
Artificial Intelligence

Content
1. AI Basics

2. Take Away Those Godlike Powers!

3. State Machines and Reacting

4. Probability Machines

5. Making Decisions

6. Patterns

7. Object Spawning

8. Putting It All Together

9. Evolution

10. Other Game AI Ideas

11. Summary

2

1. AI Basics
• The appearance of the behavior is the important part.

• When designing the AI for a game, you should design from the top down: Think
about how you want your bots to appear, and then try to implement it.

• Many AI bots need to start with a good path-finding algorithm so that they
know how to travel from any two points in a map. Without path finding, you
could end up with annoying or distracting AI that makes bots get stuck next to
walls or not be able to turn around a corner.

• One of your overall goals of your AI bots is to not be distracting. Little things
such as bots moving around in unnatural patterns can be annoying to the user.
Sometimes AI is noticeable only when it's bad.

• You also should try to give different characters different behaviors that match
their appearance. For example, a human-shape creature would need to appear
to make intelligent choices because users would expect a human-shape creature
to do so; on the other hand, a spiderlike creature could follow simple patterns
and still be believable.

3

AI Basics (2)
• Another idea is to make progressively smarter and more difficult enemies as the

game moves along. Stay away from AI that easily becomes predictable so that the
game play doesn't become too tedious as the game progresses.

• Also, always keep in mind the goal of AI in the first place: finding that perfect
zone where enemies are not too smart and not too dumb, making the game fun
and challenging at the same time. Finding the right balance is up to you.

4

2. Take Away Those Godlike Powers!
• You rarely want to give bots godlike powers like this. Instead, you can force

certain situations in which the bot doesn't know where the player is.

• One realistic idea that works wonders in a 3D game is to allow a bot to know
where a player is only if the player is somewhere in the bot's sight. That is, the
bot has artificial vision.

• 2.1. Seeing

• Generally, the goal with artificial vision is to perform a check to find out
whether a bot can see the player. Obviously, the bot shouldn't see anything that's
behind an obstacle, such as something on the other side of a wall or above a
ceiling.

• What you can do is fire a "vision ray" from the bot to the player to see if that
ray hits any obstacles.

5

Take Away Those Godlike Powers! (2)

• If the vision ray doesn't hit an obstacle, you can assume the bot "sees" the player
and, therefore, knows the player's location. When the location is known, the bot
can attack or whatnot. But how do you implement a vision ray?

6

A bot (white circle) tries to locate the player (black circle). The bot uses a "vision
ray" to determine whether it can "see" the player. In this case, the bot can't see the
player.

Take Away Those Godlike Powers! (3)
• In a tile-based world, this is a simple problem to solve. Just draw a line using a

standard line equation, and find all tiles that intersect that line. Then check each
tile to determine whether it is "see-through."

• For a BSP tree, you've already implemented something like a vision ray. In
Chapter 11, "Collision Detection" your collision-detection code had a method
called getFirstWallIntersection() that found the first wall intersection
between two points.

7

/**
 Checks if this object can see the specified object,
 (assuming this object has eyes in the back of its head).
*/
public boolean canSee(GameObject object) {
 // check if a line from this bot to the object
 // hits any walls
 boolean visible =
 (collisionDetection.getFirstWallIntersection(
 getX(), getZ(), object.getX(), object.getZ(),
 getY(), getY() + 1) == null);

 if (visible) {
 timeSincePlayerLastSeen = 0;
 }
 return visible;
} AIBot.canSee()

Take Away Those Godlike Powers! (4)
• Notice that you set the field timeSincePlayerLastSeen to 0. This variable

is incremented in the update() method, so you always know the time since the
player was last seen. This way, you can perform certain functions if the player is
not visible but was visible recently, such as using the A* search if the player was
visible just a few seconds ago.

• One problem with using getFirstWallIntersection() is basically a problem
with using a 2D BSP tree: The ray is horizontal, which means the vision ray can't
go upstairs. Ergo, bots can't see upstairs. Hopefully, with the combination of
other AI capabilities, this won't be an issue.

