
Collision Detection
Chapter 11

Content

1. Collision Basics

2. Object-to-Object Collisions

3. Object-to-World Collisions

4. Basic Collision-Detection Demo

5. Collision Handling with Sliding

6. Collision Detection with Sliding Demo

7. Enhancements

8. Summary

2

1. Collision Basics
• Deciding what collisions to test. It seems kind of ridiculous to test

whether two objects collide if they are on opposite sides of the world. Also, a
world with 1,000 moving objects would require you to test each object against
every other object, or 999,000 tests in all. So, you should try to limit the
number of objects you need to test as much as possible. An easy way to do this
is only test objects that are close.

• Detecting a collision. Collision detection really depends on how accurate
you want the collisions to be. You could provide perfect collision detection and
test every polygon in one object with every polygon in another object, but just
imagine the amount of computation involved. Likewise, for the 2D world, you
could test every pixel from one sprite to every pixel from another sprite.
Usually, games settle with collision-detection techniques that are slightly
inaccurate but can be processed quickly.

• Handling a collision. If an object collides with something, the collision will
be handled in different ways depending on the type of collision. For example, a
projectile colliding with a robot might destroy both the projectile and the robot.
An object bumping against a wall might slide against the wall. And so on.

3

Collision Basics (2)

• Eliminate as many collision tests as possible.

• Quickly decide whether there is a collision.

• Provide collision detection that is accurate enough for
the game.

• Handle the collision in a way that doesn't distract the
user from the game.

4

Collision Basics (3)
• Consider that everything that moves in the game is an object, whether it's a

monster, the player, a projectile, or whatever. For each object, follow these
steps:

- Update the object's location.

- Check for any collisions with other objects or with the environment.

- If a collision is found, revert the object to its previous location.

• Note: you check for a collision after each object moves. Alternatively, you
could just move all the objects first and then check collisions afterward.
However, you'd have to store the object's previous location with the object,
and problems could occur if three or more objects collide.

• Also, this basic algorithm just reverts an object to its previous location if a
collision occurred. Normally, you want to use other types of collision
handling based on the type of collision.

5

2. Object-to-Object Collisions
• Ideally, no matter how accurate you want the collision detection to be, it's a

good idea to both eliminate as many object-to-object tests as possible and
do a few other tests first to ensure that two objects have a good chance of
colliding.

• Eliminating Tests

- If an object doesn't move from one frame to the next, you don't need to do any
collision tests for that object. For example, a crate that just sits there will never
collide with anything. Other objects will collide with the crate, but those
collisions are handled by the other objects.

- To help eliminate collision tests further, you really should test only objects that
are in the same proximity.

6

Object-to-Object Collisions (2)
• Eliminating Tests (cont.)

- One way to do this is to arrange objects on a grid. Each object exists in one cell
on the grid. Even though an object's bounds could extend to other cells, the
object exists in only one cell. This way, an object needs to test for collisions only
with objects in its own cell and its surrounding cells.

7

To reduce the number of object-to-object collision tests, you can isolate objects on a grid and
only test an object against other objects that are in the same cell and its surrounding cells.

Object-to-Object Collisions (3)
• Eliminating Tests (cont.)

- Other ways to isolate objects include 1D or 3D versions of the grid concept.
For example, in a side-scrolling game, objects could be in a list sorted by their x
location, so only neighboring objects in the list test for collisions. For a 3D game,
objects could be isolated in a 3D grid instead of a 2D grid, so each cell would be
a cube instead of a square. In this chapter, for collision with the 3D engine, we
use the 2D version.

- Isolating objects on a grid also has the benefit of easily applying object culling.
For example, with a top-down engine, you would draw only the objects in visible
cells. For a BSP tree, you would draw only the objects in cells that have visible
leaves.

- The code for arranging objects in a grid is trivial and is implemented for this
chapter in the GridGameObjectManager class. When an object is updated,
the checkObjectCollision() method is called. This method checks for a
collision with any objects in the object's surrounding cells.

8

Excursus: Convex Hull in Eucledian
Geometry

9

convex non-convex

Object-to-Object Collisions (4)

10

/**
 The Cell class represents a cell in the grid. It contains
 a list of game objects and a visible flag.
*/
private static class Cell {
 List objects;
 boolean visible;

 Cell() {
 objects = new ArrayList();
 visible = false;
 }
}

...

