
Introduction to Game Programming

Concurrency

CSC 329

Ubbo Visser

Concurrency - Topics

• Introduction

• Introduction to Subprogram-Level Concurrency

• Semaphores

• Monitors

• Message Passing

• Java Threads

2

Introduction

• Concurrency can occur at four levels:
– Machine instruction level

– High-level language statement level

– Unit level

– Program level

• Because there are no language issues in
instruction- and program-level concurrency,
they are not addressed here

3

Categories of Concurrency

• Categories of Concurrency:
– Physical concurrency - Multiple independent processors

(multiple threads of control)
– Logical concurrency - The appearance of physical

concurrency is presented by time-sharing one processor
(software can be designed as if there were multiple threads
of control)

• A thread of control in a program is the sequence of
program points reached as control flows through the
program

• Coroutines (quasi-concurrency) have a single thread
of control

4

Introduction to Subprogram-Level Concurrency

• A task or process is a program unit that can be
in concurrent execution with other program
units

• Tasks differ from ordinary subprograms in that:
– A task may be implicitly started
– When a program unit starts the execution of a task, it

is not necessarily suspended
– When a task’s execution is completed, control may not

return to the caller

• Tasks usually work together

5

Two General Categories of Tasks

• Heavyweight tasks execute in their own
address space

• Lightweight tasks all run in the same address
space

• A task is disjoint if it does not communicate
with or affect the execution of any other task
in the program in any way

6

Task Synchronization

• A mechanism that controls the order in which
tasks execute

• Two kinds of synchronization
– Cooperation synchronization
– Competition synchronization

• Task communication is necessary for
synchronization, provided by:  
- Shared nonlocal variables 
- Parameters 
- Message passing

7

Kinds of synchronization
• Cooperation: Task A must wait for task B to

complete some specific activity before task A
can continue its execution, e.g., the
producer-consumer problem

• Competition: Two or more tasks must use
some resource that cannot be simultaneously
used, e.g., a shared counter
– Competition is usually provided by mutually

exclusive access (approaches are discussed later)

8

Need for Competition Synchronization

9

Scheduler

• Providing synchronization requires a
mechanism for delaying task execution

• Task execution control is maintained by a
program called the scheduler, which maps
task execution onto available processors

10

Task Execution States

• New - created but not yet started

• Ready - ready to run but not currently
running (no available processor)

• Running

• Blocked - has been running, but cannot now
continue (usually waiting for some event to
occur)

• Dead - no longer active in any sense

11

Liveness and Deadlock

• Liveness is a characteristic that a program
unit may or may not have  
- In sequential code, it means the unit will  
 eventually complete its execution

• In a concurrent environment, a task can easily
lose its liveness

• If all tasks in a concurrent environment lose
their liveness, it is called deadlock

12

Methods of Providing Synchronization

• Semaphores

• Monitors

• Message Passing

13

Semaphores

• Dijkstra - 1965

• A semaphore is a data structure consisting of a
counter and a queue for storing task descriptors

• Semaphores can be used to implement guards on
the code that accesses shared data structures

• Semaphores have only two operations, wait and
release (originally called P and V by Dijkstra)

• Semaphores can be used to provide both
competition and cooperation synchronization

14

Cooperation Synchronization with Semaphores

• Example: A shared buffer

• Use two semaphores for cooperation:
emptyspots and fullspots

• The semaphore counters are used to store the
numbers of empty spots and full spots in the
buffer

• The buffer is implemented as an ADT with the
operations DEPOSIT and FETCH as the only
ways to access the buffer

15

Cooperation Synchronization with
Semaphores (continued)

• DEPOSIT must first check emptyspots to see
if there is room in the buffer

• If there is room, the counter of emptyspots
is decremented and the value is inserted

• If there is no room, the caller is stored in the
queue of emptyspots

• When DEPOSIT is finished, it must increment
the counter of fullspots

16

Cooperation Synchronization with
Semaphores (continued)
• FETCH must first check fullspots to see if

there is a value
– If there is a full spot, the counter of fullspots is

decremented and the value is removed
– If there are no values in the buffer, the caller must

be placed in the queue of fullspots
– When FETCH is finished, it increments the counter of
emptyspots

• The operations of FETCH and DEPOSIT on the
semaphores are accomplished through two
semaphore operations named wait and release

17

Semaphores: Wait Operation

wait(aSemaphore)
if aSemaphore’s counter > 0 then
 decrement aSemaphore’s counter
else
 put the caller in aSemaphore’s queue
 attempt to transfer control to a ready task
 -- if the task ready queue is empty,
 -- deadlock occurs
end

18

Semaphores: Release Operation

release(aSemaphore)
if aSemaphore’s queue is empty then
 increment aSemaphore’s counter
else
 put the calling task in the task ready queue
 transfer control to a task from aSemaphore’s queue
end

19

Producer Consumer Code
semaphore fullspots, emptyspots;
fullstops.count = 0;
emptyspots.count = BUFLEN;
task producer;
 loop
 -- produce VALUE –-
 wait (emptyspots); {wait for space}
 DEPOSIT(VALUE);
 release(fullspots); {increase filled}
 end loop;
end producer;

20

Producer Consumer Code

task consumer;
 loop
 wait (fullspots);{wait till not empty}}
 FETCH(VALUE);
 release(emptyspots); {increase empty}
 -- consume VALUE –-
 end loop;
end consumer;

21

Competition Synchronization with Semaphores 

• A third semaphore, named access, is used to
control access (competition synchronization)
– The counter of access will only have the values 0

and 1

– Such a semaphore is called a binary semaphore

• Note that wait and release must be atomic!

