
INFORMED SEARCH 
(HEURISTICS), 
EXPLORATION 

In which we see how information about the state space 
can prevent algorithms from blundering about in the 
dark. 
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Review: Tree search and Graph search

A strategy is defined by picking the order of node expansion
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Best-first search
• Idea: use an evaluation function f(n) for each node


– estimate of "desirability”, i.e. measures distance to the goal

Expand most desirable unexpanded node


• Implementation:

	 Order the nodes in fringe in decreasing order of 

desirability 

• Special cases:

– greedy best-first search

– A* search 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A heuristic function

• [dictionary] “A rule of thumb, simplification, or 
educated guess that reduces or limits the search 
for solutions in  domains that are difficult and 
poorly understood.”


– h(n) = estimated cost of the cheapest path from node n to goal 
node.


– If n is goal then h(n)=0

– Its value is independent of the current search tree; it depends 

only on the state(n) and the goal test.

More information later…
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Greedy best-first search

• Evaluation function f(n) = h(n) (heuristic)

	 = estimate of cost from n to goal


• e.g., hSLD(n) = straight-line distance from n 
to Bucharest 

• Greedy best-first search expands the node 
that appears to be closest to goal 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Routing Problem: 
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Routing Problem:  
Romania with step costs in km



Routing Problem:  
Romania with step costs in km

hSLD=straight-line distance heuristic.

hSLD can NOT be computed from the problem description itself
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Greedy best-first 
search example
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Greedy best-first search 
example
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Greedy best-first search 
example
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Greedy best-first search 
example
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Properties of greedy best-first 
search

Complete? 
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Properties of greedy best-first search

• Complete? No – can get stuck in loops, 
e.g., Iasi  Neamt  Iasi  Neamt  


• Time? 
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Properties of greedy best-first search

• Complete? No – can get stuck in loops, 
e.g., Iasi  Neamt  Iasi  Neamt  


• Time? O(bm), but a good heuristic can give 
dramatic improvement


• Space?  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Properties of greedy best-first search

• Complete? No – can get stuck in loops, 
e.g., Iasi  Neamt  Iasi  Neamt  


• Time? O(bm), but a good heuristic can give 
dramatic improvement


• Space? O(bm), keeps all nodes in memory

• Optimal?  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Properties of greedy best-first search
Optimal? 
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Properties of greedy best-first search

• Complete? No – can get stuck in loops, 
e.g., Iasi  Neamt  Iasi  Neamt  


• Time? O(bm), but a good heuristic can give 
dramatic improvement


• Space? O(bm), keeps all nodes in memory

• Optimal? No 

19



Minimizing total path cost: A* search

• Greedy search minimizes the estimated cost to 
the goal h(n), and thereby cuts the search cost 
considerably.

– But neither optimal nor complete


• Uniform-cost search minimizes the cost of the 
path so far g(n)

– It is optimal and complete

– But can be very inefficient


• How about combining these two strategies to 
get advantages of both?

 A* algorithm (due to Nils Nilsson for Shaky the robot) 
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A* search
• Best-known form of best-first search.

• Idea: avoid expanding paths that are 

already expensive

• Combines the two evaluation functions (of 

UCS and GBFS) by summing them up

• Evaluation function f(n) = g(n) + h(n)


– g(n) = cost (so far) from start node to reach n

– h(n) = estimated cost to get from n to goal

– f(n) = estimated total cost of cheapest path solution 

through n to goal 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Routing Problem:  
Romania with step costs in km

hSLD=straight-line distance heuristic.

hSLD can NOT be computed from the problem description itself

22



A* search example

• Find Bucharest starting at Arad

– f(Arad) = g(Arad, Arad)+h(Arad)=0+366=366
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A* search example