• Another issue is that the bot has eyes in the back of its head. The vision ray is
cast out in any direction, no matter which way the bot is facing, so the player
can't sneak up behind the bot. To fix this, you could implement a "blind spot"
behind the AI creature.

8

Take Away Those Godlike Powers! (5)

• This is fairly easy to do. Just check to make sure the angle between the vision
ray and the direction the bot is facing isn't too large.

• But what if you snuck up behind a bot and just started screaming? Well, the bot
couldn't hear, so it wouldn't matter. But what if the bot could hear you, such as
when the player jumps, falls, or fires a weapon?

9

You can implement a vision
"blind spot" so the player can
still sneak up on the bot.

Take Away Those Godlike Powers! (6)
• 2.2. Hearing

• In the real world, when you make a sound, the sound waves bounce off walls,
run into each other, and travel down the hallway and around corners, and a
sound gets quieter with distance until you're so far away from the sound source
that you can't hear it at all.

• So in a game, you can give bots a "hearing radar" that can hear any noises within
a certain distance, whether or not there are walls in the way, as in Figure 13.3.

10

Take Away Those Godlike Powers! (7)
• 2.2. Hearing

11

float hearDistance;

...

/**
 Checks if this object can hear the specified object. The
 specified object must be making a noise and be within
 hearing range of this object.
*/
public boolean canHear(GameObject object) {

 // check if object is making noise and this bot is not deaf
 if (!object.isMakingNoise() || hearDistance == 0) {
 return false;
 }

 // check if this bot is close enough to hear the noise
 float distSq = getLocation().
 getDistanceSq(object.getLocation());
 float hearDistSq = hearDistance * hearDistance;
 return (distSq <= hearDistSq);
}

AIBot.canHear()

Take Away Those Godlike Powers! (8)
• Usually, a noise isn't just an

"instant" event, but it
actually lasts for a few
seconds or more. So, you
can keep track of the
remaining time of the last
noise made by each object.
It's all summed up in a
couple extra methods in
the base GameObject
class.

12

private long noiseDuration;

...

 /**
 Returns true if this object is making a "noise."
 */
 public boolean isMakingNoise() {
 return (noiseDuration > 0);
 }

 /**
 Signifies that this object is making a "noise" of the
 specified duration. This is useful to determine if
 one object can "hear" another.
 */
 public void makeNoise(long duration) {
 if (noiseDuration < duration) {
 noiseDuration = duration;
 }
 }

public void update(GameObject player, long elapsedTime) {
 if (isMakingNoise()) {
 noiseDuration-=elapsedTime;
 }
 ...
}

Take Away Those Godlike Powers! (9)
• In the code, we assume all noises have the same volume. In real life, however, loud

noises travel farther than faint noises. You could extend this code to give each
noise a volume or distance level that would specify either the volume of the
sound or the maximum distance the sound can carry.

13

3. State Machines and Reacting
• In previous chapters, you've already taken advantage of state machines, in

which an object can have different states that cause it to perform different
actions. For example, the base game object class had the idle, active, and
destroyed states. State machines are also called finite state machines because
there are a limited number of possible states.

• A finite state machine also defines how and when the object's state can change.
For example, a bot can go from stopped to walking to running, but it can't go
directly from stopped to running. Also, a bot might start walking only if the player
is visible.

• Additionally, you can create a hierarchy of states. For example, the bots in this
chapter will have three states that are considered "battle" states: dodging,
attacking, and running away. Furthermore, the attack state could have different
kinds of attack patterns. So, the hierarchy is battle as a parent, with three children
and possibly a few grandchildren.

14

State Machines and Reacting (2)
• Check out this figure for a visual look

at the state machine you'll use for the
AI bots in this chapter. This state
machine has two basic parent states:
battle and normal.

• A bot goes into a battle state only if
the player is visible, and it returns to
the normal state when the player is no
longer seen.

15

State Machines and Reacting (3)
• Setting the correct AI state is straightforward, shown here in Listing 13.5.

16

private int aiState;
private long elapsedTimeInState;

...

