box [Hor10]					
	DL:						
		Rich ⊑ ¬Poor		(concept inclu	usion)		
		Cat □ ∃sits-on.Mat ⊑ Happy		(concept inclu			
		$BlackCat \equiv Cat \sqcap \exists hasColour.BlackCat$	lack	(concept equ	ivalence)		
		sits-on ⊑ touches		(role inclusion	ו)		
		Trans(part-of)		(transitivity)			

Equivalent FOL:

$$\begin{split} &\forall x.(\operatorname{Rich}(x) \to \neg \operatorname{Poor}(x)) \\ &\forall x.(\operatorname{Cat}(x) \land \exists y.(\operatorname{sits-on}(x,y) \land \operatorname{Mat}(y)) \to \operatorname{Happy}(x)) \\ &\forall x.(\operatorname{BlackCat}(x) \leftrightarrow (\operatorname{Cat}(x) \land \exists y.(\operatorname{hasColour}(x,y) \land \operatorname{Black}(y))) \\ &\forall x,y.(\operatorname{sits-on}(x,y) \to \operatorname{touches}(x,y)) \\ &\forall x,y.z.((\operatorname{sits-on}(x,y) \land \operatorname{sits-on}(y,z)) \to \operatorname{sits-on}(x,z)) \end{split}$$

Outline O	Announcements O	Points 000000000000000000000000000000000000	Logic	PL 0000000	FOL 00000000	DL 000000000000
DL s	syntax					

Illustrations: TBox

- Woman \sqsubseteq Person ; ?
- Person \equiv HumanBeing; ?
- hasWife \sqsubseteq hasSpouse; $\forall x, y$ (hasWife(x, y) \Rightarrow hasSpouse(x, y)
- hasSpouse \equiv marriedWith; ?
- hasParent \circ hasBrother \sqsubseteq hasUncle; $\forall x, y (\exists z((hasParent(x, z) \land (hasBrother(z, y))) \Rightarrow hasUncle(x, y)))$

Illustrations: ABox [Hor10]

BlackCat(Felix) Mat(Mat1)

Sits-on(Felix,Mat1)

- Person(mary); Person(john)
- hasChild(john, mary);

(concept assertion) (concept assertion) (role assertion)

500

Outline O	Announcements	Points 000000000000000000000000000000000000	Logic 00	PL 0000000	FOL 00000000	DL 0000000000000
DL s	emantics					

Semantics [Hor10]

Outline O	Announcements O	Points 000000000000000000000000000000000000	Logic	PL 0000000	FOL 00000000	DL ○○○○○○○●○○○○
DL s	emantics [Ho	or10]				

Semantics

• The interpretation *I* directly extends to **concept expressions**

$$(C \sqcap D)^{\mathcal{I}} = C^{\mathcal{I}} \cap D^{\mathcal{I}}$$
$$(C \sqcup D)^{\mathcal{I}} = C^{\mathcal{I}} \cup D^{\mathcal{I}}$$
$$(\neg C)^{\mathcal{I}} = \Delta^{\mathcal{I}} \setminus C^{\mathcal{I}}$$
$$\{x\}^{\mathcal{I}} = \{x^{\mathcal{I}}\}$$
$$(\exists R.C)^{\mathcal{I}} = \{x \mid \exists y. \langle x, y \rangle \in R^{\mathcal{I}} \land y \in C^{\mathcal{I}}\}$$
$$(\forall R.C)^{\mathcal{I}} = \{x \mid \forall y. (x, y) \in R^{\mathcal{I}} \Rightarrow y \in C^{\mathcal{I}}\}$$
$$(\leqslant nR)^{\mathcal{I}} = \{x \mid \#\{y \mid \langle x, y \rangle \in R^{\mathcal{I}}\} \leqslant n\}$$
$$(\geqslant nR)^{\mathcal{I}} = \{x \mid \#\{y \mid \langle x, y \rangle \in R^{\mathcal{I}}\} \geqslant n\}$$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Outline	Announcements	Points 000000000000000000000000000000000000	Logic	PL	FOL	DL
O	O		OO	0000000	00000000	00000000000000
DL s	semantics					