/**
 Checks to see if the specified object collides with any
 other object.
*/
public boolean checkObjectCollision(GameObject object,
 Vector3D oldLocation)
{

 boolean collision = false;

 // use the object's (x,z) position (ground plane)
 int x = convertMapXtoGridX((int)object.getX());
 int y = convertMapYtoGridY((int)object.getZ());

 // check the object's surrounding 9 cells
 for (int i=x-1; i<=x+1; i++) {
 for (int j=y-1; j<=y+1; j++) {
 Cell cell = getCell(i, j);
 if (cell != null) {
 collision |= collisionDetection.checkObject(
 object, cell.objects, oldLocation);
 }
 }
 }

 return collision;
}

Object-to-Object Collisions (5)
• An inaccurate but fast technique for performing collision detection is the

use of bounding spheres, such as the one in the Figure.

• Bounding Spheres

- This idea is that if two objects' spheres collide, the collision is treated as if the
two objects collide. A first try at testing whether two objects' spheres collide
works something like this:

11

dx = objectA.x - objectB.x;
dy = objectA.y - objectB.y;
dz = objectA.z - objectB.z;
minDistance = objectA.radius + objectB.radius
if (Math.sqrt(dx*dx + dy*dy + dz*dz) < minDistance) {
 // collision found
}

Object-to-Object Collisions (6)
• Bounding Spheres (cont.)

- However, that Math.sqrt() function call involves a lot of computation. Instead,
you could square both sides of the equation to get something a bit simpler:

- If your game is in a 2D world instead of 3D, you can test for circles instead of
spheres, taking the z coordinate out of the equation.

12

if (dx*dx + dy*dy + dz*dz < minDistance*minDistance) {
 // collision found
}

Object-to-Object Collisions (7)
• Bounding Spheres (cont.)

- Testing bounding spheres is easy, but it's not very accurate. For example, in the
figure, the bounding sphere of the player collides with the bounding sphere of
the robot, even though the player and the robot don't actually collide.

- Having this amount of inaccuracy is fine for many games. For example, for a fast-
moving action game in which you're running around picking up food, you
probably won't care whether you pick up the item a little before you actually
touch the item. But for other situations, the inaccuracy can be annoying, such as
when you get wounded by a creature that you know didn't touch you.

13

Bounding sphere inaccuracy: The two spheres collide, but the objects don't.

Object-to-Object Collisions (8)
• Bounding Spheres (cont.)

- Another method is to use a second set of spheres as a more accurate set of
tests. In this figure, the robot has three bounding spheres that more accurately
describe the robot's shape.

- After the bounding spheres of two objects test positive for a collision, their
second set of spheres could be tested. If any of the player's secondary spheres
collide with any of the robot's secondary spheres, then a collision occurs.

14

Multiple spheres can be used for more accurate boundary tests.

Object-to-Object Collisions (9)
• Bounding Spheres (cont.)

- Sphere tree or sphere subdivision. This way, you can quickly reject non-
colliding objects and have more accurate tests for potential collisions. This also
lets you know which part of your object was hit, allowing you to act accordingly.
For example, you could have just your robot's lower leg fall off if a missile strikes
it.

- Note that sphere trees need to rotate with the object as the object rotates. For
example, the spheres need to follow a robot's arm as it moves around.

- To sum it up, for a typical frame, most of the objects require no collision test,
some objects require a simple collision test, and a few objects require the more
complex, computationally expensive collision tests.

15

Object-to-Object Collisions (10)
• Bounding Cylinders

- An alternative to bounding spheres is upright bounding cylinders, shown in this
figure This reduces collision tests to a 2D circle test and a 1D vertical test.

- Upright bounding cylinders tend to describe tall, thin objects (such as players or
monsters) more accurately than just one sphere.

16

An upright bounding cylinder can be used for collision detection.

Object-to-Object Collisions (11)
• Bounding Cylinders (cont.)

- All the basic collision-detection code in this chapter goes in the
CollisionDetection class. The methods for handling object-to-object
collision.

17

/**
 Checks if the specified object collisions with any other
 object in the specified list.
*/
public boolean checkObject(GameObject objectA, List objects,
 Vector3D oldLocation)
{
 boolean collision = false;
 for (int i=0; i<objects.size(); i++) {
 GameObject objectB = (GameObject)objects.get(i);
 collision |= checkObject(objectA, objectB,
 oldLocation);
 }
 return collision;
}

/**
 Returns true if the two specified objects collide.
 Object A is the moving object, and Object B is the object
 to check. Uses bounding upright cylinders (circular base
 and top) to determine collisions.
*/
public boolean checkObject(GameObject objectA,
 GameObject objectB, Vector3D oldLocation)
{
 // don't collide with self
 if (objectA == objectB) {
 return false;
 }

 PolygonGroupBounds boundsA = objectA.getBounds();
 PolygonGroupBounds boundsB = objectB.getBounds();

