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Motion and Path Planning

Definition: Compute sequence of actions that
drives a robot from an initial condition to a
terminal condition while avoiding obstacles,
respecting motion constraints, and possibly
optimizing a cost function.

Aim: Learn about sampling-based motion
planning algorithms

Suggested Readings:

Planning Algorithms, Chapter 5, Steven M. LaValle (2006), Cambridge
University Press.
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Configuration space
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Motion planning algorithms

Key point: motion planning problem described in the real-world, but it really
lives in an another space - the configuration (C-)space!

Two main approaches to continuous motion planning:

Combinatorial planning: constructs structures in the C-space that discretely
and completely capture all information needed to perform planning
Sampling-based planning: uses collision detection algorithms to probe and
incrementally search the C-space for a solution, rather than completely
characterizing all of the Cfree structure
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Sampling-based motion planning

Limitations of combinatorial approaches stimulated the development of
sampling-based approaches

Abandon the idea of explicitly characterizing Cfree and Cobs

Instead, capture the structure of C by random sampling

Use a black-box component (collision checker) to determine which random
configurations lie in Cfree

Use such a probing scheme to build a roadmap and then plan a path

Source: LaValle, S. M. Motion planning. 2011
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Sampling-based motion planning

Pros:

Conceptually simple

Relatively easy to implement

Flexible: one algorithm applies to a variety of robots and problems

Beyond the geometric case: can cope with complex differential constraints,
uncertainty, etc.

Cons:

Unclear how many samples should be generated to retrieve a solution

Can not determine whether a solution does not exist
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Review of sampling-based methods

Traditionally, two major approaches:

Probabilistic Roadmap (PRM): graph-based

Multi-query planner, i.e., designed to solve
multiple path queries on the same scenario
Original version: [Kavraki et al., ’96]
“Lazy” version: [Bohlin & Kavraki, ’00]
Dynamic version: [Jaillet & T. Simeon, ’04]
Asymptotically optimal version: [Karaman &
Frazzoli, ’11]

Rapidly-exploring Random Trees (RRT): tree-based

Single-query planner
Original version: [LaValle & Kuner, ’01]
RDT: [LaValle, ’06]
SRT: [Plaku et al., ’05]
Asymptotically optimal version [Karaman &
Frazzoli, ’11]
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Probabilistic roadmaps (PRM)

A multi-query planner, which generates a roadmap (graph) G , embedded in the
free space

Preprocessing step:

Sample a collection of n configurations
Xn; discard configurations leading to
collisions

Draw an edge between each pair of
samples x , x ′ ∈ Xn such that ||x − x ′|| ≤ r
and straight-line path between x and x ′ is
collision free

Given a query s, t ∈ Cfree , connect them to G
and find a path on the roadmap
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Rapidly-exploring random trees (RRT)

A single-query planner, which grows a tree T , rooted at the start configuration s,
embedded in Cfree

Algorithms works in n iterations:

Sample configuration xrand

Find nearest vertex xnear in T to xrand

Generate configuration xnew in direction of
xrand from xnear , such that
xnearxnew ⊂ Cfree

Update tree: T = T ∪ {xnew , (xnear , xnew )}
Every once in a while, set xrand to be the
target vertex t; terminate when Xnew = T
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Rapidly-exploring random trees (RRT)
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Rapidly-exploring random trees (RRT)

RRT is known to work quite well in
practice

Its performance can be attributed to its
Voronoi bias:

Consider a Voronoi diagram with
respect to the vertices of the tree
For each vertex, its Voronoi cell consists
of all points that are closer to that
vertex than to any other
Vertices on the frontier of the tree have
larger Voronoi cells – hence sampling in
those regions is more likely Source: Arnold et al., 2013
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Theoretical guarantees: probabilistic completeness

Question: how large should the number of samples n be? We can say something
about the asymptotic behavior:

Kavraki et al. ’96: PRM, with r = const, will eventually (as n → ∞) find a
solution if one exists

LaValle, ’98; Kleinbort et al., ’18: RRT will eventually (as n → ∞) find a
solution if one exists

Unless stated otherwise, the configuration space is assumed to be the
d -dimensional Euclidean unit hypercube [0, 1]d , with 2 ≤ d ≤ ∞
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Theoretical guarantees: quality

Question: what can be said about the quality of the returned solution for PRM
and RRT, in terms of length, energy, etc.?

Nechushtan et al. (2010) and Karaman and
Frazzoli (2011) proved that RRT can produce
arbitrarily-bad paths with non-negligible
probability: for example, RRT would prefer to
take the long (red) way
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Theoretical guarantees: quality

Karaman and Frazzoli in 2011 provided the first rigorous study of optimality in
sampling-based planners:

Theorem

The cost of the solution returned by PRM converges, as n → ∞, to the
optimum, when rn = γ( log n

n
)

1
d , where γ only depends on d

KF11 also introduced an asymptotically
optimal variant of RRT called RRT* (right)

Result was later updated to [Solovey et al.