• Expand Arrad and determine f(n) for each node

– f(Sibiu)=g(Arad,Sibiu)+h(Sibiu)=140+253=393

– f(Timisoara)=g(Arad,Timisoara)+h(Timisoara)=118+329=447

– f(Zerind)=g(Arad,Zerind)+h(Zerind)=75+374=449


• Best choice is Sibiu
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A* search example

• Expand Sibiu and determine f(n) for each node

– f(Arad)=g(Sibiu,Arad)+h(Arad)=280+366=646

– f(Fagaras)=g(Sibiu,Fagaras)+h(Fagaras)=239+179=415

– f(Oradea)=g(Sibiu,Oradea)+h(Oradea)=291+380=671

– f(Rimnicu Vilcea)=g(Sibiu,Rimnicu Vilcea)+ h(Rimnicu Vilcea)=220+192=413 

• Best choice is Rimnicu Vilcea
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A* search example

• Expand Rimnicu Vilcea and determine f(n) for each 
node

– f(Craiova)=g(Rimnicu Vilcea, Craiova)+h(Craiova)=360+160=526

– f(Pitesti)=g(Rimnicu Vilcea, Pitesti)+h(Pitesti)=317+100=417

– f(Sibiu)=g(Rimnicu Vilcea,Sibiu)+h(Sibiu)=300+253=553


• Best choice is Fagaras
26



A* search example

• Expand Fagaras and determine f(n) for each node

– f(Sibiu)=g(Fagaras, Sibiu)+h(Sibiu)=338+253=591

– f(Bucharest)=g(Fagaras,Bucharest)+h(Bucharest)=450+0=450


• Best choice is Pitesti !!!
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A* search example

• Expand Pitesti and determine f(n) for each node

– f(Bucharest)=g(Pitesti,Bucharest)+h(Bucharest)=418+0=418


• Best choice is Bucharest !!!

– Optimal solution (only if h(n) is admissible) 


• Note values along optimal path !!
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Admissible heuristics
• An admissible heuristic never overestimates the cost to 

reach the goal, i.e., it is optimistic 

– Formally, a heuristic h(n) is admissible if for every node n:


• h(n) ≤ h*(n), where h*(n) is the true cost to reach the goal state 
from n.


• h(G) = 0 for any goal G.


• Example: hSLD(n) (never overestimates the actual road 
distance)


• This optimism transfers to the f function:

	 If h is admissible, since g(n) is the exact cost to reach n, f(n) never 

overestimates the actual cost of the best solution through n.


• Theorem: If h(n) is admissible, A* using TREE-SEARCH is 
optimal

29



Optimality of A*(standard proof)

• Suppose suboptimal goal G2 in the queue.

• Let n be an unexpanded node on a shortest path to optimal 

goal G.

f(G2 ) 	 = g(G2 )	 	 since h(G2 )=0

	 	 > g(G)	 	 since G2 is suboptimal

	 	 >= f(n)	 	 since h is admissible (i.e. g(G) >=  f(n) = g(n) + h(n) ) 

Since f(G2) > f(n), A* will never select G2 for expansion
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BUT … with GRAPH-SEARCH 

• Previous proof breaks down:

– because GRAPH-SEARCH can discard the optimal 

path to a repeated state if it is not the first one 
generated.
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What to do with revisited states?

c = 1

100

21

2

h = 100

0

90

1 	 The heuristic h is 
clearly admissible
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What to do with revisited states?

c = 1

100

21

2

h = 100

0

90

1

104

4+90

f = 1+100 2+1

?
If we discard this new node, then the search

algorithm expands the goal node next and

returns a non-optimal solution
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Instead, if we do not discard nodes of revisiting  
states, the search terminates with an optimal  
solution

What to do with revisited states?
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But ...
	 If we do not discard nodes of revisiting states, 

the size of the search tree can be exponential 
in the number of visited states

1

2

11

1

2

1

1

1+1 1+1

2+1 2+1 2+1 2+1

4 4 4 4 4 4 4 4
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 It is not harmful to discard a node revisiting a state if 
the cost of the new path to this state is ≥ cost of the 
previous path 
[so, in particular, one can discard a node if it re-visits a state 
already visited by one of its ancestors]