 // first, check y axis collision (assume height is pos)
 float Ay1 = objectA.getY() + boundsA.getBottomHeight();
 float Ay2 = objectA.getY() + boundsA.getTopHeight();
 float By1 = objectB.getY() + boundsB.getBottomHeight();
 float By2 = objectB.getY() + boundsB.getTopHeight();
 if (By2 < Ay1 || By1 > Ay2) {
 return false;
 }

 // next, check 2D, x/z plane collision (circular base)
 float dx = objectA.getX() - objectB.getX();
 float dz = objectA.getZ() - objectB.getZ();
 float minDist = boundsA.getRadius() + boundsB.getRadius();
 float distSq = dx*dx + dz*dz;
 float minDistSq = minDist * minDist;
 if (distSq < minDistSq) {
 return handleObjectCollision(objectA, objectB, distSq,
 minDistSq, oldLocation);
 }
 return false;
}

/**
 Handles an object collision. Object A is the moving
 object, and Object B is the object that Object A collided
 with. For now, just notifies Object A of the collision.
*/
protected boolean handleObjectCollision(GameObject objectA,
 GameObject objectB, float distSq, float minDistSq,
 Vector3D oldLocation)
{
 objectA.notifyObjectCollision(objectB);
 return true;

Object-to-Object Collisions (12)
• Bounding Cylinders (cont.)

- The handleObjectCollision() method just notifies the moving object that a
collision occurred through the notifyObjectCollision() method. This and
other notify methods exist in the GameObject class, but they don't do anything
by default—subclasses of GameObject can override notify methods if they want.

- For example, in the Blast class, the notifyObjectCollision() method is used to
destroy a bot if it collides with one:

18

public void notifyObjectCollision(GameObject object) {
 // destroy bots and itself
 if (object instanceof Bot) {
 setState(object, STATE_DESTROYED);
 setState(STATE_DESTROYED);
 }
}

Object-to-Object Collisions (13)
• The Discrete Time Issue

- A typical game updates the state of the game in discrete time slices, such as how
you update each object based on the amount of time passed since the last
update. For example, in this figure, this bird's-eye view shows an object's discrete
time movement. The moving object collides with the larger object in frame 3.

19

Bird's-eye view of an object's discrete time movement.

Object-to-Object Collisions (14)
• The Discrete Time Issue (cont.)

- Unfortunately, this discrete time movement can cause a problem with collision
detection. Imagine that the object is moving faster or the frame rate is slower. In
this scenario, the moving object could "skip over" the object it collides with. For
example, in this figure the moving object collides with the larger object between
frames 2 and 3.

20

The problem with discrete time movement: Objects can "skip over" other objects
when a collision should be detected.

Object-to-Object Collisions (15)
• The Discrete Time Issue (cont.)

- A couple solutions to this problem exist. The more accurate but computationally
expensive solution is to treat a moving object's bounds as a solid shape from the
start location to the end location, as shown in this example:

21

A moving object can be treated as a "tube" to alleviate the discrete time problem.

3. Object-to-World
Collisions

Object-to-World Collisions
• Object collisions with the world should generally be as accurate as

possible. You don't want the player or another object to move
through a wall or to jitter when moving along a wall.

• In Chapter 5, you implemented object-to-world collisions by moving
just one coordinate at a time (first x, then y), which worked great for
a simple tile-based world in which the objects don't move more than
the length of one tile for each frame.

• In the 3D world, you don't have tiles, but you usually have the 3D
world described in a structure that can help with collision detection,
such as BSP trees. You'll use the 2D BSP tree from the previous
chapter to implement collision with floors, ceilings, and walls.

23

Bounding Boxes for Testing Against Floors
• In the 2D game you used the bounding rectangles of the sprites for

collision detections.

• In 3D, besides bounding spheres, circles, or cylinders, bounding
boxes are another popular type of collision-detection mechanism.
Two types of bounding boxes exist: freeform and axis-aligned.

• Freeform bounding boxes can be turned and rotated any way, while
axis-aligned boxes are aligned with the x-, y-, and z-axis.

• We use cylinders for object-to-object collision and axis-aligned
bounding boxes for object-to-world collisions. The first thing to
discuss are floors (and ceilings).

24

Bounding Boxes for Testing Against Floors (2)

• In a world where floors can be of variable height, you'll want objects
to stand on the highest floor under its bounding box, as in the
figure.

• Likewise, you don't want objects to move to areas if the ceiling is
too low for the object. Also, you might want objects to be able to
cross small steps without stopping. In this figure, the player can
make the small step up to the platform.

25

Bounding box collision with a floor: The player's bounding box is partially on the
stair, so the height of the stair is used as the player's "floor."

