
INFORMED SEARCH
(HEURISTICS),
EXPLORATION 

In which we see how information about the state space
can prevent algorithms from blundering about in the
dark.

Outline

• Best-first search

– Greedy best-first

search

– A* search

• Heuristics

– Admissibility

– Consistency/

Monotonicity

– Quality and

Dominance

– Invention

• Relaxed Problem

• Cost of Subproblem

• Memory-bounded
search

– Iterative-deepening A*

(IDA*)

– Recursive best-first

search(RBFS)

• Local search

algorithms

– Hill-climbing search

– Simulated annealing

search

– Genetic Algorithms

2

Review: Tree search and Graph search

A strategy is defined by picking the order of node expansion
3

Best-first search
• Idea: use an evaluation function f(n) for each node

– estimate of "desirability”, i.e. measures distance to the goal

Expand most desirable unexpanded node

• Implementation:

	 Order the nodes in fringe in decreasing order of

desirability 

• Special cases:

– greedy best-first search

– A* search 

4

A heuristic function

• [dictionary] “A rule of thumb, simplification, or
educated guess that reduces or limits the search
for solutions in domains that are difficult and
poorly understood.”

– h(n) = estimated cost of the cheapest path from node n to goal
node.

– If n is goal then h(n)=0

– Its value is independent of the current search tree; it depends

only on the state(n) and the goal test.

More information later…

5

Greedy best-first search

• Evaluation function f(n) = h(n) (heuristic)

	 = estimate of cost from n to goal

• e.g., hSLD(n) = straight-line distance from n
to Bucharest 

• Greedy best-first search expands the node
that appears to be closest to goal 

6

Routing Problem:

7

8

Routing Problem:  
Romania with step costs in km

Routing Problem:  
Romania with step costs in km

hSLD=straight-line distance heuristic.

hSLD can NOT be computed from the problem description itself

9

Greedy best-first
search example

10

Greedy best-first search
example

11

Greedy best-first search
example

12

Greedy best-first search
example

13

Properties of greedy best-first
search

Complete?

14

Properties of greedy best-first search

• Complete? No – can get stuck in loops,
e.g., Iasi  Neamt  Iasi  Neamt 

• Time?

15

Properties of greedy best-first search

• Complete? No – can get stuck in loops,
e.g., Iasi  Neamt  Iasi  Neamt 

• Time? O(bm), but a good heuristic can give
dramatic improvement

• Space?  

16

Properties of greedy best-first search

• Complete? No – can get stuck in loops,
e.g., Iasi  Neamt  Iasi  Neamt 

• Time? O(bm), but a good heuristic can give
dramatic improvement

• Space? O(bm), keeps all nodes in memory

• Optimal?  

17

Properties of greedy best-first search
Optimal?

18

Properties of greedy best-first search

• Complete? No – can get stuck in loops,
e.g., Iasi  Neamt  Iasi  Neamt 

• Time? O(bm), but a good heuristic can give
dramatic improvement

• Space? O(bm), keeps all nodes in memory

• Optimal? No 

19

Minimizing total path cost: A* search

• Greedy search minimizes the estimated cost to
the goal h(n), and thereby cuts the search cost
considerably.

– But neither optimal nor complete

• Uniform-cost search minimizes the cost of the
path so far g(n)

– It is optimal and complete

– But can be very inefficient

• How about combining these two strategies to
get advantages of both?

 A* algorithm (due to Nils Nilsson for Shaky the robot)

20

A* search
• Best-known form of best-first search.