/**
 Sets the AI state for this bot (different from the
 GameObject state).
*/
protected void setAiState(int aiState, GameObject player) {
 if (this.aiState != aiState) {
 this.aiState = aiState;
 elapsedTimeInState = 0;
 }

 // later, set the appropriate path for this state here.
 ...
}

public void update(GameObject player, long elapsedTime) {
 elapsedTimeInState+=elapsedTime;
 ...
}AIBot

4. Probability Machines
• Sometimes you want the decision between different states to occur purely on

deterministic reasoning. For example, you might want to dodge only if you detect
projectiles heading your way.

• Sometimes, though, you just want to randomly select one of these states, giving
preference to one state or the other. Check out Figure 13.5 as an example.

17

Each bot could have a different probability of performing each battle state.

Probability Machines (2)
• This figure shows three different types of bots, with different probabilities of each

state occurring. Note that the sum of the probabilities equals 100%.

• You might be used to observing probability as a percentage—for example, when
you flip a coin, there's a 50% chance of the coin turning up heads. You also might
have thought of probability as a fraction, such as a 1/6 chance of rolling a certain
number with a die or a one-in-a-million chance of winning a lottery. In this chapter,
we use the decimal representation of probability that's common in statistics
textbooks. In this representation, the probability of an event occurring is between
0 and 1. A probability of 1 means the event always occurs, 0 means the event never
occurs, and 0.5 means the event has a 50% chance of occurring.

• Figure 13.5 could easily have been a described as a pie chart, but laying it out in
this way shows how you can determine which state is chosen. For example, a
random number generator returns a number between 0 and 1. With an average
bot, if the result is between 0 and 0.5, the state could be attack; between 0.5 and
0.9 would be dodge; and between 0.9 and 1.0 would be run away.

18

Probability Machines (3)
• You can keep track of these probabilities like this:

19

// probability of each battle state
// (the sum should be 1)
float attackProbability;
float dodgeProbability;
float runAwayProbability;

• Notice that the sum of these is assumed to be 1.0, just like in Figure 13.5—that way,
at least one of these events will always occur. You can randomly choose a state as in
Listing 13.6.

/**
 Randomly choose one of the three battle states (attack, dodge,
 or run away).
*/
public int chooseBattleState() {
 float p = (float)Math.random();
 if (p <= attackProbability) {
 return BATTLE_STATE_ATTACK;
 }
 else if (p <= attackProbability + dodgeProbability) {
 return BATTLE_STATE_DODGE;
 }
 else {
 return BATTLE_STATE_RUN_AWAY;
 }
}AIBot.chooseBattleState()

Probability Machines (4)
• Some Useful Random

Functions

• Using Math.random() in the
chooseBattleState() method was
fine because the random function
returns a number from 0 to 1, but
you're going to be using random
numbers a lot on this chapter, and
you'll often want more flexibility than
just a range from 0 to 1.

• This is a good time to introduce some
handy random functions. You'll add
them to the MoreMath class, shown
here in Listing 13.7.

20

/**
 Returns a random integer from 0 to max (inclusive).
*/
public static int random(int max) {
 return (int)Math.round(Math.random() * max);
}

/**
 Returns a random integer from min to max (inclusive).
*/
public static int random(int min, int max) {
 return min + random(max-min);
}

/**
 Returns a random float from 0 to max (inclusive).
*/
public static float random(float max) {
 return (float)Math.random()*max;
}

/**
 Returns a random float from min to max (inclusive).
*/
public static float random(float min, float max) {
 return min + random(max-min);
}

/**
 Returns a random object from a List.
*/
public static Object random(List list) {
 return list.get(random(list.size() - 1));
}

/**
 Returns true if a random "event" occurs. The specified
 value, p, is the probability (0 to 1) that the random
 "event" occurs.
*/
public static boolean chance(float p) {
 return (Math.random() <= p);
}

5. Making Decisions
• Making decisions is an easy part, but as we've talked about, it's also easy to make

creatures too smart. Obviously, you don't want to make a new decision every
frame, so your code should provide limits so that decisions are made on a periodic
basis—say, every second or so. You can make "dumb" creatures have a longer
decision period.

• How often the bots make a decision is just one of those things you'll have to
tweak until you get the right feel.