’19]: rn = γ( log n
n
)

1
d+1

Now back to 1/d [Lukyanenko &
Soudbakhsh ’23]
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Observations

PRM-like motion planning algorithms

For a give number of nodes n, they find “good” paths

...however, require many costly collision checksRRT-like motion planning
algorithms

RRT-like motion planning algorithms

Finds a feasible path quickly

...however the quality of that path is, in general, poor

“traps” itself by disallowing new better paths to emerge - RRT* performs
local label correction as samples are added to help remedy this
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Kinodynamic planning

Kinodynamic motion planning problem: in
addition to obstacle avoidance, paths are
subject to differential constraints

The robot operates in the state space X

To move the robot applies control
u ∈ U

Motion needs to satisfy the system’s
constraints: ẋ = f (x , u) for
x ∈ X , u ∈ U [Schmerling & Pavone,
’19]
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Forward-propagation-based algorithms

RRT can be extended to kinodynamic case in a relatively easy way:

Draw a random state and find its nearest neighbor xnear

Sample a random control u ∈ U and random duration t

Forward propagate the control u for t time from xnear

Algorithm: RRT with Control Input (xinit, xgoal, k ,Tprop,U)

1: T .init(xinit)
2: for i = 1 to k do
3: xrand ← RANDOM STATE()
4: xnear ← NEAREST NEIGHBOR(xrand,T )
5: t ← SAMPLE DURATION(0,Tprop)
6: u ← SAMPLE CONTROL INPUT(U)
7: xnew ← PROPAGATE(xnear, u, t)
8: if COLLISION FREE(xnear, xnew) then
9: T .add vertex(xnew)

10: T .add edge(xnear, xnew)

11: return T

Source: Kleinbort et al., 2019
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Steering-based algorithms

When efficient online steering subroutines exist, kinodynamic planning algorithms
may take advantage of this domain knowledge

Connect samples by using an optimal
trajectory (steering problem)

Use reachable sets to find nearest neighbors

Source: Schmerling et al., 2015
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Should probabilistic planners be probabilistic?

Key question: would theoretical guarantees and practical performance still hold if
these algorithms were to be derandomized, i.e., run on deterministic samples?
Important question as derandomization would:

Ease certification process

Ease use of offline computation

Potentially simplify a number of operations (e.g., NN search)
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Designing “good” sequences

l2-dispersion

For a finite set S of points contained in x ⊂ Rd ,
its l2-dispersion D(S) is defined as

D(S) = sup
x∈X

min
s∈S

||s − x ||2

Key facts:

There exist deterministic sequences with
D(S) of order O(n−1/d), referred to as
low-dispersion sequences

Sequences minimizing l2-dispersion only
known for d = 2
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Optimality of deterministic planning

1: V ← {xinit} ∪ SampleFree(n); E ← ∅
2: for all v ∈ V do
3: Xnear ← Near(V \ {v}, v , rn)
4: for all x ∈ Xnear do
5: if CollisionFree(v , x) then
6: E ← E ∪ {(v , x)} ∪ {(x , v)}
7: return ShortestPath(xinit,V ,E )

Optimality: Let c ′ denote the arc length of the path returned with n samples.
Then if

Samples set S has dispersion D(S) ≤ γn−1/d for some γ > 0,

n1/d rn → ∞,

then limn→∞ cn = c∗, where c∗ is the cost of the optimal path
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Deterministic sampling-based motion planning

Asymptotic optimality can be achieved with deterministic sequences and
with a smaller connection radius

Deterministic convergence rates: instrumental to the certification of
sampling-based planners

Computational and space complexity: under some assumptions, arbitrarily
close to theoretical lower bound

Deterministic sequences appear to provide superior performance

Source: Janson et al. Deterministic Sampling-Based Motion Planning: Optimality, Complexity, and Performance. 2018
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Biased sampling for SBMP

Potential issue with uniform
sampling: narrow corridors in
C-space require many samples to
identify/traverse

Key idea: bias sampling towards
suspected such challenging regions
of C-space

Biased sampling distributions can
be hand- constructed and/or adapt
online (e.g., Hybrid Sampling
PRM), or learned from prior
experience solving similar planning
problems

Sources: Hsu et al. Hybrid PRM sampling with a cost-sensitive adaptive strategy. 2005.
Ichter et al. Learned Critical Probabilistic Roadmaps for Robotic Motion Planning. 2020
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