Bounding Boxes for Testing Against Floors (3)

• The highest floor within the object's bounds is used to determine
how high the object stands. When testing an object against the floor
and ceilings of the environment, you can check each corner of the
box for an intersection with the floor or ceiling. This involves four
floor checks, one for each corner of the bounding box.

26

Bounding box collision with a floor: The player's bounding box is partially on the
stair, so the height of the stair is used as the player's "floor."

Finding the BSP Leaf for a Specific Location

• With a 2D BSP tree, floor
information is stored in the
leaves of the tree. You can find
the leaf for a specific location
pretty easily, similarly to how
you traversed the tree.

• This finds the leaf for one
location, while an object's
bounding box can potentially
span multiple leaves. So, you
check the leaf of each corner
of the bounding box.

27

/**
 Gets the leaf the x,z coordinates are in.
*/
public Leaf getLeaf(float x, float z) {
 return getLeaf(root, x, z);
}

protected Leaf getLeaf(Node node, float x, float z)
{
 if (node == null || node instanceof Leaf) {
 return (Leaf)node;
 }
 int side = node.partition.getSideThin(x, z);
 if (side == BSPLine.BACK) {
 return getLeaf(node.back, x, z);
 }
 else {
 return getLeaf(node.front, x, z);
 }
}

Bounding Boxes for Testing Against Walls

• Walls are thin lines, so if you test for a wall collision only after an
object has moved, it's possible you could miss walls that the object
has already passed right through. To accurately determine whether
an object hits any walls, you need to test the entire path the object
travels during the update from one frame to the next.

• For a 2D BSP tree, because an object's path from one frame to the
next is a line segment, you can test this line segment for an
intersection with any lines that represent walls.

• Objects are solid shapes, not points. So, if you're using bounding
boxes for collision testing, you must test all four corners of the
bounding box with the walls in a scene.

28

Bounding Boxes for Testing Against Walls (2)

• In this figure, four paths (for each corner) are tested for an
intersection, and three of them intersect a wall.

29

Checking the bounding box corners with an intersection with a wall. Each line
segment is checked against the BSP tree for a collision.

Bounding Boxes for Testing Against Walls (3)

• When more than one intersection is found, as in the left figure, the
shortest path from the start location to the intersection is the one
to use for the collision, as shown in the right figure. Here, the upper-
left corner of the object is the first to collide with the wall (it is the
shortest path to a line intersection), so it is used to determine the
collision location.

30

Intersection of a Line Segment with a BSP Tree
• Consider a path from (x1,y1) to (x2,y2). The goal is to find the first

intersection of this path with a polygon in the BSP tree, if any. The first
intersection is the one closest to (x1,y1).

• Here is the algorithm for this, starting with the root node of the BSP
tree:

- Check the path against the node's partition. If the path is either in front of or
in back of the node's partition, check the front or back nodes, respectively.

- Otherwise, if the path spans the node's partition, bisect the path into two
paths along the partition. One path represents the first part of the path, and
the other path represents the second part of the path.

‣ Check the first part of the path for an intersection (see Step 1).

‣ If no intersection is found, check the polygons in this node for an intersection.

‣ If no intersection is found, check the second part of the path for an intersection
(see Step 1).

‣ If an intersection is found, return the point of intersection. Otherwise, return null.
31

Intersection of a Line Segment with a BSP Tree (2)
• This algorithm basically says to look at every partition that the path spans,

from the first (closest) partition to the last (farthest) partition, and return
the first point of intersection, if any.

• Note that just because a path spans a partition doesn't necessarily mean
that an intersection occurred. For an intersection, you need to meet
three conditions:

- For a 2D BSP tree, the line segment representing the polygon spans the path.

- The polygon isn't a short polygon that the object can step over, and isn't a
polygon too high or too low to be in the object's way.

- The path travels from the front of the polygon to the back of the polygon.

• The algorithm for finding the intersection (and the conditions for an
intersection) is implemented in the listing.

32

Source: CollisionDetection.java

Intersection of a Line Segment with a BSP Tree (3)
• In this code, getFirstWallIntersection() follows the algorithm

mentioned before, and the getWallCollision() method checks for the
conditions of an intersection between a path and a polygon.

• As a side note, with a 3D BSP tree, you would also use something like this
to determine the height of the floor under an object. Just use this
algorithm to find the highest polygon underneath the player by checking
for the first intersection with a line segment shot straight down from the
object.

• You've almost got everything to implement a bounding box collision with
a BSP tree, but first there's one issue to look into that could cause
problems.

33

The Corner Issue

• When you're checking each corner of a bounding box with a collision
with the world, you run into conditions in which part of the world will
collide with the bounding box but not with the corners of the bounding
box, as shown here.

• In this figure, the object collides with a sharp corner that doesn't touch
any of the object's bounding box corners.