• Idea: avoid expanding paths that are

already expensive

• Combines the two evaluation functions (of

UCS and GBFS) by summing them up

• Evaluation function f(n) = g(n) + h(n)

– g(n) = cost (so far) from start node to reach n

– h(n) = estimated cost to get from n to goal

– f(n) = estimated total cost of cheapest path solution

through n to goal 
21

Routing Problem:  
Romania with step costs in km

hSLD=straight-line distance heuristic.

hSLD can NOT be computed from the problem description itself

22

A* search example

• Find Bucharest starting at Arad

– f(Arad) = g(Arad, Arad)+h(Arad)=0+366=366

23

A* search example

• Expand Arrad and determine f(n) for each node

– f(Sibiu)=g(Arad,Sibiu)+h(Sibiu)=140+253=393

– f(Timisoara)=g(Arad,Timisoara)+h(Timisoara)=118+329=447

– f(Zerind)=g(Arad,Zerind)+h(Zerind)=75+374=449

• Best choice is Sibiu

24

A* search example

• Expand Sibiu and determine f(n) for each node

– f(Arad)=g(Sibiu,Arad)+h(Arad)=280+366=646

– f(Fagaras)=g(Sibiu,Fagaras)+h(Fagaras)=239+179=415

– f(Oradea)=g(Sibiu,Oradea)+h(Oradea)=291+380=671

– f(Rimnicu Vilcea)=g(Sibiu,Rimnicu Vilcea)+ h(Rimnicu Vilcea)=220+192=413 

• Best choice is Rimnicu Vilcea

25

A* search example

• Expand Rimnicu Vilcea and determine f(n) for each
node

– f(Craiova)=g(Rimnicu Vilcea, Craiova)+h(Craiova)=360+160=526

– f(Pitesti)=g(Rimnicu Vilcea, Pitesti)+h(Pitesti)=317+100=417

– f(Sibiu)=g(Rimnicu Vilcea,Sibiu)+h(Sibiu)=300+253=553

• Best choice is Fagaras
26

A* search example

• Expand Fagaras and determine f(n) for each node

– f(Sibiu)=g(Fagaras, Sibiu)+h(Sibiu)=338+253=591

– f(Bucharest)=g(Fagaras,Bucharest)+h(Bucharest)=450+0=450

• Best choice is Pitesti !!!

27

A* search example

• Expand Pitesti and determine f(n) for each node

– f(Bucharest)=g(Pitesti,Bucharest)+h(Bucharest)=418+0=418

• Best choice is Bucharest !!!

– Optimal solution (only if h(n) is admissible)

• Note values along optimal path !!

28

Admissible heuristics
• An admissible heuristic never overestimates the cost to

reach the goal, i.e., it is optimistic

– Formally, a heuristic h(n) is admissible if for every node n:

• h(n) ≤ h*(n), where h*(n) is the true cost to reach the goal state
from n.

• h(G) = 0 for any goal G.

• Example: hSLD(n) (never overestimates the actual road
distance)

• This optimism transfers to the f function:

	 If h is admissible, since g(n) is the exact cost to reach n, f(n) never

overestimates the actual cost of the best solution through n.

• Theorem: If h(n) is admissible, A* using TREE-SEARCH is
optimal

29

Optimality of A*(standard proof)

• Suppose suboptimal goal G2 in the queue.

• Let n be an unexpanded node on a shortest path to optimal

goal G.

f(G2) 	 = g(G2)	 	 since h(G2)=0

	 	 > g(G)	 	 since G2 is suboptimal

	 	 >= f(n)	 	 since h is admissible (i.e. g(G) >= f(n) = g(n) + h(n))

Since f(G2) > f(n), A* will never select G2 for expansion

30

BUT … with GRAPH-SEARCH

• Previous proof breaks down:

– because GRAPH-SEARCH can discard the optimal

path to a repeated state if it is not the first one
generated.

31

What to do with revisited states?

c = 1

100

21

2

h = 100

0

90

1 	 The heuristic h is
clearly admissible

32

What to do with revisited states?

c = 1

100

21

2

h = 100

0

90

1

104

4+90

f = 1+100 2+1

?
If we discard this new node, then the search

algorithm expands the goal node next and

returns a non-optimal solution

33

1

100

21

2

100

0

90

1

104

4+90

1+100 2+1

2+90

102

Instead, if we do not discard nodes of revisiting  
states, the search terminates with an optimal  
solution

What to do with revisited states?