• Listing 13.8 has some sample code you'll use for decision making in the AIBot.
Here, a special state called DECISION_READY is used to signify that a decision
needs to be made. The bot makes decisions every few seconds (based on
decisionTime) but makes decisions more often if it's idle. In this manner, it can
quickly move to other states if it notices the player. Decisions are also made when
you're done with the path you're traveling on (from the code in the PathBot class).

21

Making Decisions (2)

22

// time (milliseconds) between making decisions
long decisionTime;

...

public void update(GameObject player, long elapsedTime) {

 elapsedTimeSinceDecision+=elapsedTime;
 elapsedTimeInState+=elapsedTime;
 timeSincePlayerLastSeen+=elapsedTime;

 // if idle and player visible, make decision every 500 ms
 if ((aiState == NORMAL_STATE_IDLE ||
 aiState == NORMAL_STATE_PATROL) &&
 elapsedTimeInState >= 500)
 {
 aiState = DECESION_READY;
 }

 // if time's up, make decision
 else if (elapsedTimeSinceDecision >= decisionTime) {
 aiState = DECESION_READY;
 }

 // if done with current path, make decision
 else if (currentPath != null && !currentPath.hasNext() &&
 !getTransform().isMovingIgnoreY())
 {
 aiState = DECESION_READY;
 }

 // make a new decision
 if (aiState == DECESION_READY) {
 elapsedTimeSinceDecision = 0;

 if (canSee(player)) {
 setAiState(chooseBattleState(), player);
 }
 else if (timeSincePlayerLastSeen < 3000 ||
 canHear(player))
 {
 setAiState(NORMAL_STATE_CHASE, player);
 }
 else {
 setAiState(NORMAL_STATE_IDLE, player);
 }
 }
}

• When making a decision, the bot
chooses from a battle state, a chase
state, or an idle state. If the player is
visible, it picks a battle state. If the
player was visible recently (in the last 3
seconds) or if the player is heard, the
bot chooses the chase state. If none of
those conditions are met, it chooses the
idle state.

6. Patterns
• You'll use the

PathFinder interface
from the previous chapter
to write some patterns.
This interface has methods
that return an Iterator of
locations in a path to
follow. You'll actually create
an abstract AIPattern
class, in Listing 13.9, that
implements this interface.

• The AIPattern class has a
couple of convenience
methods to help when
making patterns.

23

/**
 Calculates the floor for the location specified. If
 the floor cannot be determined, the specified default
 value is used.
*/
protected void calcFloorHeight(Vector3D v, float defaultY) {
 BSPTree.Leaf leaf = bspTree.getLeaf(v.x, v.z);
 if (leaf == null || leaf.floorHeight == Float.MIN_VALUE) {
 v.y = defaultY;
 }
 else {
 v.y = leaf.floorHeight;
 }
}

/**
 Gets the location between the player and the bot
 that is the specified distance away from the player.
*/
protected Vector3D getLocationFromPlayer(GameObject bot,
 GameObject player, float desiredDistSq)
{
 // get actual distance (squared)
 float distSq = bot.getLocation().
 getDistanceSq(player.getLocation());

 // if within 5 units, we're close enough
 if (Math.abs(desiredDistSq - distSq) < 25) {
 return new Vector3D(bot.getLocation());
 }

 // calculate vector to player from the bot
 Vector3D goal = new Vector3D(bot.getLocation());
 goal.subtract(player.getLocation());

 // find the goal distance from the player
 goal.multiply((float)Math.sqrt(desiredDistSq / distSq));

 goal.add(player.getLocation());
 calcFloorHeight(goal, bot.getFloorHeight());

 return goal;
}AIPattern

Patterns (2)
• The first convenience method, calcFloorHeight(), gets the height of the

floor for any location. If the location is out of bounds, the default height is
used.

• The second convenience method helps make several patterns easier to
write. It returns the location between the bot and the player that is a specific
distance away from the player. A lot of times, a bot wants to attack or dodge
from a certain distance.

24

Patterns (3)
• 6.1. Dodging

• The first pattern we discuss is dodging. Dodging can be very complicated or
very simple, depending on what you want to accomplish. Check out Figure
13.6 for some sample dodge patterns.