34

The Corner Issue (2)

• One way to get around this problem is to treat each edge of the
bounding box as a line segment, to test for intersections with the BSP
tree.

• If any of the edges intersect with a polygon in the BSP tree, the object is
reverted to its original location.

• Alternatively, instead of reverting to its original location, the object could
just move back a little bit at a time and test again until no collision is
detected.

• Another solution is to ensure that levels are designed so that this issue
never arises. However, this puts a restriction on level design that can
make things difficult for the level designer because it's very tempting to
make corners, as in the example.

35

Implementing Object-to-World Collision Detection

36

Checking Walls (CollisionDetection.java)

// check walls if x or z position changed
if (object.getX() != oldLocation.x ||
 object.getZ() != oldLocation.z)
{
 checkWalls(object, oldLocation, elapsedTime);
}

...

/**
 Checks for a game object collision with the walls of the
 BSP tree. Returns the first wall collided with, or null if
 there was no collision.
*/
public BSPPolygon checkWalls(GameObject object,
 Vector3D oldLocation, long elapsedTime)
{
 Vector3D v = object.getTransform().getVelocity();
 PolygonGroupBounds bounds = object.getBounds();
 float x = object.getX();
 float y = object.getY();
 float z = object.getZ();
 float r = bounds.getRadius();
 float stepSize = 0;
 if (!object.isFlying()) {
 stepSize = BSPPolygon.PASSABLE_WALL_THRESHOLD;
 }
 float bottom = object.getY() + bounds.getBottomHeight() +
 stepSize;
 float top = object.getY() + bounds.getTopHeight();

 // pick closest intersection of 4 corners
 BSPPolygon closestWall = null;
 float closestDistSq = Float.MAX_VALUE;

 for (int i=0; i<CORNERS.length; i++) {
 float xOffset = r * CORNERS[i].x;
 float zOffset = r * CORNERS[i].y;
 BSPPolygon wall = getFirstWallIntersection(
 oldLocation.x+xOffset, oldLocation.z+zOffset,
 x+xOffset, z+zOffset, bottom, top);

 if (wall != null) {
 float x2 = intersection.x-xOffset;
 float z2 = intersection.y-zOffset;
 float dx = (x2-oldLocation.x);
 float dz = (z2-oldLocation.z);
 float distSq = dx*dx + dz*dz;

 // pick the wall with the closest distance, or
 // if the distances are equal, pick the current
 // wall if the offset has the same sign as the
 // velocity.
 if (distSq < closestDistSq ||
 (distSq == closestDistSq &&
 MoreMath.sign(xOffset) == MoreMath.sign(v.x) &&
 MoreMath.sign(zOffset) == MoreMath.sign(v.z)))
 {
 closestWall = wall;
 closestDistSq = distSq;
 object.getLocation().setTo(x2, y, z2);
 }
 }
 }
 if (closestWall != null) {
 object.notifyWallCollision();
 }

 // make sure the object bounds is empty
 // (avoid colliding with sharp corners)
 x = object.getX();
 z = object.getZ();
 r-=1;
 for (int i=0; i<CORNERS.length; i++) {
 int next = i+1;
 if (next == CORNERS.length) {
 next = 0;
 }
 // use (r-1) so this doesn't interfere with normal
 // collisions
 float xOffset1 = r * CORNERS[i].x;
 float zOffset1 = r * CORNERS[i].y;
 float xOffset2 = r * CORNERS[next].x;
 float zOffset2 = r * CORNERS[next].y;

 BSPPolygon wall = getFirstWallIntersection(
 x+xOffset1, z+zOffset1, x+xOffset2, z+zOffset2,
 bottom, top);
 if (wall != null) {
 object.notifyWallCollision();
 object.getLocation().setTo(
 oldLocation.x, object.getY(), oldLocation.z);
 return wall;
 }
 }
 return closestWall;
}

Implementing Object-to-World Collision Detection (2)

37

• First, this code tests four paths, one for each corner of the bounding
box for an intersection. If more than one intersection is found, the
closest one is chosen.

• If two intersections are found an equal distance away, the
intersection is chosen that is closest to the direction of the object's
velocity. This helps when you actually implement sliding against the
wall later in this chapter.

• If an intersection is found, the object's location is set to the collision
location, right up next to the wall.

• After those tests, the code tests to ensure that the object bounding
box is empty (no corners). If so, the object is reverted to its original
location.

4. Basic Collision-Detection Demo
• The CollisionTest demo, included with the source code for the

book, demonstrates the collision detection so far.

• In this demo, you are stopped when you run against a wall and you
can go up stairs to higher platforms. You are also stopped when you
run into an object, such as a robot or a crate. The projectiles you
fire destroy the robots, and, just for fun, the projectiles stick to the
walls, floors, ceilings, and other objects instead of passing through
them.