34

But ...
	 If we do not discard nodes of revisiting states,

the size of the search tree can be exponential
in the number of visited states

1

2

11

1

2

1

1

1+1 1+1

2+1 2+1 2+1 2+1

4 4 4 4 4 4 4 4
35

 It is not harmful to discard a node revisiting a state if
the cost of the new path to this state is ≥ cost of the
previous path 
[so, in particular, one can discard a node if it re-visits a state
already visited by one of its ancestors]

 A* remains optimal, but states can still be re-visited
multiple times  
[the size of the search tree can still be exponential in the
number of visited states]

 Fortunately, for a large family of admissible
heuristics – consistent heuristics – there is a much
more efficient way to handle revisited states

36

Consistency for Optimality of  
with GRAPH-SEARCH

• Proof of Optimality of A* breaks down with GRAPH-
SEARCH because it can discard the optimal path to a
repeated state if it is not the first one generated.

• Two solutions:

– Extend GraphSearch with an extra bookkeeping i.e.

remove more expensive of two paths

– Ensure that optimal path to any repeated state is

always followed first (as with uniform-cost search)

 Extra requirement on h(n): consistency (monotonicity)

37

39

Consistent Heuristic
	 A heuristic h is consistent (or monotone) if

	 1) for each node n and each child n’ of n

	 	 generated by any action a:

	 h(n) ≤ c(n,a,n’) + h(n’)

(triangle inequality)

A consistent heuristic  
is also admissible

 Intuition: a consistent heuristics becomes more
precise as we get deeper in the search tree

38

Optimality of A*

• A* expands nodes in order of increasing f value

• Gradually adds "f-contours" of nodes

• Contour i has all nodes with f = fi, where fi < fi+1 

39

44

 A consistent heuristic is also admissible 

 An admissible heuristic may not be
consistent, but many admissible heuristics
are consistent

Admissibility and Consistency

40

Properties of A*

• Completeness?

41

Properties of A*

• Completeness? Yes

– Since bands of increasing f are added

– Unless there are infinitely many nodes with f ≤ f(G)

• Time complexity?

42

Properties of A*

• Completeness: Yes

• Time complexity:

– Number of nodes expanded is still exponential in the
length of the solution.

• Space complexity?

43

Properties of A*

• Completeness: Yes

• Time complexity: (exponential with path length)

• Space complexity:

– It keeps all generated nodes in memory

– Hence space is the major problem not time

• Optimality?

44

Properties of A*

• Completeness: Yes

• Time complexity: exponential with path length

• Space complexity: all nodes are stored

• Optimality: Yes

– Cannot expand fi+1 until fi is finished.

– A* expands all nodes with f(n)< C*

– A* expands some nodes with f(n)=C*

– A* expands no nodes with f(n)>C*

45

On Completeness and Optimality
 A* with a consistent heuristic function has nice

properties: completeness, optimality, no need to
revisit states

 Theoretical completeness does not mean
“practical” completeness if you must wait too long
to get a solution (remember the time limit issue)

 So, if one can’t design an accurate consistent
heuristic, it may be better to settle for a non-
admissible heuristic that “works well in practice”,
even through completeness and optimality are no
longer guaranteed

46

Heuristic functions

• E.g for the 8-puzzle

– Avg. solution cost is about 22 steps (branching factor +/- 3)

– Exhaustive search to depth 22 looks at 322 ≈ 3.1 x 1010 states.

– A good heuristic function can reduce the search process.

– With repeated states only 9!/2 = 181,440.

47

Heuristic Function Example
E.g., for the 8-puzzle:

• h1(n) = number of misplaced tiles

• h2(n) = the sum of the distances of the tiles from their goal positions,
i.e. no. of squares from desired location of each tile, (total
Manhattan distance) 

• h1(S) = ?

• h2(S) = ?

48

Heuristic Function Example
E.g., for the 8-puzzle: 

• h1(n) = number of misplaced tiles

• h2(n) = the sum of the distances of the tiles from their goal positions,
i.e. no. of squares from desired location of each tile, (total
Manhattan distance) 

• h1(S) = ? 8

• h2(S) = ?