25

Patterns (4)

• Let's create the first two
dodge patterns as an
example. The zigzag pattern
is shown here in Listing
13.10.

• This zigzag pattern makes a
pattern that moves the bot
a certain distance
(dodgeDist) at a tangent to
the player and then back to
the bot's starting point.

• There's a random chance
the bot moves either left
or right.

26

public class DodgePatternZigZag extends AIPattern {

 private float dodgeDist;

 public DodgePatternZigZag(BSPTree tree, float dodgeDist) {
 super(tree);
 this.dodgeDist = dodgeDist;
 }

 public Iterator find(GameObject bot, GameObject player) {

 // create the vector to the dodge location
 Vector3D zig = new Vector3D(bot.getLocation());
 zig.subtract(player.getLocation());
 zig.normalize();
 zig.multiply(dodgeDist);
 zig.rotateY((float)Math.PI/2);

 // 50% chance - dodge one way or the other
 if (MoreMath.chance(.5f)) {
 zig.multiply(-1);
 }

 // convert vector to absolute location
 zig.add(bot.getLocation());
 calcFloorHeight(zig, bot.getFloorHeight());

 Vector3D zag = new Vector3D(bot.getLocation());
 calcFloorHeight(zag, bot.getFloorHeight());

 List path = new ArrayList();
 path.add(zig);
 path.add(zag);
 return path.iterator();
 }
}DodgePatternZigZag.java

Patterns (5)

• The next dodge pattern,
random, moves the bot to
a random location within a
half-circle of the player.

• By limiting to a half-circle,
you can ensure the bot
doesn't have to cross the
player to get to the dodge
location. The code is in
Listing 13.11.

27

DodgePatternRandom.java

public class DodgePatternRandom extends AIPattern {

 private float radiusSq;

 public DodgePatternRandom(BSPTree tree, float radius) {
 super(tree);
 this.radiusSq = radius * radius;
 }

 public Iterator find(GameObject bot, GameObject player)
{

 Vector3D goal = getLocationFromPlayer(bot, player,
 radiusSq);

 // pick a random location on this half-circle
 // (-90 to 90 degrees from current location)
 float maxAngle = (float)Math.PI/2;
 float angle = MoreMath.random(-maxAngle, maxAngle);
 goal.subtract(player.getLocation());
 goal.rotateY(angle);
 goal.add(player.getLocation());
 calcFloorHeight(goal, bot.getFloorHeight());

 return Collections.singleton(goal).iterator();
 }

}

Patterns (6)

• Of course, these dodge patterns implemented here are just a beginning—you
can come up with plenty more dodge patterns. Another idea for dodging is to
keep track of incoming projectiles and move perpendicular to the projectile's
path, or to do other movements such as ducking or jumping.

28

Patterns (7)

• 6.2. Attacking

• Now you'll implement some attack patterns. Your attack patterns will vary
depending on how your bots attack. For example, some might fire projectiles,
some might try to ram the player, and others might simply try to make
themselves look bigger to scare you away. Figure 13.7 shows some attack
patterns you'll implement for the bots in this chapter.

29

Patterns (8)

• Here the bot just moves so
that it's within a certain
distance of the player. You can
just use the
getLocationFromPlayer()
method you created in
AIPattern, as shown in Listing
13.12.

30

AttackPatternRush.java

public class AttackPatternRush extends AIPattern {

 private float desiredDistSq;

 public AttackPatternRush(BSPTree tree, float desiredDist)
{
 super(tree);
 this.desiredDistSq = desiredDist * desiredDist;
 }

 public Iterator find(GameObject bot, GameObject player) {
 Vector3D goal = getLocationFromPlayer(bot, player,
 desiredDistSq);
 if (goal.equals(bot.getLocation())) {
 return null;
 }
 else {
 return Collections.singleton(goal).iterator();
 }
 }

}

Patterns (9)

• Note that this pattern returns null if the bot is already at the rush location.

• Strafing around a player might seem difficult at first, but if you can pull it off, it will
really help boost the apparent intelligence of your bots. Strafing makes the bot
circle around the player. This makes it easy for the bot to fire projectiles but
harder for the player to fire at the bot, so it's a great offensive tactic.

