
Introduction to Game Programming

Threads

CSC 329

Ubbo Visser

Threads

• What is a Thread?
• Creating and Running Threads in C#

– Extending the Thread class
– Implementing the Runnable Interface
– Using Anonymous Inner Classes
– The join() and sleep() Methods

• Synchronization
– How to Synchronize
– What to Synchronize
– What not to Synchronize
– Avoiding Deadlock

2

Java Threads (cont.)

• Using Wait() and Notify()
• The Event Model
• When to Use Threads
• When not to Use Threads
• Thread Pools

3

What is a Thread?

• A Thread is used to allow more than one task to be
performed at one time.

• This is achieved by Time Slicing where one thread
is executed for a short time, then pre-empted by
another thread.

Thread A

Thread B

Time
Thread A Starts Thread B Starts

• Threads may run simultaneously on a machine with
more than one processor.

Creating and Running Threads
in Java

• There are three basic ways to use Threads
in Java
– Extend the Thread Class
– Implement the Runnable Interface
– Use anonymous inner classes

5

Extending the Thread Class

Extend the thread class and override the run() method

public class MyThread extends Thread
{
 public static void run()
 {
 System.out.println(“Do something cool here.”);
 }
}

Then create and start the thread:

Thread myThread = new MyThread();
myThread.start();

6

Implementing the Runnable Interface
Any object that implements the Runnable Interface
can be passed as a parameter to the constructor of a
Thread object.

public class MyClass extends SomeOtherClass implements
Runnable{
 public MyClass(){
 Thread thread = new Thread(this);
 thread.start();
 }

 public void run(){
 System.out.println(“Do something cool here.”);
 }
}

The MyClass class implements Runnable, passes itself
into a new thread, then starts that thread which executes
MyClass.run() . 7

Using Anonymous Inner Classes
An anonymous inner class can be used to start a
Thread when inheriting the Thread class or
implementing the Runnable interface is not desirable.

new Thread() {
 public void run() {
 System.out.println(“Do something cool here.”);
 }
}.start();

This piece of code creates an instance of a nameless
class that inherits the Thread class and overrides the
run() method.
This technique should be used carefully because it can
easily become hard to read.

8

The join() and sleep() Methods

• Thread.join();
If you are in one Thread and you want to wait for
another Thread to finish then call the other Thread
object’s join() method. The current Thread will
remain inactive until the outside Thread finishes its
run() method.

• Thread.sleep(int);
The sleep(int) method causes a Thread to be
inactive for the specified number of milliseconds
during which it will take up no clock cycles.

9

The join() and sleep() Methods

• Thread.join();
– If you are in one Thread and you want to wait for

another Thread to finish call the other Thread
object’s join() method.

– The current Thread will remain inactive until the
outside Thread finishes its run() method.

• Thread.sleep(int);
– The sleep(int) method causes a Thread to be

inactive for the specified number of milliseconds
during which it will take up no clock cycles.

10

Synchronization

• Data corruption
– Multiple threads are accessing and/or changing

the same object.
– One thread may be using data from an object

when it gets pre-empted by another thread
which changes the value of the data. When
control returns to the previous thread the data is
no longer valid.

• Synchronization
– ... is the coordination of multiple threads that

must access shared data.

11

How to Synchronize
• synchronized

– The keyword synchronized is used to denote
that a method or block of code can only be used
by one thread at a time.

– Threads acquire a lock on the object associated
with the code. Only one thread can have a lock
on an object at a time.

– Locks are released when the associated code
finishes or an exception is thrown.

12

How to Synchronize (2)
• The synchronized keyword is used in the two

following ways in practice:

// in a method def. associating it with “this” object

public synchronized void DoSomethingCrazy() {

 int x = 3657;

}

// in a block of code assoc. with a specified object

synchronized(MyObject) {

 System.out.println(“Something to print out.”)

}

13

Dos and don’ts: Synchronization

• What to synchronize
– Synchronize a piece of code any time two or

more threads will access the object or field.

• What not to Synchronize
– Do not oversynchronize, using synchronization

too much causes delays, and can lead to further
problems.

– Only synchronize when you need to prevent
threads from accessing the same data at the
same time.

14

Avoiding Deadlock
Deadlock is the result of two threads that stall because they are waiting
on each other to do something. For example:

Fig 1.
• Thread A acquires lock 1
• Thread B acquires lock 2 Thread A Thread B

lock 1 lock 2

Acquires Acquires

Fig 2.
• Thread B waits for lock 1 to

be released
• Thread A waits for lock 2 to

be released

Thread A Thread B

lock 1 lock 2

Still has Still has

Waits for

Waits for

Both threads are now waiting for the other to finish so neither will continue.

Using wait() and notify()

• The wait() and notify() methods provide a means for putting one
thread to sleep until it is “woken up” by an outside source.

• wait() is a method of the java.lang.Object class. It is called in a
synchronized block of code by an executing thread and causes the
threads lock on the object to be released and the thread to be put to
sleep.

• notify() is also a method of java.lang.Object. It notifies one thread that
is waiting on the same lock. If several threads are waiting on the
same lock one of them is notified randomly.

• There is also a notifyAll() method that notifies all waiting threads.

• The wait() method can also be given a maximum time in milliseconds
to wait for however when control returns to the waiting thread there is
no means to determine if it returned because of time or because it
was notified.

The Java Event Model

• When your program operates in a graphical environment it
can be accessed by at least two threads even if you are not
using threads explicitly.

• The two threads are the main thread that runs your
program and the AWT event dispatch thread which handles
user input in order to allow event driven program design.

• Because of this you should always keep synchronization in
mind even if you are not creating and using threads of your
own.

When to Use Threads

• Game Design
– Threads are useful to prevent lengthy operations

from hindering the playing experience.

• Other examples of smart thread use include:
– Loading files from the disk
– Network communication, such as sending high

scores to a server
– Massive calculations, such as terrain generation

18

When Not to Use Threads
• Waste of resources

– Running too many threads at once can drain the system

• Problems occur
– An enemy could move in the middle of a draw operation,

temporarily showing the enemy in two different places at
once.

– The time slices of each thread could be unbalanced,
leading to jerky or inconsistent movement.

– Synchronized code could lead to unneeded delays.

19

Thread Pools
• Thread Pool

– A group of threads designed to execute arbitrary tasks,
e.g.
• Limit the number of threads used for simultaneous

network or I/O connections
• Control the maximum number of threads on the system

for processor-intensive tasks.
• Example

20

ThreadPool myThreadPool = new ThreadPool(8);
myThreadPool.runTask(new Runnable() {
 public void run() {
 System.out.println("Do something cool here.");
 }
});
myThreadPool.join();

Summary
• Basics of how threads work and how to work with

them.
• Now you can make sure your games don't have

thread-synchronization problems or cause deadlock.
• We have also learned that you can't avoid dealing

with threads in Java games because all graphical
Java applications have at least two threads.

• Finally, we have discussed a generic ThreadPool
class that can be useful in many situations.

21

