
Sound Effects and Music
Chapter 4

Content

• Sound Basics

• The Java Sound API

• Playing a Sound

• Creating a Real-Time
Sound Filter
Architecture

• Creating a Real-Time
Echo Filter

• Emulating 3D Sound

• Creating a Sound
Manager

• Playing Music

• Summary

2

Introduction

• When playing a game sound effects might be there
but you don’t hear them.

• You expect to hear them.

• Sound is important part of a game.

• We will learn basics of playing sound and then
move to effects.

• Create a sound manager.

• Learn to play music with dynamic changes.

3

Sound Basics
• Sound is vibration through a medium.

• Your eardrums pick up the vibration and signal your brain,
which interprets it as sound.

• Vibration through the air creates pressure fluctuations.

• Faster fluctuations create a higher sound wave frequency,
leading you to hear a higher pitch.

4

Sound Basics (2)

• Digital sound, such as that in CD audio and many computer
sound formats, contains sound as a series of discrete
samples of the sound's amplitudes.

• Sample rate is amount of samples stored per second (e.g.
CD 44,100 Hz)

• Higher sample rates result in a more accurate audio
representation, and lower sample rates mean poorer quality
but a smaller file size.

• Samples are typically 16 bits, giving 65,536 amplitude
possibilities.

• Multichannel sound.

5

Java Sound API (2)

• Some sound programs that you can use to create,
record, and edit sounds are

- Pro Tools (www.avid.com),

- Cool Edit (www.oldversion.com/windows/cool-edit-
pro/),

- GoldWave (www.goldwave.com), and

- Audacity (audacity.sourceforge.net).

6

http://www.digidesign.com/ptfree
http://www.oldversion.com/windows/cool-edit-pro/
http://www.oldversion.com/windows/cool-edit-pro/
https://www.goldwave.com/release.php
http://audacity.sourceforge.net/default.htm

Creating a Real-Time Sound Filter Architecture

• Sound filters are simple audio processors that can modify existing
sound samples, usually in real time. Sound filters, also known as
digital signal processors, are used in audio production all the time—
for example, to add distortion to a guitar or an echo to a voice.

• Sound filters can make your game more dynamic.

- Game in which the player is wandering around a cave, an echo would
be appropriate.

- Or, if a rocket is whizzing past the player, you could make the sound
shift from the left to right speaker.

• In this section, you'll create a real-time sound filter architecture
and create two filters: an echo filter and a simulated 3D sound
filter.

7

Creating a Real-Time Echo Filter

• Two elements of an echo: delay and decay.

• The delay is how long it takes for the echo to occur. The decay is how
much quieter the echo was compared to the original sound.

• In the case of you shouting on top of the mountain, the delay was about
one second, and the decay was probably less than 50%. A decay value of
100% means the echo never dies out.

8

Creating a Real-Time Echo Filter (2)

• The SoundFilter class is format-agnostic. It doesn't matter whether the
sound you are filtering has a 44,100Hz sample rate or an 8,000Hz
sample rate. So, you can't simply tell the echo filter the amount of time
to delay.

• Instead, you tell it how many samples to delay. For a 44,100Hz sample
rate and a one-second delay, tell the filter to delay by 44,100 samples.

• Remember, the delay counts from the beginning of the sound, not the
end.

- So, if you want to delay one second after a 44,100Hz sound is finished, set
the delay to the number of samples in the sound plus 44,100.

- Usually, though, you'll want the same echo delay across all sounds, which
means that with longer sounds, the first echo might kick into action while
the original sound is still playing.

9

Emulating 3D Sound

• Many different effects are used to create 3D sound. Here are some
of the most common ones:

- Make sound diminish with distance so the farther away a sound source
is, the quieter it is.

- Pan sounds to the appropriate speaker so a sound source on the left of
the player is played in the left speaker, and a sound source on the right
of the player is played in the right speaker. This can also be extended to
four-speaker surround sound.

- Apply room effects so sound waves bounce off walls, creating echoes
and reverberation.

- Apply the Doppler effect so a sound source's movement affects its
pitch. For instance, a sound source quickly moving toward the player has
a higher pitch than a stationary one. If you've ever heard a fire engine or
train whiz past you, you've experienced this effect.

10

Idea Behind Creating a 3D Filter
• Using Java Sound's Controls, you can dynamically change the volume

and pan of a sound. Unfortunately, the Controls don't have the best
quality for real-time use, and using them for such can create clicks or
"wobbly" sounds. Therefore, you'll do the volume change yourself
instead of using Controls. This means it is your task to avoid clicks
and pops.