31

Patterns (10)

• Instead of actually moving in
a circle, just have the bot
move in an octagon around
the player. This reduces the
path to eight locations. The
code is in Listing 13.13.

• In this pattern, with a vector
from the player to the
desired radius, you can
rotate this vector around the
y-axis eight times to get the
eight different points you
want.

32

public class AttackPatternStrafe extends AIPattern {

 private float radiusSq;

 public AttackPatternStrafe(BSPTree tree, float radius) {
 super(tree);
 this.radiusSq = radius * radius;
 }

 public Iterator find(GameObject bot, GameObject player) {

 List path = new ArrayList();

 // find first location within desired radius
 Vector3D firstGoal = getLocationFromPlayer(bot, player,
 radiusSq);
 if (!firstGoal.equals(bot.getLocation())) {
 path.add(firstGoal);
 }

 // make a counter-clockwise circle around the player
 // (it's actually an octagon).
 int numPoints = 8;
 float angle = (float)(2 * Math.PI / numPoints);
 if (MoreMath.chance(0.5f)) {
 angle = -angle;
 }
 float lastY = bot.getFloorHeight();
 for (int i=1; i<numPoints; i++) {
 Vector3D goal = new Vector3D(firstGoal);
 goal.subtract(player.getLocation());
 goal.rotateY(angle * i);
 goal.add(player.getLocation());
 calcFloorHeight(goal, lastY);
 lastY = goal.y;
 path.add(goal);
 }

 // add last location (back to start)
 path.add(firstGoal);
 return path.iterator();
 }
}

AttackPatternStrafe.java

Patterns (11)

• Again, you could come up with a numerous other patterns besides these two.
There's the sneak attack as in the previous figure. There are also other attacks,
such as ramming, doing kamikaze attacks, waiting and ambushing, or jumping on
the player.

• Of course, in a game, a bot doesn't always have to attack. Plenty of baddies, such
as spiders or little animals, can be completely ambivalent to the player, just
wandering around minding their own business. Games such as Nintendo's Mario
series have plenty of creatures like these. Be sure to add some creativity and
variety to the different types of patterns.

33

Patterns (12)

• 6.3. Running Away

• A bot might run away from the player
for lots of reasons. Perhaps the player
has a really big, scary weapon, or the
bot is so low on health that it just
wants to get away. A lot of the time,
you might want to just make a
nervous bot that runs away often, or
runs away for short periods as a
defensive tactic.

• All you need for a run–away pattern is
a spot to run to. Listing 13.14 shows a
panic pattern that just makes the bot
run directly away from the player, even
if there is a wall in the way.

34

public class RunAwayPattern extends AIPattern {

 public RunAwayPattern(BSPTree tree) {
 super(tree);
 }

 public Iterator find(GameObject bot, GameObject player) {
 // dumb move: run in the *opposite* direction of the
 // player (will cause bots to run into walls!)

 Vector3D goal = new Vector3D(player.getLocation());
 goal.subtract(bot.getLocation());

 // opposite direction
 goal.multiply(-1);

 // far, far away
 goal.multiply(100000);
 calcFloorHeight(goal, bot.getFloorHeight());

 // return an iterator
 return Collections.singleton(goal).iterator();
 }
}

RunAwayPattern.java

Patterns (13)

• 6.4. Aiming

• Although it's not really a movement pattern, often a bot needs to "aim" a weapon
at the player, with various degrees of success: You'll probably want to give some
bots better aiming than others. Figure 13.8 shows a few aim pattern ideas.

35

Patterns (14)

• You'll just implement one aim
pattern that can aim with a
specified accuracy from 0 to 1
(see Listing 13.15). If the
accuracy is 0, the aim can be off
up to 10°. If the accuracy is 1,
the aim is dead on with the
player, not taking the player's
velocity into account.

• Note that this aim pattern
returns a normalized vector
direction rather than an
absolute location because
you're aiming in a direction.