• Collision detection in this demo works great, but it needs some
serious help.

- You get "stuck" when you collide with a wall. In any 3D first- or third-
person game, this can be very distracting to the player who expects to
"slide" against a wall, especially when moving tightly around corners.

38

Basic Collision-Detection Demo (2)
- Movement up and down stairs feels jerky because you are instantly

moved up or down instead of scooting smoothly upstairs or allowing
gravity to smoothly bring you down.

- You can't step over small objects in the way. Try shooting a projectile on
the floor and stepping over it—you can't.

- You can't jump.

• Good collision handling is a goal of this chapter, so let's fix those
problems! And even though it's not really a collision-handling issue,
this will be a good time to implement jumping as well because you
can detect when an object is hitting something, even in midair.

39

5. Collision Handling with Sliding
• The next step is to provide collision handling that isn't obtrusive—in

other words, the collision handling behaves in a way that the user
expects.

• Instead of collision "sticking," you'll implement collision "sliding." For
example, instead of stopping when the player hits an object, the
player will slide to the side of it. Likewise, the player will slide against
a wall and will be able to step over small objects on the floor.

• Also in this section, you'll implement some basic physics to allow
objects to smoothly move up stairs, apply gravity, and allow the
player to jump.

40

Object-to-Object Sliding
• Previously, if an object-to-object collision occurred, you just

resorted to moving the object to its original location. This is
what created the effect of the moving object "sticking" to the
static object it collided with.

• To fix this, you must make sure the moving object slides to the
side of the static object. The logical solution is to slide the least
amount required to get the two objects out of each other's
way.

• That means the direction to slide is defined by the vector from
the static object's center to the moving object's center.

41

Object-to-Object Sliding (2)
• In this figure, when the larger object moves, it collides with the

smaller object. The large object then moves away from the
smaller object so that, after the slide, the two objects are next
to one another but not colliding

42

Object-to-object sliding: The moving object is pushed away from the static object.

Object-to-Object Sliding (3)
• The amount to slide is the difference between the minimum

distance and the actual distance:

• So, because the vector between the two object's centers has
the length of actualDist, the formula becomes this:

• Or, if you know only the square of the distances, it is this:

43

float minDist = objectA.radius + objectB.radius;
float slideDistance = minDist - actualDist;

float scale = slideDistance / actualDist;
vector.multiply(scale);

float scale = (float)Math.sqrt(minDistSq / actualDistSq) - 1;
vector.multiply(scale);

Object-to-Object Sliding (4)
• Although that square root function is slow, you have to call it

only when objects bump into one another, which isn't very
often.

• A problem with sliding occurs when sliding against an object
actually causes the object to slide into a wall or another
object. In this case, the moving object can just revert to its
previous location so it still appears to "stick"—the player will
have to change direction.

• Object-to-object sliding is easy enough. All the sliding code is
kept in the CollisionDetectionWithSliding class, which
is a subclass of CollisionDetection.

44

Object-to-Object Sliding (5)

45

(CollisionDetectionWithSliding.java)

/**
 Handles an object collision. Object A is the moving
 object, and Object B is the object that Object A collided
 with. Object A slides around or steps on top of
 Object B if possible.
*/
protected boolean handleObjectCollision(GameObject objectA,
 GameObject objectB, float distSq, float minDistSq,
 Vector3D oldLocation)
{
 objectA.notifyObjectCollision(objectB);

 if (objectA.isFlying()) {
 return true;
 }

 float stepSize = objectA.getBounds().getTopHeight() / 6;
 Vector3D velocity =
 objectA.getTransform().getVelocity();

 // step up on top of object if possible
 float objectABottom = objectA.getY() +
 objectA.getBounds().getBottomHeight();
 float objectBTop = objectB.getY() +
 objectB.getBounds().getTopHeight();
 if (objectABottom + stepSize > objectBTop &&
 objectBTop +
 objectA.getBounds().getTopHeight() <
 objectA.getCeilHeight())

 {
 objectA.getLocation().y = (objectBTop -
 objectA.getBounds().getBottomHeight());
 if (velocity.y < 0) {
 objectA.setJumping(false);
 // don't let gravity get out of control
 velocity.y = -.01f;
 }
 return false;
 }

 if (objectA.getX() != oldLocation.x ||
 objectA.getZ() != oldLocation.z)
 {
 // slide to the side
 float slideDistFactor =
 (float)Math.sqrt(minDistSq / distSq) - 1;
 scratch.setTo(objectA.getX(), 0, objectA.getZ());
 scratch.subtract(objectB.getX(), 0, objectB.getZ());
 scratch.multiply(slideDistFactor);
 objectA.getLocation().add(scratch);

 // revert location if passing through a wall
 if (super.checkWalls(objectA, oldLocation, 0) != null) {
 return true;
 }

 return false;
 }

 return true;
}

Object-to-Wall Sliding

46

• Sliding along the wall might seem like a complicated task, but it really
just involves some simple math. If you know the goal location (the
location the object would have moved to had there been no wall),
you can easily find the slide location, as shown in this figure.