• Clicks and pops can happen when the volume of a sound abruptly
changes.

11
Abruptly changing the volume of a sound can result in "pops."

Idea Behind Creating a 3D Filter (2)

• To avoid this in your 3D filter, whenever you need to change the
volume of a sound, be sure to gradually change the volume over time

12

• Because your samples are stored in 16-bit signed format, to change the
volume, just multiply each sample by a factor.

Gradually changing the volume of a sound creates a more natural listening experience.

sample = (short)(sample * volume);

Implementing a 3D Filter
• The Filter3d class

- Modifies the volume of a sound to make it get quieter with distance.

- It keeps track of two Sprite objects: one as a sound source and one as a
listener. The farther away the source Sprite is from the listener Sprite, the
quieter the sound is.

- Distance is measured using the Pythagorean Theorem:

13

A2+B2=C2

• Maximum distance sound

• If the listener is more than the maximum distance from the sound source,
the sound isn't heard at all. The sound's volume is scaled linearly from 0 to
the maximum distance.

Implementing a 3D Filter (3)
• In Filter3d you create a diminishing-with-distance effect—the

minimum amount necessary for a 3D effect.

• If you wanted to add panning, you would need to update the
SoundFilter architecture to enable you to turn a mono sound into a
stereo sound. Then you could calculate the pan you wanted from -1
to 1, where -1 is the left speaker, 1 is the right speaker, and 0 is in the
middle. Finally, the samples for each speaker could be calculated as
follows:

14

short sampleLeft = (short)(sample * (1-pan));
short sampleRight = (short)(sample * (1+pan));

• For a 2D game, the pan could be determined by the position where a
sound source is on the screen. A sound source on the left side of the
screen would play in the left speaker, and so on.

Trying Out the 3D Filter

• The Filter3dTest class is a
graphical demo that enables you
to move a fly around on the
screen using the mouse.

• Along with the fly is a virtual "ear"
in the middle of the screen. The
fly makes a buzzing sound, and the
closer the fly is to the ear, the
louder the buzzing sound is.

• The diminishing-with-distance effect is cool enough for many games;
you can try it out by creating the Filter3dTest class.

Source code: Filter3dTest.java

Playing Music

• Music can change the player's emotions toward elements of the game
(e.g. happy music for easier levels, dramatic music for more difficult
levels).

• When you've decided on the type of music you want, the next step is
to figure out where the music comes from. Games typically play music
in one of three ways:

• Streaming music from an audio track CD

• Playing compressed music such as MP3 or Ogg Vorbis

• Playing MIDI music

16

Playing CD Audio

• Some CD-ROM games have plain old Red Book Audio (the standard
audio CD format) right on the CD.

• The benefit here is you get great-quality sound and it's easy to
implement: Just tell the sound card to start playing the CD, without
any other involvement from the game.

• The other cool aspect is that players can slip the game CD into their
audio CD player and groove to the game's tracks.

• Unfortunately, CD audio takes up a lot of space, typically around 30MB
for a three-minute song. If you have four three-minute songs, that's
120MB of space that could be used for more graphics or bigger levels.
In addition, the Java Sound implementation doesn't support playback
from a CD, so this option is out for you.

17

Playing MP3 and Ogg Vorbis

• The second option is compressed music. MP3 and Ogg Vorbis formats
are much smaller than that for CD audio, typically around 3MB for a
three-minute song, and have near-CD quality. They've become
increasingly more popular in games.

• The drawback here is that decoding MP3 or Ogg Vorbis files takes quite
a chunk of processor power. Sound cards can't play compressed music
directly, so the music is decoded while it's played. This means the extra
processor use can interfere with other parts of your game. On faster,
modern machines, the decoding won't be noticeable, but on slower, older
machines, the decoding could take 20% to 40% of the processor or
more. That could make other parts of the game, such as animation, seem
slow or jerky.

• If the processor time doesn't matter to your game, you'll need to get an
MP3 or Ogg Vorbis Java decoder.

18

Playing MP3 and Ogg Vorbis (2)

• Also, be sure not to load the samples into memory. A compressed sound file
might take up only 1MB for each minute of music, but the uncompressed
samples would take 10MB for each minute. Instead, play any large sounds
directly from the AudioInputStream, which streams the sound from disk.