 A* remains optimal, but states can still be re-visited 
multiple times  
[the size of the search tree can still be exponential in the 
number of visited states]


 Fortunately, for a large family of admissible 
heuristics – consistent heuristics – there is a much 
more efficient way to handle revisited states
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Consistency for Optimality of  
with GRAPH-SEARCH 

• Proof of Optimality of A* breaks down with GRAPH-
SEARCH because it can discard the optimal path to a 
repeated state if it is not the first one generated.


• Two solutions:

– Extend GraphSearch with an extra bookkeeping i.e. 

remove more expensive of two paths

– Ensure that optimal path to any repeated state is 

always followed first (as with uniform-cost search) 

 Extra requirement on h(n): consistency (monotonicity)
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Consistent Heuristic
	 A heuristic h is consistent (or monotone) if 

	 1) for each node n and each child n’ of n

	 	 generated by any action a:

	           h(n) ≤ c(n,a,n’) + h(n’)

       

(triangle inequality)

A consistent heuristic  
is also admissible

 Intuition: a consistent heuristics becomes more           
precise as we get deeper in the search tree
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Optimality of A*

• A* expands nodes in order of increasing f value

• Gradually adds "f-contours" of nodes 

• Contour i has all nodes with f = fi, where fi < fi+1 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 A consistent heuristic is also admissible 

 An admissible heuristic may not be 
consistent, but many admissible heuristics 
are consistent

Admissibility and Consistency
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Properties of A*

• Completeness?
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Properties of A*

• Completeness? Yes

– Since bands of increasing f are added

– Unless there are infinitely many nodes with f ≤ f(G)


• Time complexity?
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Properties of A*

• Completeness: Yes

• Time complexity:


– Number of nodes expanded is still exponential in the 
length of the solution.


• Space complexity?
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Properties of A*

• Completeness: Yes

• Time complexity: (exponential with path length)

• Space complexity:


– It keeps all generated nodes in memory

– Hence space is the major problem not time


• Optimality?
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Properties of A*

• Completeness: Yes

• Time complexity: exponential with path length

• Space complexity: all nodes are stored

• Optimality: Yes


– Cannot expand fi+1 until fi is finished.

– A* expands all nodes with f(n)< C*

– A* expands some nodes with f(n)=C*

– A* expands no nodes with f(n)>C*
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On Completeness and Optimality
 A* with a consistent heuristic function has nice 

properties: completeness, optimality, no need to 
revisit states


 Theoretical completeness does not mean 
“practical” completeness if you must wait too long 
to get a solution (remember the time limit issue)


 So, if one can’t design an accurate consistent 
heuristic, it may be better to settle for a non-
admissible heuristic that “works well in practice”, 
even through completeness and optimality are no 
longer guaranteed 
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Heuristic functions

• E.g for the 8-puzzle

– Avg. solution cost is about 22 steps (branching factor +/- 3)

– Exhaustive search to depth 22 looks at 322 ≈ 3.1 x 1010 states.

– A good heuristic function can reduce the search process.

– With repeated states only 9!/2 = 181,440.
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Heuristic Function Example
E.g., for the 8-puzzle:


• h1(n) = number of misplaced tiles


• h2(n) = the sum of the distances of the tiles from their goal positions, 
i.e. no. of squares from desired location of each tile, (total 
Manhattan distance) 

• h1(S) = ? 