Object-to-wall sliding: An object slides against a wall.

Object-to-Wall Sliding (2)

47

• In this figure, the gray line points in the direction of the polygon's
normal. You can find the slide location if you can find the length of
this line. This is a simple right-triangle problem. Consider the vector
to the collision location from the goal location:

• Then the length of the gray line is the dot product between this
vector and the polygon's normal:

• So, the slide location is this:

vector.setTo(actualX, 0, actualZ);
vector.subtract(goalX, 0, goalZ);

float length = vector.getDotProduct(wall.getNormal());

float slideX = goalX + length * wall.getNormal().x;
float slideZ = goalZ + length * wall.getNormal().z;

Object-to-Wall Sliding (3)

48

private Vector3D scratch = new Vector3D();
private Vector3D originalLocation = new Vector3D();

...

/**
 Checks for a game object collision with the walls of the
 BSP tree. Returns the first wall collided with, or null if
 there was no collision. If there is a collision, the
 object slides along the wall and again checks for a
 collision. If a collision occurs on the slide, the object
 reverts back to its old location.
*/
public BSPPolygon checkWalls(GameObject object,
 Vector3D oldLocation, long elapsedTime)
{
 float goalX = object.getX();
 float goalZ = object.getZ();

 BSPPolygon wall = super.checkWalls(object,
 oldLocation, elapsedTime);
 // if collision found and object didn't stop itself
 if (wall != null && object.getTransform().isMoving()) {
 float actualX = object.getX();
 float actualZ = object.getZ();

 // dot product between wall's normal and line to goal
 scratch.setTo(actualX, 0, actualZ);
 scratch.subtract(goalX, 0, goalZ);
 float length = scratch.getDotProduct(wall.getNormal());

 float slideX = goalX + length * wall.getNormal().x;
 float slideZ = goalZ + length * wall.getNormal().z;

 object.getLocation().setTo(
 slideX, object.getY(), slideZ);
 originalLocation.setTo(oldLocation);
 oldLocation.setTo(actualX, oldLocation.y, actualZ);

 // use a smaller radius for sliding
 PolygonGroupBounds bounds = object.getBounds();
 float originalRadius = bounds.getRadius();
 bounds.setRadius(originalRadius-1);

 // check for collision with slide position
 BSPPolygon wall2 = super.checkWalls(object,
 oldLocation, elapsedTime);

 // restore changed parameters
 oldLocation.setTo(originalLocation);
 bounds.setRadius(originalRadius);

 if (wall2 != null) {
 object.getLocation().setTo(
 actualX, object.getY(), actualZ);
 return wall2;
 }
 }

 return wall;
}

Object-to-Wall Sliding (4)

49

• In this code, the checkWalls() method of CollisionDetection is
overridden. First the slide is applied; then it checks whether any wall
collisions occurred after the slide. If so, the object is moved back to
the collision location.

• You can always disable object-to-wall sliding. Projectiles, for example,
override the notify methods so that projectiles stop when they hit a
wall, floor, or ceiling:

public void notifyWallCollision() {
 transform.getVelocity().setTo(0,0,0);
}

public void notifyFloorCollision() {
 transform.getVelocity().setTo(0,0,0);
}

public void notifyCeilingCollision() {
 transform.getVelocity().setTo(0,0,0);
}

Object-to-Wall Sliding (5)

50

• This creates the effect of a projectile "sticking" to a wall or other
object, so you can emulate the previous collision-handling technique.

• Now you've got sliding for objects and walls. Next up: sliding up
stairs (and a little gravity).

Gravity and Sliding Up Stairs (Object-to-Floor Sliding)

51

• Another common sliding effect is to allow the player and other
objects to slide smoothly up stairs. Otherwise, as in the first
collision-detection demo, the player seems to jitter when moving up
stairs because the y location of the object instantly changes to the
higher stair step.

• Also, when you move from a higher platform to a lower one, you
instantly drop to the lower level instead of gradually dropping
because of gravity.

• Gravity will work the same as in Chapter 5, by accelerating the
object's downward velocity as time progresses. If the object's y
location is higher than the floor's y location, gravity can be applied
to the object.