49

Heuristic Function Example
E.g., for the 8-puzzle: 

• h1(n) = number of misplaced tiles

• h2(n) = the sum of the distances of the tiles from their goal positions,
i.e. no. of squares from desired location of each tile, (total
Manhattan distance) 

• h1(S) = ? 8

• h2(S) = ? 3+1+2+2+2+3+3+2 = 18

50

Heuristic quality

• Effective branching factor b*

– is the branching factor that a uniform tree of depth d

would have in order to contain N+1 nodes.

– Measure is fairly constant for sufficiently hard
problems.

• Can thus provide a good guide to the heuristic’s overall usefulness.

• A good value of b* is 1.€

N +1=1+ b*+(b*)2 + ...+ (b*)d

51

• To test h1 and h2, generated 1,200 random problems
with solution lengths from 2 to 24.

• If h2(n) >= h1(n) for all n (both admissible)* note: >=, not <=	
	 then h2 dominates h1 and is better for search

• Given any collection of admissible heuristics, their maximum
value is also admissible and dominates

52

Heuristic quality and dominance

Learning to search better	
• All previous algorithms use fixed strategies.

• Agents can learn to improve their search by exploiting

the meta-level state space.

– Each meta-level state is an internal (computational) state of a program

that is searching in the object-level state space (e.g. Romania)

– In A* such a state consists of the current search tree

• A meta-level learning algorithm from experiences at the
meta-level to avoid exploring unpromising subtrees:

– Can be done using reinforcement learning: the goal of learning is

to minimize the total cost of problem solving, trading off
computational expense and path cost (e.g. path to Fagaras not
useful to expand)

53

Inventing admissible heuristics: Relaxed
problems

• A problem with fewer restrictions on the actions is called a
relaxed problem

– Relaxed 8-puzzle for h1 : a tile can move anywhere (vs. just to adjacent

empty square):

As a result, h1(n) gives the shortest solution

– Relaxed 8-puzzle for h2 : a tile can move one square in any direction,
(even onto occupied square):

As a result, h2(n) gives the shortest solution.

• The cost of an optimal solution to a relaxed problem is an

admissible heuristic for the original problem

• If problem definition is written down in a formal language, it’s

possible to construct relaxed problems automatically (see
Logical Agents and First-Order Logic)

54

84

 By solving relaxed problems at each node

 In the 8-puzzle, the sum of the distances of each tile to

its goal position (h2) corresponds to solving 8 simple
problems:

 It ignores negative interactions among tiles

Inventing admissible heuristics: Relaxed
problem example

14

7

5

2

63

8

64

7

1

5

2

8

3

5

5

di is the length of the

shortest path to move

tile i to its goal position,

ignoring the other tiles,

e.g., d5 = 2

h2 = Σi=1,...8 di

55

Inventing admissible heuristics: 
Solution Cost of Subproblem

• Admissible heuristics can also be derived from the solution
cost of a subproblem of a given problem.

• This cost is a lower bound on the cost of the real problem.

• Pattern databases store the exact solution for every

possible subproblem instance.

– The complete heuristic is constructed using the patterns in the DB

56

 For example, we could consider two more complex relaxed
problems:

  h = d1234 + d5678 [disjoint pattern heuristic]

14

7

5

2

63

8

64

7

1

5

2

8

3

3

2 14 4

1 2 3

d1234 = length of the

shortest path to move

tiles 1, 2, 3, and 4 to

their goal positions,

ignoring the other tiles

6

7

5

87

5

6

8

d5678

Example of Subproblem

57

 For example, we could consider two more complex relaxed
problems:

  h = d1234 + d5678 [disjoint pattern heuristic]

 How to compute d1234 and d5678?