• h2(S) = ? 
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Heuristic Function Example
E.g., for the 8-puzzle: 

• h1(n) = number of misplaced tiles


• h2(n) = the sum of the distances of the tiles from their goal positions, 
i.e. no. of squares from desired location of each tile, (total 
Manhattan distance) 

• h1(S) = ? 8

• h2(S) = ? 
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Heuristic Function Example
E.g., for the 8-puzzle: 

• h1(n) = number of misplaced tiles


• h2(n) = the sum of the distances of the tiles from their goal positions, 
i.e. no. of squares from desired location of each tile, (total 
Manhattan distance) 

• h1(S) = ? 8

• h2(S) = ? 3+1+2+2+2+3+3+2 = 18 
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Heuristic quality

• Effective branching factor b*

– is the branching factor that a uniform tree of depth d 

would have in order to contain N+1 nodes.


– Measure is fairly constant for sufficiently hard 
problems.


• Can thus provide a good guide to the heuristic’s overall usefulness.

• A good value of b* is 1.€ 

N +1=1+ b*+(b*)2 + ...+ (b*)d
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• To test h1 and h2, generated 1,200 random problems 
with solution lengths from 2 to 24.


• If h2(n) >= h1(n) for all n (both admissible)* note: >=, not <=	
	 then h2 dominates h1 and is better for search


• Given any collection of admissible heuristics, their maximum 
value is also admissible and dominates

52
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Learning to search better	
• All previous algorithms use fixed strategies.

• Agents can learn to improve their search by exploiting 

the meta-level state space.

– Each meta-level state is an internal (computational) state of a program 

that is searching in the object-level state space (e.g. Romania)

– In A* such a state consists of the current search tree


• A meta-level learning algorithm from experiences at the 
meta-level to avoid exploring unpromising subtrees:

– Can be done using reinforcement learning: the goal of learning is 

to minimize the total cost of problem solving, trading off 
computational expense and path cost (e.g. path to Fagaras not 
useful to expand)
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Inventing admissible heuristics: Relaxed 
problems

• A problem with fewer restrictions on the actions is called a 
relaxed problem

– Relaxed 8-puzzle for h1 : a tile can move anywhere (vs. just to adjacent 

empty square):

As a result, h1(n) gives the shortest solution


– Relaxed 8-puzzle for h2 : a tile can move one square in any direction, 
(even onto occupied square):


As a result, h2(n) gives the shortest solution.

• The cost of an optimal solution to a relaxed problem is an 

admissible heuristic for the original problem

• If problem definition is written down in a formal language, it’s 

possible to construct relaxed problems automatically (see 
Logical Agents and First-Order Logic)
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 By solving relaxed problems at each node

 In the 8-puzzle, the sum of the distances of each tile to 

its goal position (h2) corresponds to solving 8 simple 
problems:


 It ignores negative interactions among tiles 

Inventing admissible heuristics: Relaxed 
problem example
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di is the length of the

shortest path to move

tile i to its goal position, 

ignoring the other tiles,

e.g., d5 = 2


h2 = Σi=1,...8 di
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Inventing admissible heuristics: 
Solution Cost of Subproblem

• Admissible heuristics can also be derived from the solution 
cost of a subproblem of a given problem.


• This cost is a lower bound on the cost of the real problem.

• Pattern databases store the exact solution for every 

possible subproblem instance.

– The complete heuristic is constructed using the patterns in the DB
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 For example, we could consider two more complex relaxed 
problems:


  h = d1234 + d5678 [disjoint pattern heuristic]
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 For example, we could consider two more complex relaxed 
problems:


  h = d1234 + d5678 [disjoint pattern heuristic]


 How to compute d1234 and d5678? 
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 For example, we could consider two more complex relaxed 
problems:


  h = d1234 + d5678 [disjoint pattern heuristic]

 These distances are pre-computed and stored 
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 For example, we could consider two more complex relaxed 
problems:


  h = d1234 + d5678 [disjoint pattern heuristic]

 These distances are pre-computed and stored  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 Several order-of-magnitude speedups  
for the 15- and 24-puzzle (see R&N)

Example of Subproblem
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Inventing admissible heuristics: 
Learning from Experience

• Another way to find an admissible heuristic is 
through learning from experience: 

– Experience = solving lots of 8-puzzles

– An inductive learning algorithm can be used to predict costs for 

other states that arise during search (using neural networks, 
decision trees, and other methods). 
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Local search and optimization
• Local search = no search tree; use single current state 

and move to neighboring states.