Gravity and Sliding Up Stairs (Object-to-Floor Sliding) (2)

52

• The opposite is true for
sliding up stairs: If the
object's y location is
lower than the floor's y
location, a scoot-up
acceleration can be
applied to the object.

• The physics used for the
game is summed up in the
Physics class. This is just a
start, and you'll add more
to it later.

/**
 Default gravity in units per millisecond squared
*/
public static final float DEFAULT_GRAVITY_ACCEL = -.002f;

/**
 Default scoot-up (acceleration traveling up stairs)
 in units per millisecond squared.
*/
public static final float DEFAULT_SCOOT_ACCEL = .006f;

private float gravityAccel = DEFAULT_GRAVITY_ACCEL;
private float scootAccel = DEFAULT_SCOOT_ACCEL;
private Vector3D velocity = new Vector3D();

/**
 Applies gravity to the specified GameObject according
 to the amount of time that has passed.
*/
public void applyGravity(GameObject object, long elapsedTime) {
 velocity.setTo(0, gravityAccel * elapsedTime, 0);
 object.getTransform().addVelocity(velocity);
}

/**
 Applies the scoot-up acceleration to the specified
 GameObject according to the amount of time that has passed.
*/
public void scootUp(GameObject object, long elapsedTime) {
 velocity.setTo(0, scootAccel * elapsedTime, 0);
 object.getTransform().addVelocity(velocity);
}

Gravity and Scooting (Physics.java)

Make It Jump

53

• Jumping works pretty much
the same as it did in Chapter
5—just apply an upward
velocity to an object. The
power of this initial velocity
diminishes as gravity is
applied.

• Sometimes, though, you want
to guarantee how high an
object can jump. The figure
shows the equation.

Make It Jump (2)

54

• Add a few more methods
to the Physics class to
implement jumping.

• These methods enable you
to find the jump velocity
needed to jump a certain
height (based on the gravity
acceleration) and to actually
make an object jump.

/**
 Sets the specified GameObject's vertical velocity to jump
 to the specified height. Calls getJumpVelocity() to
 calculate the velocity, which uses the Math.sqrt()
 function.
*/
public void jumpToHeight(GameObject object, float jumpHeight)
{
 jump(object, getJumpVelocity(jumpHeight));
}

/**
 Sets the specified GameObject's vertical velocity to the
 specified jump velocity.
*/
public void jump(GameObject object, float jumpVelocity) {
 velocity.setTo(0, jumpVelocity, 0);
 object.getTransform().getVelocity().y = 0;
 object.getTransform().addVelocity(velocity);
}

/**
 Returns the vertical velocity needed to jump the specified
 height (based on current gravity). Uses the Math.sqrt()
 function.
*/
public float getJumpVelocity(float jumpHeight) {
 // use velocity/acceleration formal: v*v = -2 * a(y-y0)
 // (v is jump velocity, a is accel, y-y0 is max height)
 return (float)Math.sqrt(-2*gravityAccel*jumpHeight);
}

6. Collision Detection with Sliding Demo
• That's it for collision detection. Included with the source for this

chapter is the CollisionTestWithSliding class, which is exactly
the same as the previous demo except that it implements sliding. All
in all, it demonstrates sliding against a wall, sliding against objects,
stepping over objects, getting on top of objects, scooting up stairs,
applying gravity, and jumping.

• As a side effect to the engine, you can even stand on top of
projectiles. Because projectiles stick to walls, you can fire enough
projectiles to try to "draw" a ramp of them against the wall. Then
you can run up the ramp!

55

Source: CollisionTestWithSliding.java

7 . Enhancements
• You got some great basic collision detection and handling in this

chapter, but there's always room for improvement. Here are a few
ideas:

- Implement sphere trees for more accurate object-to-object tests.

- Perform extra checks for whether an object travels a large enough
distance in between frames; a collision could occur between the start
and end locations.

- Allow the player to crouch or crawl to get in tight places.

- Physics-wise, you could implement "head bobbing," which just bounces
the camera up and down when the player is moving.

56

8 . Summary
• Collision detection: one of the necessities of almost any game, 2D or

3D.

• First we talked about isolating objects on a grid to limit the number of
actual collision tests to make. Then we talked about various collision-
detection mechanisms, such as bounding spheres, sphere trees, bounding
cylinders, and bounding boxes.

• We implemented collision detection with other objects and with the
walls, floors, and ceilings of a BSP tree. We implemented some better
collision handling that enables the player (and other objects) to slide
against other objects' walls, slide against walls, and scoot up stairs.
Finally, we added gravity and jumping for good measure.

• You can blast the robots to smithereens, but they aren't much of a
challenge, are they? That's what you'll work on next: giving your
enemies some artificial intelligence so you can make the games you
create more fun and challenging.

57