Semantics

- Given an interpretation I = (D, .')
 - $I \models C \sqsubseteq D$ iff $C' \subseteq D'$,
 - $I \models C \equiv D$ iff C' = D',
 - $I \models C(a)$ iff $a' \in C'$,
 - $I \models R(a, b)$ iff $\langle a', b' \rangle \in R'$,
 - $I \models < TBox, ABox > iff for every axiom <math>a_x \in TBox \cup ABox, I \models a_x$, and
 - a DL knowledge base is TBox plus ABox, which is written as $K = \langle TBox, ABox \rangle$.
- We say K is satisfiable iff \exists an interpretation (or model) I s.t $I \models K$,
- A concept C is satisfiable w.r.t. K, iff $\exists I = (D, .')$ s.t $I \models K$ and $C' \neq \emptyset$.
- K entails an axiom, $K \models a_x$ iff for every model I of K, $I \models a_x$, i.e., $I \models K$ implies $I \models a_x$.

DL expressivity: Many different DLs

ALC: smallest possibly closed DL

- TBox expressions:
 - Subclass relationship, \sqsubseteq , and equivalence, \equiv .
 - Conjunction, \Box , disjunction, \Box , and negation \neg .
 - Property restriction, \forall , and \exists .
 - Also, \top , and \bot .

e.g., ProudParent \equiv Person $\sqcap \forall$ hasChild.(Doctor $\sqcup \exists$ hasChild.Doctor)

Outline	Announcements	Points 000000000000000000000000000000000000	Logic	PL	FOL	DL
O	O		00	0000000	00000000	○○○○○○○○○●○
DL e	expressivity					

Other extensions

- ALC + role chains = SR. Role chains include
 - hasParent hasBrother ⊑ hasUncle (also include top property and bottom property)
 - Transitivity; (hasAncestor \circ hasAncestor \sqsubseteq hasAncestor)
 - Role hierarchies; (hasFather ⊑ hasParent)
- O nominals (closed classes) (MyBirthdayGuests = {bill,john,mary})
- I inverse roles; (hasParent ≡ hasChild⁻)
- Q quantified cardinality restrictions (Car $\sqsubseteq =$ 4hasTyre.T)

Complexity [HKR09]

- ACL; ExpTime.
- SHIQ, SHOQ, and SHIO; ExpTime.
- SHOIQ; NExpTime.
- SROIQ; N2ExpTime.
- SROIQ^D; We learn about this family next week, when we talk about **ontologies**.

Outline	Announcements	Points 000000000000000000000000000000000000	Logic	PL	FOL	DL
O	O		OO	0000000	00000000	○○○○○○○○○○○○
Ackno	owledgemen	t				

Acknowledgement

The majority of the slides for this course have been prepared by Saminda Abeyruwan.

Outline O	Announcements O	Points 000000000000000000000000000000000000	Logic OO	PL 0000000	FOL 00000000	DL ○○○○○○○○○○○○
	A new look at the	n, James Hendler, and N Semantic Web. of the ACM, 59(9):35–3	5 5			
	The Semantic We	James Hendler, and Ora b. n, 284(5):34–43, May 20				
	15 Years of Semar	Heiner Stuckenschmidt. htic Web: An Incomplete <i>telligenz</i> , 30(2):117–130	5			
	Pascal Hitzler. A Review of the S <i>Communications o</i>	emantic Web. of the ACM, 64(2):76–83	3, February	2021.		
	Pascal Hitzler, Ma	arkus Krötzsch, and Seba	astian Rudo ^l	lph.		

Foundations of Semantic Web Technologies. Chapman & Hall/CRC, 2009.

lan Horrocks.

Description Logic: A formal foundation for languages and tools. Tutorial at the Semantic Technology Conference (SemTech). San Francisco, California, USA.

Outline	O	000000000000000000000000000000000000000	00	0000000	00000000	0000000000000000
	http: //www.cs.ox.a 2010.	ac.uk/people/ian.horn	rocks/Sem	inars/semina	ars.html#tuto	orials,
	Alexander D. M	aedche.				

Ontology Learning for the Semantic Web. Kluwer Academic Publishers, Norwell, MA, USA, 2002.

S. J. Russell and P. Norvig. *Artificial Intelligence: A Modern Approach*. Prentice Hall, 3rd edition, 2009.