14

7

5

2

63

8

64

7

1

5

2

8

3

3

2 14 4

1 2 3

d1234 = length of the

shortest path to move

tiles 1, 2, 3, and 4 to

their goal positions,

ignoring the other tiles

6

7

5

87

5

6

8

d5678

Example of Subproblem

58

 For example, we could consider two more complex relaxed
problems:

  h = d1234 + d5678 [disjoint pattern heuristic]

 These distances are pre-computed and stored

14

7

5

2

63

8

64

7

1

5

2

8

3

3

2 14 4

1 2 3

d1234 = length of the

shortest path to move

tiles 1, 2, 3, and 4 to

their goal positions,

ignoring the other tiles

6

7

5

87

5

6

8

d5678

Example of Subproblem

59

 For example, we could consider two more complex relaxed
problems:

  h = d1234 + d5678 [disjoint pattern heuristic]

 These distances are pre-computed and stored  

14

7

5

2

63

8

64

7

1

5

2

8

3

3

2 14 4

1 2 3

d1234 = length of the

shortest path to move

tiles 1, 2, 3, and 4 to

their goal positions,

ignoring the other tiles

6

7

5

87

5

6

8

d5678

 Several order-of-magnitude speedups  
for the 15- and 24-puzzle (see R&N)

Example of Subproblem

60

Inventing admissible heuristics: 
Learning from Experience

• Another way to find an admissible heuristic is
through learning from experience: 

– Experience = solving lots of 8-puzzles

– An inductive learning algorithm can be used to predict costs for

other states that arise during search (using neural networks,
decision trees, and other methods).

61

Local search and optimization
• Local search = no search tree; use single current state

and move to neighboring states.

• Advantages:

– Use very little memory

– Find often reasonable solutions in large or infinite state spaces.

• Only applicable to problems where the path is irrelevant
(e.g., 8-queen), unless the path is encoded in the state

• Also useful for pure optimization problems.

– Find best state according to some objective function.

– e.g. survival of the fittest as a metaphor for optimization.

62

State space landscape

• Problem: depending on initial state, can
get stuck in local maxima 

63

Hill-climbing search

• “is a loop that continuously moves in the
direction of increasing value”, i.e. uphill

– It terminates when a peak is reached.

• Hill climbing does not look ahead of the
immediate neighbors of the current state.

• Hill-climbing chooses randomly among the set of
best successors, if there is more than one.

• Hill-climbing a.k.a. greedy local search

64

Hill-climbing search

• "Like climbing Everest in thick fog with
amnesia" 

65

Example: n-queens Problem

• Put n queens on an n × n board with no
two queens on the same row, column, or
diagonal 

66

8-queens Problem Incremental or
Uninformed Formulation

Incremental formulation: augment state description starting with an empty
state) vs. complete-state formulation (starts with all 8 queens on board)

• States??

• Initial state??

• Actions??

• Goal test??

67

Incremental formulation:

• States? Any arrangement of 0 to 8 queens on the board

• Initial state? No queens on board

• Actions/Successor function? Add queen to any empty square

• Goal test? 8 queens on board and none attacked

•  64 x 63 x … x 57 possible sequences to investigate ≈ 1.8 x 1014

8-queens Problem Incremental or
Uninformed Formulation

68

Incremental formulation (alternative)

• States? n (0≤ n≤ 8) queens on the board, one per column in the n

leftmost columns with no queen attacking another.

• Actions/Successor function? Add queen in leftmost empty column such

that is not attacking other queens

•  only 2057 possible sequences to investigate

• Yet makes no difference when n=100

8-queens Problem Incremental or
Uninformed Formulation

69

8-queens problem  
Complete-state or Informed

Formulation Hill-climbing example

• Complete-state formulation (typically used in
local searches): each state has 8 queens on
board, one per column.

• Successor function: returns all possible states
generated by moving a single queen to another
square in the same column.

• Heuristic function h(n): the number of pairs of
queens that are attacking each other (directly or
indirectly).

70

8-queens problem  
Hill-climbing example

a) Shows a state of h=17 and the h-value for each
possible successor.

b) Shows a local minimum in the 8-queens state space
(h=1).

a) b)

71

Drawbacks

• Local maxima: local max is peak that is higher than each
of its neighboring states, but lower than global maximum

• Plateaux: an area of the state space where the evaluation
function is flat.

 Incomplete: Gets stuck 86% of the time, solving only 14%
of problem instances

Works quickly: 4 steps on average when it succeeds and

	 3 steps when it gets stuck (not bad for state space with 88
≈ 17 million states)

72

Drawbacks

• Local maxima: local max is peak that is higher than each
of its neighboring states, but lower than global maximum

• Ridge: sequence of local maxima difficult for greedy
algorithms to navigate

• Plateaux: an area of the state space where the evaluation
function is flat.

