
Outline Audio overview Audio Reference Coroutines

Introduction into Game Programming (CSC329)
– Sound –

Ubbo Visser

Department of Computer Science
University of Miami

Content taken from http://docs.unity3d.com/Manual/

March 4, 2025



Outline Audio overview Audio Reference Coroutines

Outline

Audio overview
Basic Theory
Working with Audio Assets
Audio Recording
Audio Files
Tracker Modules

Audio Reference
Audio Clip
Audio Listener
Create a new Audio Source
Reverb Zones
Microphone

Coroutines



Outline Audio overview Audio Reference Coroutines

Audio overview

Audio overview

Background music or sound effects necessary for games.

Unitys audio system is flexible and powerful.

Most standard audio file formats can be used.

Filters can be used as well, e.g. effects like echo.



Outline Audio overview Audio Reference Coroutines

Basic Theory

Basic Theory

Sounds are emitted by objects and heard by listeners in the real
world.

Unity requires sounds to originate from Audio Sources attached to
objects.

Sounds then picked up by an Audio Listener attached to another
object (e.g. main camera).

Unity then simulates effects of a sources distance and position from
the listener object and play them.

Doppler Effect for added realism.

Adding Audio Filters to objects for echos.

Audio Source, Audio Listener, the audio effects and Reverb Zones
give more information.



Outline Audio overview Audio Reference Coroutines

Working with Audio Assets

Audio Assets

Audio files in AIFF, WAV, MP3 and Ogg.

Importing an audio file creates an Audio Clip.

Clip on Audio Source or used from a script.

Tracker modules for music supported.

Use short audio samples as instruments that are then arranged to
play tunes.



Outline Audio overview Audio Reference Coroutines

Audio Recording

Audio Recording

Access computers microphone from a script and create Audio Clips
by direct recording.

Microphone class: API to find available microphones, query
capabilities and start and end a recording session.



Outline Audio overview Audio Reference Coroutines

Audio Files

Audio Files

Audio in Unity is either Native or Compressed

Native: Use Native (WAV, AIFF) audio for short sound effects. The
audio data will be larger but sounds wont need to be decoded at
runtime.

Compressed: The audio data will be small but will need to be
decompressed at runtime.

Clips must be used in conjunction with Audio Sources and an Audio
Listener in order to actually generate sound.

Audio Source component has Volume, Pitch and numerous other
properties.

Only one Audio Listener in scene allowed (e.g. Main Camera).



Outline Audio overview Audio Reference Coroutines

Tracker Modules

Tracker Modules

Packages of audio samples that have been modeled, arranged and
sequenced programatically.

Similar to MIDI files.

Tracks contain information about when to play the instruments.

Pro: Melody and rhythm of the original tune can be recreated.

Cons: sounds are dependent on the sound bank available in the
audio hardware.

Can sound different on different computers.

4 most common module file formats supported: Impulse Tracker
(.it), Scream Tracker (.s3m), Extended Module File Format (.xm),
and the original Module File Format (.mod).

Most popular tools to create and edit Tracker Modules are
MilkyTracker for OSX and OpenMPT for Windows.



Outline Audio overview Audio Reference Coroutines

Audio Components

Audio Clip

Audio Clip: mono, stereo and multichannel audio assets (up to eight
channels).

Tracker module assets behave the same way as any other audio
assets.

Audio Listener

Acts as a microphone-like device.

Receives input from given Audio Source and plays sounds through
the computer speakers.

Each scene can only have one Audio Listener.

Access the project-wide audio settings using the Audio Manager.

View the Audio Clip Component page (Manual) for more
information about Mono vs Stereo sounds.



Outline Audio overview Audio Reference Coroutines

Audio Components

Audio Source

Audio Source plays back an Audio Clip in the scene.

If Clip is 3D, source is played back at a given position and will
attenuate over distance.

Audio can be spread between speakers (stereo to 7.1) (Spread) and
morphed between 3D and 2D (PanLevel). This can be controlled
over distance with falloff curves.

Individual filters can be applied to each audio source (need to
program due to PRO feature only).



Outline Audio overview Audio Reference Coroutines

Audio Components

Create a new Audio Source

Import your audio files into your Unity Project. These are now
Audio Clips.

Go to GameObject→Create Empty from the menubar.

With the new GameObject selected, select
Component→Audio→Audio Source.

Assign the Audio Clip property of the Audio Source Component in
the Inspector.



Outline Audio overview Audio Reference Coroutines

Audio Components

Reverb Zones

Reverb Zones take an Audio Clip and distorts it depending where
the audio listener is located inside the reverb zone.

Gradually change from a point where there is no ambient effect to a
place where there is one, for example when you are entering a cavern.



Outline Audio overview Audio Reference Coroutines

Audio Components

Microphone

Useful for capturing input from a built-in (physical) microphone on
your PC or mobile device.

Start and end a recording from a built-in microphone, get a listing of
available audio input devices (microphones), and find out the status
of each such input device.

No component for the Microphone class but you can access it from
a script.



Outline Audio overview Audio Reference Coroutines

Coroutines

Why coroutines?

Allows you to spread tasks across several frames.

Method that can pause execution and return control; continues
where it left off in the following frame.

When coroutines?

In situations where you would like to use a method call to contain a
procedural animation or a sequence of events over time.

It is best to use coroutines for longer asynchronous operations, such
as waiting for HTTP transfers, asset loads, or file I/O to complete.

Multithreading?

Coroutines aren’t threads. Synchronous operations that run within a
coroutine still execute on the main thread.

Multi-threaded code within Unity, consider the C# Job System