• Advantages:


– Use very little memory

– Find often reasonable solutions in large or infinite state spaces.


• Only applicable to problems where the path is irrelevant 
(e.g., 8-queen), unless the path is encoded in the state


• Also useful for pure optimization problems.

– Find best state according to some objective function.

– e.g. survival of the fittest as a metaphor for optimization.
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State space landscape

• Problem: depending on initial state, can 
get stuck in local maxima 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Hill-climbing search

• “is a loop that continuously moves in the 
direction of increasing value”, i.e. uphill

– It terminates when a peak is reached.


• Hill climbing does not look ahead of the 
immediate neighbors of the current state.


• Hill-climbing chooses randomly among the set of 
best successors, if there is more than one.


• Hill-climbing a.k.a. greedy local search
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Hill-climbing search

• "Like climbing Everest in thick fog with 
amnesia" 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Example: n-queens Problem

• Put n queens on an n × n board with no 
two queens on the same row, column, or 
diagonal 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8-queens Problem Incremental or 
Uninformed Formulation

Incremental formulation: augment state description starting with an empty 
state) vs. complete-state formulation (starts with all 8 queens on board)


• States??  

• Initial state??

• Actions??

• Goal test??
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Incremental formulation:

• States?  Any arrangement of 0 to 8 queens on the board

• Initial state? No queens on board

• Actions/Successor function? Add queen to any empty square

• Goal test? 8 queens on board and none attacked

•  64 x 63 x … x 57 possible sequences to investigate ≈ 1.8 x 1014

8-queens Problem Incremental or 
Uninformed Formulation
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Incremental formulation (alternative)

• States? n (0≤ n≤ 8) queens on the board, one per column in the n 

leftmost columns with no queen attacking another.

• Actions/Successor function? Add queen in leftmost empty column such 

that is not attacking other queens

•  only 2057 possible sequences to investigate

• Yet makes no difference when n=100

8-queens Problem Incremental or 
Uninformed Formulation
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8-queens problem  
Complete-state or Informed 

Formulation Hill-climbing example

• Complete-state formulation (typically used in 
local searches): each state has 8 queens on 
board, one per column.


• Successor function: returns all possible states 
generated by moving a single queen to another 
square in the same column.


• Heuristic function h(n): the number of pairs of 
queens that are attacking each other (directly or 
indirectly).
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8-queens problem  
Hill-climbing example 

a) Shows a state of h=17 and the h-value for each 
possible successor.


b) Shows a local minimum in the 8-queens state space 
(h=1).

a) b)
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Drawbacks

• Local maxima: local max is peak that is higher than each 
of its neighboring states, but lower than global maximum


• Plateaux: an area of the state space where the evaluation 
function is flat.


 Incomplete: Gets stuck 86% of the time, solving only 14% 
of problem instances


Works quickly: 4 steps on average when it succeeds and 

	 3 steps when it gets stuck (not bad for state space with 88 
≈ 17 million states)
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Drawbacks

• Local maxima: local max is peak that is higher than each 
of its neighboring states, but lower than global maximum


• Ridge: sequence of local maxima difficult for greedy 
algorithms to navigate


• Plateaux: an area of the state space where the evaluation 
function is flat.


• Gets stuck 86% of the time, works quickly (4 steps on 
average when it succeeds and 3 when it gets stuck – not 
bad for state space with 88 ≈ 17 million states) 73



Hill-climbing variations

• Stochastic hill-climbing

– Random selection among the uphill moves.

– The selection probability can vary with the steepness 

of the uphill move.

• First-choice hill-climbing


– Stochastic hill climbing by generating successors 
randomly until a better one is found.