• Gets stuck 86% of the time, works quickly (4 steps on
average when it succeeds and 3 when it gets stuck – not
bad for state space with 88 ≈ 17 million states) 73

Hill-climbing variations

• Stochastic hill-climbing

– Random selection among the uphill moves.

– The selection probability can vary with the steepness

of the uphill move.

• First-choice hill-climbing

– Stochastic hill climbing by generating successors
randomly until a better one is found.

• Random-restart hill-climbing

– Tries to avoid getting stuck in local maxima.

74

Simulated annealing search
• Hill-Climbing that never makes “downhill” moves toward

states with lower value (or higher cost) is guaranteed to
be incomplete, because it can get stuck in local
maximum.

• In contrast, purely random walk (moving to a successor
chosen uniformly at random from set of successor) is
complete but extremely inefficient

• How about combining the two?  Simulated annealing,
a version of stochastic hill climbing where some downhill
moves are allowed: they are accepted readily early in
annealing schedule and less often as time goes on.

•  

75

Simulated annealing
• Origin; metallurgical annealing (high T to harden metals, then

gradually cooling them)

• Switch point of view from hill climbing to gradient descent (i.e.

minimize cost)

• Idea: escape local minima (or local maxima experienced with hill-

climbing) by allowing some "bad” random moves

– but gradually decrease their frequency

• Bouncing ball analogy:

– Goal: get ball in deepest crevice of bumpy surface

– If let ball roll, might get stuck in local minimum

– If shake surface hard (high temperature), ball bounces out of LOCAL min, but if

shake too hard, ball will be dislodged from GLOBAL min

 Best start to shake hard, then gradually reduce intensity (lower the temperature),

• Can prove: If T decreases slowly enough, best state is reached.

• Applied for VLSI layout in 1980s, airline scheduling, etc.

76

Simulated annealing

77

Properties of simulated
annealing search

• One can prove: If T decreases slowly enough,
then simulated annealing search will find a
global optimum with probability approaching 1 

• Widely used in VLSI layout, airline scheduling,
etc. 

78

107

Steepest Descent
1) S  initial state

2) Repeat:

a) S’  arg minS’∈SUCCESSORS(S){h(S’)}

b) if GOAL?(S’) return S’

c) if h(S’) < h(S) then S  S’ else return failure

Similar to:

- hill climbing with –h

- gradient descent over continuous space

79

Application: 8-Queen
Repeat n times:

1) Pick an initial state S at random with one queen in each column

2) Repeat k times:

a) If GOAL?(S) then return S

b) Pick an attacked queen Q at random

c) Move Q in its column to minimize the number of attacking

queens  new S [min-conflicts heuristic]

3) Return failure
1
2

3
3
2
2
3

2
2

2
2

2
0
2

80

Application: 8-Queen
Repeat n times:

1) Pick an initial state S at random with one queen in each column

2) Repeat k times:

a) If GOAL?(S) then return S

b) Pick an attacked queen Q at random

c) Move Q it in its column to minimize the number of attacking

queens is minimum  new S

1
2

3
3
2
2
3

2
2

2
2

2
0
2

Why does it work ???

1) There are many goal states that are  

 well-distributed over the state space

2) If no solution has been found after a few 

 steps, it’s better to start it all over again. 
 Building a search tree would be much less  
 efficient because of the high branching  
 factor

3) Running time almost independent of the  
 number of queens

81

Steepest Descent
1) S  initial state

2) Repeat:

a) S’  arg minS’∈SUCCESSORS(S){h(S’)}

b) if GOAL?(S’) return S’

c) if h(S’) < h(S) then S  S’ else return failure

may easily get stuck in local minima

 Random restart (as in n-queen example)

 Monte Carlo descent

82

Monte Carlo Descent
1) S  initial state

2) Repeat k times:

a) If GOAL?(S) then return S

b) S’  successor of S picked at random

c) if h(S’) ≤ h(S) then S  S’

d) else

- Δh = h(S’)-h(S)

- with probability ~ exp(−Δh/T), where T is called the

“temperature” S  S’ [Metropolis criterion]

3) Return failure

Simulated annealing lowers T over the k iterations.