22

Producer Consumer Code

semaphore access, fullspots, emptyspots;
access.count = 0;
fullstops.count = 0;
emptyspots.count = BUFLEN;

task producer;
 loop
 -- produce VALUE –-
 wait(emptyspots); {wait for space}
 wait(access); {wait for access)
 DEPOSIT(VALUE);
 release(access); {relinquish access}
 release(fullspots); {increase filled}
 end loop;
end producer;

23

Producer Consumer Code

task consumer;
 loop
 wait(fullspots);{wait till not empty}
 wait(access); {wait for access}
 FETCH(VALUE);
 release(access); {relinquish access}
 release(emptyspots); {increase empty}
 -- consume VALUE –-
 end loop;
end consumer;

24

Evaluation of Semaphores

• Misuse of semaphores can cause failures in
cooperation synchronization, e.g., the buffer
will overflow if the wait of fullspots is left
out

• Misuse of semaphores can cause failures in
competition synchronization, e.g., the
program will deadlock if the release of
access is left out

25

Monitors

• The idea: encapsulate the shared data and its
operations to restrict access

• A monitor is an abstract data type for shared
data

• Java

26

Competition Synchronization

• Shared data is resident in the monitor (rather
than in the client units)

• All access resident in the monitor
– Monitor implementation guarantee synchronized

access by allowing only one access at a time

– Calls to monitor procedures are implicitly queued
if the monitor is busy at the time of the call

27

Cooperation Synchronization

• Cooperation between processes is still a
programming task
– Programmer must guarantee that a shared buffer

does not experience underflow or overflow

28

Evaluation of Monitors

• A better way to provide competition
synchronization than are semaphores

• Semaphores can be used to implement
monitors

• Monitors can be used to implement
semaphores

• Support for cooperation synchronization is
very similar as with semaphores, so it has the
same problems

29

Message Passing
• Message passing is a general model for

concurrency
– It can model both semaphores and monitors

– It is not just for competition synchronization

• Central idea: task communication is like
seeing a doctor--most of the time she waits
for you or you wait for her, but when you are
both ready, you get together, or rendezvous

30

Java Threads
• The concurrent units in Java are methods named run

– A run method code can be in concurrent execution with
other such methods

– The process in which the run methods execute is called a
thread

Class myThread extends Thread

 public void run () {… }

}

…

Thread myTh = new MyThread ();

myTh.start();

31

Controlling Thread Execution

• The Thread class has several methods to
control the execution of threads
– The yield is a request from the running thread to

voluntarily surrender the processor

– The sleep method can be used by the caller of
the method to block the thread

– The join method is used to force a method to
delay its execution until the run method of
another thread has completed its execution

32

Thread Priorities

• A thread’s default priority is the same as the
thread that create it
– If main creates a thread, its default priority is
NORM_PRIORITY

• Threads defined two other priority constants,
MAX_PRIORITY and MIN_PRIORITY

• The priority of a thread can be changed with
the methods setPriority

33

Competition Synchronization with Java Threads

• A method that includes the synchronized modifier
disallows any other method from running on the
object while it is in execution
…
public synchronized void deposit(int i) {…}
public synchronized int fetch() {…}
…

• The above two methods are synchronized which
prevents them from interfering with each other

• If only a part of a method must be run without
interference, it can be synchronized using the
synchronized statement
synchronized (expression)
 statement 34

Cooperation Synchronization with Java Threads

• Cooperation synchronization in Java is achieved via
wait, notify, and notifyAll methods
– All methods are defined in Object, which is the root

class in Java, so all objects inherit them

• The wait method must be called in a loop
• The notify method is called to tell one waiting

thread that the event it was waiting has happened
• The notifyAll method awakens all of the threads

on the object’s wait list

35

Creating and Running Threads in Java

• There are three basic ways to use Threads in
Java
– Extend the Thread Class

– Implement the Runnable Interface

– Use anonymous inner classes

36

Extending the Thread Class
Extend the thread class and override the run() method

public class MyThread extends Thread
{
 public static void run()
 {
 System.out.println(“Do something cool here.”);
 }
}

Then create and start the thread:
Thread myThread = new MyThread();
myThread.start();

37

Using Anonymous Inner Classes

An anonymous inner class can be used to start a Thread when
inheriting the Thread class or implementing the Runnable
interface is not desirable.

new Thread() {
 public void run() {
 System.out.println(“Do something cool here.”);
 }
}.start();

This piece of code creates an instance of a nameless class
that inherits the Thread class and overrides the run()
method.
This technique should be used carefully because it can easily
become hard to read. 38

Implementing the Runnable Interface

Any object that implements the Runnable Interface can be
passed as a parameter to the constructor of a Thread object.

public class MyClass extends SomeOtherClass implements Runnable{
 public MyClass(){
 Thread thread = new Thread(this);
 thread.start();
 }

 public void run(){
 System.out.println(“Do something cool here.”);
 }
}

The MyClass class implements Runnable, passes itself into a new
thread, then starts that thread which executes MyClass.run() .