• Random-restart hill-climbing

– Tries to avoid getting stuck in local maxima.
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Simulated annealing search
• Hill-Climbing that never makes “downhill” moves toward 

states with lower value (or higher cost) is guaranteed to 
be incomplete, because it can get stuck in local 
maximum.


• In contrast, purely random walk (moving to a successor 
chosen uniformly at random from set of successor) is 
complete but extremely inefficient


• How about combining the two?  Simulated annealing, 
a version of stochastic hill climbing where some downhill 
moves are allowed: they are accepted readily early in 
annealing schedule and less often as time goes on.


•  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Simulated annealing
• Origin; metallurgical annealing (high T to harden metals, then 

gradually cooling them)

• Switch point of view from hill climbing to gradient descent (i.e. 

minimize cost)

• Idea: escape local minima (or local maxima experienced with hill-

climbing) by allowing some "bad” random moves 

– but gradually decrease their frequency


• Bouncing ball analogy:

– Goal: get ball in deepest crevice of bumpy surface

– If let ball roll, might get stuck in local minimum 

– If shake surface hard (high temperature), ball bounces out of LOCAL min, but if 

shake too hard, ball will be dislodged from GLOBAL min

 Best start to shake hard, then gradually reduce intensity (lower the temperature), 


• Can prove: If T decreases slowly enough, best state is reached.

• Applied for VLSI layout in 1980s, airline scheduling, etc.
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Simulated annealing
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Properties of simulated 
annealing search

• One can prove: If T decreases slowly enough, 
then simulated annealing search will find a 
global optimum with probability approaching 1 

• Widely used in VLSI layout, airline scheduling, 
etc. 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Steepest Descent
1) S  initial state

2) Repeat:


a) S’  arg minS’∈SUCCESSORS(S){h(S’)} 


b) if GOAL?(S’) return S’ 

c) if h(S’) < h(S)  then S  S’  else return failure


Similar to:

- hill climbing with –h

- gradient descent over continuous space
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Application: 8-Queen
Repeat n times:


1) Pick an initial state S at random with one queen in each column


2) Repeat k times:

a) If GOAL?(S) then return S

b) Pick an attacked queen Q at random 

c) Move Q in its column to minimize the number of attacking 

queens  new S  [min-conflicts heuristic]


3) Return failure
1
2

3
3
2
2
3

2
2

2
2

2
0
2
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Application: 8-Queen
Repeat n times:


1) Pick an initial state S at random with one queen in each column


2) Repeat k times:

a) If GOAL?(S) then return S

b) Pick an attacked queen Q at random 

c) Move Q it in its column to minimize the number of attacking 

queens is minimum  new S 

1
2

3
3
2
2
3

2
2

2
2

2
0
2

Why does it work ???

1) There are many goal states that are  

  well-distributed over the state space

2) If no solution has been found after a few 

  steps, it’s better to start it all over again. 
  Building a search tree would be much less  
  efficient because of the high branching  
  factor


3) Running time almost independent of the  
  number of queens
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Steepest Descent
1) S  initial state

2) Repeat:


a) S’  arg minS’∈SUCCESSORS(S){h(S’)} 


b) if GOAL?(S’) return S’ 

c) if h(S’) < h(S)  then S  S’  else return failure


may easily get stuck in local minima

 Random restart (as in n-queen example)

 Monte Carlo descent
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Monte Carlo Descent
1) S  initial state

2) Repeat k times:


a) If GOAL?(S) then return S


b) S’  successor of S picked at random  

c) if h(S’) ≤ h(S)  then S  S’

d) else 


- Δh = h(S’)-h(S)

- with probability ~ exp(−Δh/T), where T is called the 

“temperature” S  S’             [Metropolis criterion]


3) Return failure

Simulated annealing lowers T over the k iterations. 