It starts with a large T and slowly decreases T

83

“Parallel” Local Search Techniques

They perform several local searches
concurrently, but not independently:

 Beam search

 Genetic algorithms

See R&N, local search

84

Local Beam Search

• Keep track of k states rather than just one 
Start with k randomly generated states

• At each iteration, all the successors of all k
states are generated

If any one is a goal state,

 stop;

Else

select the k best successors from the complete list and repeat. 

85

Local Beam Search
• Algorithms different

– In a random-restart search, each search process
runs independently of the others.

– In a local beam search, useful information is passed
among the parallel search threads.

• States that generate the best successors tell
others

• Effect: algorithm quickly abandons unfruitful
searches and moves its resources to where the
most progress is being made

86

Genetic algorithms

• Variant of local beam search with “sexual”
recombination.

87

Genetic algorithms (GA)
• A successor state is generated by combining two parent

states (vs. modifying a single state in local beam search)

• Start with k randomly generated states (population) 

• Each state, or individual, is represented as a string over
a finite alphabet (often a string of 0s and 1s)

• Evaluation function (fitness function in GA terminology)

– Returns higher values for better states (e.g. # of non-attacking

pair of queens) 

• Produce the next generation of states by selection,
crossover, and mutation 

88

Genetic algorithms

• In this instance:

– Fitness function: number of non-attacking pairs of queens (min =

0, max = (8 × 7)/2 = 28)

– Probability of being selected for reproduction is directly

proportional to fitness score:

– 24/(24+23+20+11) = 31%

– 23/(24+23+20+11) = 29% etc 

89

Genetic algorithms

90

Genetic algorithms

Reproduction step example

91

Search problems

Blind search (uninformed search)

Heuristic search:  
Best-First and A*

Construction of Heuristics Local searchVariants of A*

92

When to Use Search Techniques?

1) The search space is small, and

• No other technique is available, or

• Developing a more efficient technique is not

worth the effort  

2) The search space is large, and

• No other available technique is available, and

• There exist “good” heuristics

93

Exploration problems

• Until now all algorithms were offline.

– Offline = solution is determined before executing it.

– Online = interleaving computation and action

• Online search is necessary for dynamic and
semi-dynamic environments

– It is impossible to take into account all possible contingencies.

• Used for exploration problems:

– Unknown states and actions.

– e.g. any robot in a new environment, a newborn baby,…

94

Online search problems
• Agent knowledge:

– ACTION(s): list of allowed actions in state s

– C(s,a,s’): step-cost function (! After s’ is determined)

– GOAL-TEST(s)

• An agent can recognize previous states.

• Actions are deterministic.

• Access to admissible heuristic h(s)

	 	 e.g. manhattan distance

95

Online search problems
• Objective: reach goal with minimal cost

– Cost = total cost of travelled path

– Competitive ratio=comparison of cost with cost of the

solution path if search space is known.

– Can be infinite in case of the agent

	 accidentally reaches dead ends

96

The adversary argument

• Assume an adversary who can construct the state space
while the agent explores it

– Visited states S and A. What next?

• Fails in one of the state spaces

• No algorithm can avoid dead ends in all state spaces.

97

Online search agents

• The agent maintains a map of the
environment.

– Updated based on percept input.

– This map is used to decide next action.

Note difference with e.g. A*

An online version can only expand the node it is

physically in (local order)

98

Online DF-search

99

Online DF-search, example

• Assume maze problem on
3x3 grid.

• s’ = (1,1) is initial state

• Result, unexplored (UX),

unbacktracked (UB), …

	 	 are empty

• S,a are also empty

100

Online DF-search, example

• GOAL-TEST((,1,1))?

– S not = G thus false

• (1,1) a new state?

– True

– ACTION((1,1)) -> UX[(1,1)]

• {RIGHT,UP}

• s is null?