39

40

The join() and sleep() Methods

• Thread.join();
– If you are in one Thread and you want to wait for

another Thread to finish then call the other
Thread object’s join() method. The current
Thread will remain inactive until the outside
Thread finishes its run() method.

• Thread.sleep(int);
– The sleep(int) method causes a Thread to be

inactive for the specified number of milliseconds
during which it will take up no clock cycles.

Avoiding Deadlock
Deadlock is the result of two threads that stall because they are
waiting on each other to do  
something. For example:
Fig 1
•Thread A acquires lock 1
•Thread B acquires lock 2

Thread A Thread B

lock 1 lock 2

Acquires Acquires

Fig 2
•Thread B waits for lock 1 to
be released
•Thread A waits for lock 2 to
be released

Thread A Thread B

lock 1 lock 2

Still has Still has

Waits for

Waits for

Both threads are now waiting for the other to finish so neither will continue.
To avoid deadlock write your synchronization code so that deadlock
will not occur.
There are no blanket fixes for deadlock, but there are detectors.

The Java Event Model

• When your program operates in a graphical
environment it can be accessed by at least two
threads even if you are not using threads explicitly.

• The two threads are the main thread that runs your
program and the AWT event dispatch thread which
handles user input in order to allow event driven
program design.

• Because of this you should always keep
synchronization in mind even if you are not creating
and using threads of your own.

42

When to Use Threads

• For the purpose of game design threads are useful
to prevent lengthy operations from hindering the
playing experience. (The player will not be happy if
hitting the quick-save button causes the game to
freeze for several seconds)

• Other examples of smart thread use include:

– Loading files from the disk

– Network communication, such as sending high
scores to a server

– Massive calculations, such as terrain generation

When not to use Threads

• In games there are often many things
happening at the same time. This does not
mean that every bullet, spaceship, and flake
of snow should have it’s own thread. In fact
such a design would be very problematic and
slow. Later in the book we will see different
methods for “lots of stuff happening”.

44

Thread Pools

A thread pool is used to limit the number of
threads being used at a time.

Here we have an example ThreadPool class
and a test program for that class.

Java’s Thread Evaluation

• Java’s support for concurrency is relatively
simple but effective

• Not as powerful as Ada’s tasks

46

C# Threads
• Loosely based on Java Threads but significant

differences

• Basic operations
– Any C# method can run in an own thread

– Thread is created by making a Thread object

– Thread constructor needs an instantiation of a
pre-defined delegate class ThreadStart

• Example:  
public void MyRun1(){ … }  
Thread myThread = new Thread(new ThreadStart(MyRun1));  
myThread.Start();

47

C# Threads, basic operations
• Like Java we can use Join

• Suspend a thread with Sleep

• Unlike Java C#’s Sleep does not rise any
exceptions, thus it needs to be called in a try
block

• Terminate a thread with the abort method

48

C# Threads, Synchronizing
• Three different ways

– Interlock class: used when the only operations
that need to be synchronized are incrementing/
decrementing integers;

– lock statement: used to mark a critical section
of code in a thread; lock(expression){…}

– Monitor class: has 4 methods: enter, wait,
pulse, exit. Used to provide more sophisticated
synchronization of threads

49

C# Threads, Synchronizing
• Three different ways

– Monitor class: has 4 methods: enter, wait, pulse,
exit. Used to provide more sophisticated
synchronization of threads
• Enter: takes object reference and marks beginning

• Wait: suspends execution of thread and instructs CLR of
.NET that the thread wants to resume next time

• Pulse: takes object reference, notifies waiting threads
that they can run (similar to NotifyAll in Java)

• Exit: marks end of critical section

50

C#’s Thread Evaluation

• Slightly more effective than Java
– Each method can have own thread

– Termination is cleaner than Java (Java sets pointer
to NULL)

– Synchronization is more sophisticated

• Not as powerful as Ada’s tasks

51

Summary

• Concurrent execution can be at the instruction, statement,
or subprogram level

• Physical concurrency: when multiple processors are used to
execute concurrent units

• Logical concurrency: concurrent united are executed on a
single processor

• Two primary facilities to support subprogram concurrency:
competition synchronization and cooperation
synchronization

• Mechanisms: semaphores, monitors, rendezvous, threads

52