It starts with a large T and slowly decreases T
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“Parallel” Local Search Techniques

They perform several local searches 
concurrently, but not independently:

 Beam search

 Genetic algorithms


See R&N, local search
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Local Beam Search

• Keep track of k states rather than just one 
Start with k randomly generated states


• At each iteration, all the successors of all k 
states are generated


If any one is a goal state,

 stop; 


Else 

select the k best successors from the complete list and repeat. 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Local Beam Search
• Algorithms different


– In a random-restart search, each search process 
runs independently of the others.


– In a local beam search, useful information is passed 
among the parallel search threads.


• States that generate the best successors tell 
others


• Effect: algorithm quickly abandons unfruitful 
searches and moves its resources to where the 
most progress is being made
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Genetic algorithms

• Variant of local beam search with “sexual” 
recombination.
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Genetic algorithms (GA)
• A successor state is generated by combining two parent 

states (vs. modifying a single state in local beam search)


• Start with k randomly generated states (population) 

• Each state, or individual, is represented as a string over 
a finite alphabet (often a string of 0s and 1s)


• Evaluation function (fitness function in GA terminology)

– Returns higher values for better states (e.g. # of non-attacking 

pair of queens) 

• Produce the next generation of states by selection, 
crossover, and mutation 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Genetic algorithms

• In this instance:

– Fitness function: number of non-attacking pairs of queens (min = 

0, max = (8 × 7)/2 = 28)

– Probability of being selected for reproduction is directly 

proportional to fitness score:

– 24/(24+23+20+11) = 31%

– 23/(24+23+20+11) = 29% etc 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Genetic algorithms
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Genetic algorithms

Reproduction step example
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Search problems

Blind search (uninformed search)

Heuristic search:  
Best-First and A*

Construction of Heuristics Local searchVariants of A*

92



When to Use Search Techniques?

1) The search space is small, and

• No other technique is available, or

• Developing a more efficient technique is not 

worth the effort  

2) The search space is large, and

• No other available technique is available, and

• There exist “good” heuristics
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Exploration problems

• Until now all algorithms were offline.

– Offline = solution is determined before executing it.

– Online = interleaving computation and action


• Online search is necessary for dynamic and 
semi-dynamic environments

– It is impossible to take into account all possible contingencies.


• Used for exploration problems:

– Unknown states and actions.

– e.g. any robot in a new environment, a newborn baby,…

94



Online search problems
• Agent knowledge:


– ACTION(s): list of allowed actions in state s

– C(s,a,s’): step-cost function (! After s’ is determined)

– GOAL-TEST(s)


• An agent can recognize previous states.

• Actions are deterministic.

• Access to admissible heuristic h(s)

	 	 e.g. manhattan distance
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Online search problems
• Objective: reach goal with minimal cost


– Cost = total cost of travelled path

– Competitive ratio=comparison of cost with cost of the 

solution path if search space is known. 

– Can be infinite in case of the agent

	 accidentally reaches dead ends
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The adversary argument

• Assume an adversary who can construct the state space 
while the agent explores it

– Visited states S and A.  What next?


• Fails in one of the state spaces


• No algorithm can avoid dead ends in all state spaces.

97



Online search agents

• The agent maintains a map of the 
environment.

– Updated based on percept input.

– This map is used to decide next action.


Note difference with e.g. A*

An online version can only expand the node it is 

physically in (local order)
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Online DF-search

99



Online DF-search, example

• Assume maze problem on 
3x3 grid.


• s’ = (1,1) is initial state

• Result, unexplored (UX), 

unbacktracked (UB), … 

	 	 are empty

• S,a are also empty
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Online DF-search, example

• GOAL-TEST((,1,1))?

– S not = G thus false


• (1,1) a new state? 

– True

– ACTION((1,1)) -> UX[(1,1)]


• {RIGHT,UP}


• s is null?

– True (initially)


• UX[(1,1)] empty? 

– False


• POP(UX[(1,1)])->a

– A=UP


• s = (1,1)

• Return a 

S’=(1,1)
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Online DF-search, example

• GOAL-TEST((2,1))?