– True (initially)

• UX[(1,1)] empty?

– False

• POP(UX[(1,1)])->a

– A=UP

• s = (1,1)

• Return a

S’=(1,1)

101

Online DF-search, example

• GOAL-TEST((2,1))?

– S not = G thus false

• (2,1) a new state?

– True

– ACTION((2,1)) -> UX[(2,1)]

• {DOWN}

• s is null?

– false (s=(1,1))

– result[UP,(1,1)] <- (2,1)

– UB[(2,1)]={(1,1)}

• UX[(2,1)] empty?

– False

• A=DOWN, s=(2,1) return A

S

S’=(2,1)

102

Online DF-search, example

• GOAL-TEST((1,1))?

– S not = G thus false

• (1,1) a new state?

– false

• s is null?

– false (s=(2,1))

– result[DOWN,(2,1)] <- (1,1)

– UB[(1,1)]={(2,1)}

• UX[(1,1)] empty?

– False

• A=RIGHT, s=(1,1) return A

S’=(1,1)

103

S

Online DF-search, example

• GOAL-TEST((1,2))?

– S not = G thus false

• (1,2) a new state?

– True, UX[(1,2)]={RIGHT,UP,LEFT}

• s is null?

– false (s=(1,1))

– result[RIGHT,(1,1)] <- (1,2)

– UB[(1,2)]={(1,1)}

• UX[(1,2)] empty?

– False

• A=LEFT, s=(1,2) return A

S

S’=(1,2)

104

Online DF-search, example

• GOAL-TEST((1,1))?

– S not = G thus false

• (1,1) a new state?

– false

• s is null?

– false (s=(1,2))

– result[LEFT,(1,2)] <- (1,1)

– UB[(1,1)]={(1,2),(2,1)}

• UX[(1,1)] empty?

– True

– UB[(1,1)] empty? False

• A= b for b in result[b,(1,1)]=(1,2)

– B=RIGHT

• A=RIGHT, s=(1,1) …

S’=(1,1)

105

S

Online DF-search

• Worst case each node is visited
twice.

• An agent can go on a long walk
even when it is close to the
solution.

• An online iterative deepening
approach solves this problem.

• Online DF-search works only
when actions are reversible.

106

Online local search

• Hill-climbing is already online

– One state is stored.

• Bad performance due to local maxima

– Random restarts impossible.

• Solution: Random walk introduces exploration (can produce
exponentially many steps)

107

Online local search
• Solution 2: Add memory to hill climber

– Store current best estimate H(s) of cost to reach goal

– H(s) is initially the heuristic estimate h(s)

– Afterward updated with experience (see below)

• Learning real-time A* (LRTA*)

108

Learning real-time A*

109

Summary
• Heuristics to reduce search costs

• Algorithms that use heuristics, optimality comes with price in

terms of search costs:

– Best-first search is just GRAPH-SEARCH where the minimum-cost

unexpanded nodes are selected for expansion. Best-first algorithms
typically use a heuristic function h(n) that estimates the cost of a solution
from n

– Greedy best-first search expands nodes with minimal h(n). It is not
optimal but is often efficient.

– A* search expands nodes with minimal f(n)=g(n)+h(n). A* is complete
and optimal, provided that we guarantee that h(n) is admissible (for
TREE-SE ARCH) or consistent (for GRAPH-SEARCH). The space
complexity of A*is still prohibitive.

– The performance of heuristic search algorithms depends on the quality of
the heuristic function.

110

Summary (2)
– Local search methods such as the classical hill-climbing algorithm

operate on complete-state formulations. Several stochastic
algorithms have been developed, including simulated annealing,
which returns optimal solutions when given an appropriate cooling
schedule. 

– A genetic algorithm is a stochastic hill-climbing search in which a
large population of states is maintained. New states are generated
by mutation and by crossover, which combines of pairs of states
from the population.  

– Exploration problems arise when the agent has no idea about the
states and actions of its environment. For safely explorable
environments, online search agents can build a map and find a goal
if one exists. Updating heuristic estimates from experience provides
an effective method to escape from local minima.

111