• But which one should your game use, MP3 or Ogg Vorbis? Although MP3 is
incredibly popular, Ogg Vorbis is license-free and claims better sound quality.
The people playing your game won't notice or care, so go with whichever
one suits your needs better. You can find more information on Ogg Vorbis at
www.xiph.org/ogg/vorbis. Also, be sure to look into MP3 licensing issues at
www.mp3licensing.com.

19

// create the format used for playback
// (uncompressed, 44100Hz, 16-bit, mono, signed, little-endian)
AudioFormat playbackFormat =
 new AudioFormat(44100, 16, 1, true, false);

// open the source file
AudioInputStream source =
 AudioSystem.getAudioInputStream(new File("music.ogg"));

// convert to playback format
source = AudioSystem.getAudioInputStream(playbackFormat, source);

http://www.xiph.org/ogg/vorbis
http://www.mp3licensing.com/default.htm

Playing MIDI Music

• Finally, there's MIDI music. MIDI music isn't sampled music like other
sound formats

• It works more like a composer's sheet music, giving instructions on
which note to play on each instrument. The audio system synthesizes to
each note according to the pitch, instrument, and volume, among other
parameters.

• Because MIDI files contain instructions instead of samples, MIDI files are
very small compared to sampled sound formats and are often measured
in kilobytes rather than megabytes.

• Because the music is synthesized, the quality might not be as high as that
of sampled music. Some instruments won't sound realistic, or the music
might sound a little too mechanical. A creative musician can usually mask
the deficiencies of MIDI music, however.

20

Playing MIDI Music (2)

• The Java Sound API synthesizes MIDI music through the use of a sound
bank, which is a collection of instruments. Unfortunately, although the
Java SDK includes a sound bank, the Java runtime does not. If a sound
bank isn't found, the hardware MIDI port, which has unreliable timing in
Java Sound, is used. For this reason, it's recommended to use a sound
bank.

• The Java SDK includes a minimal-quality sound bank, and you can
download higher-quality sound banks from http://java.sun.com/products/
java-media/sound/soundbanks.html and include them with your game.

• The Java Sound API provides MIDI sound capabilities in the
javax.sound.midi package. To play MIDI music, you need two objects
in this package: Sequence and Sequencer. A Sequence object contains the
MIDI data, and a Sequencer sends a Sequence to the MIDI synthesizer.
Here's an example of playing a MIDI file:

21

http://java.sun.com/products/java-media/sound/soundbanks.html
http://java.sun.com/products/java-media/sound/soundbanks.html

Creating Adaptive Music
• Adaptive music is music that changes based on the state of the game.

• For instance, if the player is battling a large number of enemies, the
music might be fast and loud. Conversely, the music might be quiet
when the player is walking around exploring rooms alone.

• The change in music could happen at any time—for example, the player
could be strolling along one second, and then 100 robots could be
trying to kill him the next. So, changing the music smoothly can be a
challenge.

• You can adapt songs to the game state in two ways:

• Change songs

• Modify the song currently playing

22

Creating Adaptive Music (2)

• Because the actions of a player can change at any time, changing
songs is a more difficult task. The change can't be abrupt, or it will be
distracting. Songs can be designed so that they have "change points"
to signify places where a song change can occur.

• Also, songs need to transition smoothly. To do this, the first song can
fade out while the next song is fading in. Also, while the first song is
fading out, its tempo could change to match the tempo of the next
song.

• Or, you could just take the easy way out and insert a sound of a
scratching phonograph needle.

23

Creating Adaptive Music (3)
• The second option is to simply modify the exiting song. You can do this

by changing the tempo or volume, or adding another instrument to it.

• Adding or taking away an instrument is easy to do with MIDI
sequences. MIDI music is typically organized into tracks, with each
track playing a specific instrument. For instance, there might be one
track for guitar, one for keyboards, and so on.

• You can mute or unmute a track with one method:

24

sequencer.setTrackMute(trackNum, true);

• Here, trackNum is an integer representing the track number you
want to mute. If you don't know what track belongs to what
instrument in your MIDI file, you might have to experiment by muting
each track, one by one.

Source code: MidiTest.java

Summary

• In this chapter, you learned the basics of sound, sound filters, and
music.

• You made real-time echo and pseudo-3D filters, and you created a
cool sound manager to handle game sound effects.

• You also made some adaptive music and learned how to play back
MP3 and Ogg Vorbis sound files.

• Combining this knowledge with graphics and interactivity from the
previous chapters, you're ready to create your own game.

25