– S not = G thus false


• (2,1) a new state? 

– True

– ACTION((2,1)) -> UX[(2,1)]


• {DOWN}


• s is null?

– false (s=(1,1))

– result[UP,(1,1)] <- (2,1)

– UB[(2,1)]={(1,1)}


• UX[(2,1)] empty? 

– False


• A=DOWN, s=(2,1) return A

S

S’=(2,1)
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Online DF-search, example

• GOAL-TEST((1,1))?

– S not = G thus false


• (1,1) a new state? 

– false


• s is null?

– false (s=(2,1))

– result[DOWN,(2,1)] <- (1,1)

– UB[(1,1)]={(2,1)}


• UX[(1,1)] empty? 

– False


• A=RIGHT, s=(1,1) return A

S’=(1,1)
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Online DF-search, example

• GOAL-TEST((1,2))?

– S not = G thus false


• (1,2) a new state? 

– True, UX[(1,2)]={RIGHT,UP,LEFT}


• s is null?

– false (s=(1,1))

– result[RIGHT,(1,1)] <- (1,2)

– UB[(1,2)]={(1,1)}


• UX[(1,2)] empty? 

– False


• A=LEFT, s=(1,2) return A

S

S’=(1,2)
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Online DF-search, example

• GOAL-TEST((1,1))?

– S not = G thus false


• (1,1) a new state? 

– false


• s is null?

– false (s=(1,2))

– result[LEFT,(1,2)] <- (1,1)

– UB[(1,1)]={(1,2),(2,1)}


• UX[(1,1)] empty? 

– True

– UB[(1,1)] empty? False


• A= b for b in result[b,(1,1)]=(1,2)

– B=RIGHT


• A=RIGHT, s=(1,1) …

S’=(1,1)
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Online DF-search

• Worst case each node is visited 
twice.


• An agent can go on a long walk 
even when it is close to the 
solution.


• An online iterative deepening 
approach solves this problem.


• Online DF-search works only 
when actions are reversible.
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Online local search

• Hill-climbing is already online

– One state is stored.


• Bad performance due to local maxima

– Random restarts impossible.


• Solution: Random walk introduces exploration (can produce 
exponentially many steps)
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Online local search
• Solution 2: Add memory to hill climber


– Store current best estimate H(s) of cost to reach goal

– H(s) is initially the heuristic estimate h(s)

– Afterward updated with experience  (see below)


• Learning real-time A* (LRTA*)
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Learning real-time A*
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Summary
• Heuristics to reduce search costs

• Algorithms that use heuristics, optimality comes with price in 

terms of search costs:

– Best-first search is just GRAPH-SEARCH where the minimum-cost 

unexpanded nodes  are selected for expansion. Best-first algorithms 
typically use a heuristic function h(n) that estimates the cost of a solution 
from n 


– Greedy best-first search expands nodes with minimal h(n). It is not 
optimal but is often efficient.


– A* search expands nodes with minimal f(n)=g(n)+h(n). A* is complete 
and optimal, provided that we guarantee that h(n) is admissible (for 
TREE-SE ARCH) or consistent (for GRAPH-SEARCH). The space 
complexity of A*is still prohibitive.


– The performance of heuristic search algorithms depends on the quality of 
the heuristic function.
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Summary (2)
– Local search methods such as the classical hill-climbing algorithm 

operate on complete-state formulations. Several stochastic 
algorithms have been developed, including simulated annealing, 
which returns optimal solutions when given an appropriate cooling 
schedule. 

– A genetic algorithm is a stochastic hill-climbing search in which a 
large population of states is maintained. New states are generated 
by mutation and by crossover, which combines of pairs of states 
from the population.  

– Exploration problems arise when the agent has no idea about the 
states and actions of its environment. For safely explorable 
environments, online search agents can build a map and find a goal 
if one exists. Updating heuristic estimates from experience provides 
an effective method to escape from local minima.
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