36

public class AimPattern extends AIPattern {

 protected float accuracy;

 public AimPattern(BSPTree tree) {
 super(tree);
 }

 /**
 Sets the accuracy of the aim from 0 (worst) to 1 (best).
 */
 public void setAccuracy(float p) {
 this.accuracy = p;
 }

 public Iterator find(GameObject bot, GameObject player) {
 Vector3D goal = new Vector3D(player.getLocation());
 goal.y += player.getBounds().getTopHeight() / 2;
 goal.subtract(bot.getLocation());

 // Rotate up to 10 degrees off y-axis
 // (This could use an up/down random offset as well.)
 if (accuracy < 1) {
 float maxAngle = 10 * (1-accuracy);
 float angle = MoreMath.random(-maxAngle, maxAngle);
 goal.rotateY((float)Math.toRadians(angle));
 }
 goal.normalize();

 // return an iterator
 return Collections.singleton(goal).iterator();
 }
}

AimPattern.java

Patterns (15)
• 6.4. Firing

• When aiming, another thing to
consider is the amount of time it
requires a bot to aim. You don't
want a bot to simply fire its
weapon for every frame; instead,
you want it to wait for a bit, as if
it's actually aiming, so that shots
are fired only after the bot has
spent time aiming the shot.

• In the code, we make the
amount of time spent aiming
proportional to the accuracy of
the shot. Spending two seconds
or more gives perfect aim, and
anything less results in a slightly
inaccurate aim. You add the code
in the AIBot class in Listing
13.16.

37Aiming and Firing in AIBot

AimPattern aimPathFinder;
long aimTime;

public void update(GameObject player, long elapsedTime)
{

 ...

 if (aiState == BATTLE_STATE_ATTACK &&
 elapsedTimeInState >= aimTime &&
 aimPathFinder != null)
 {
 elapsedTimeInState-=aimTime;

 // longer aim time == more accuracy
 float p = Math.min(1, aimTime / 2000f);
 aimPathFinder.setAccuracy(p);
 Vector3D direction = (Vector3D)
 aimPathFinder.find(this, player).next();
 fireProjectile(direction);
 }
}

/**
 Fires a projectile in the specified direction. The
 direction vector should be normalized.
*/
public void fireProjectile(Vector3D direction) {

 Projectile blast = new Projectile(
 (PolygonGroup)blastModel.clone(),
 direction, this, 3, 6);
 float dist = 2 * (getBounds().getRadius() +
 blast.getBounds().getRadius());
 blast.getLocation().setTo(
 getX() + direction.x*dist,
 getY() + getBounds().getTopHeight()/2,
 getZ() + direction.z*dist);

 // "spawns" the new game object
 addSpawn(blast);

}

7. Object Spawning

• As in the projectile example,
sometimes an object needs
to spawn another object. For
example, an object could
explode into several pieces,
resulting in several spawns
traveling in different
directions; a bot could drop
its weapon; or "sparks" could
fly off a bot when it gets hit.

• It's probably a good idea to
let any game object spawn
another, so you'll add code in
the GameObject class to add
and retrieve spawns, shown
here in Listing 13.17.

38

Spawning in GameObject

private List spawns;

...

/**
 Spawns an object, so that the GameManager can
 retrieve later using getSpawns().
*/
protected void addSpawn(GameObject object) {
 if (spawns == null) {
 spawns = new ArrayList();
 }
 spawns.add(object);
}

/**
 Returns a list of "spawned" objects
(projectiles,
 exploding parts, etc) or null if no objects
 were spawned.
*/
public List getSpawns() {
 List returnList = spawns;
 spawns = null;
 return returnList;
}

8. Putting It All Together

• Besides making a bot "explode" when it gets hit, you need to do a few other
things to create a working demo using the AI bots:

- You might want to show different object animations for each state. For
example, the bot could have different animations for walking, running, strafing,
aiming, or firing.

- The bot should give some visual feedback when it gets wounded so the
player knows it is damaging the bot.

- Now that the bots can attack the player, you also need some visual feedback
on the player's state. For instance, you could use a health bar and a damage
indicator.

• You are using the same simple pyramid-shape bots from the previous chapter,
keeping the object animations to a minimum. You'll also create a simple overlay
framework to draw a health bar.

39

Putting It All Together (2)

• 8.1. Brains!

• You'll store all the
movement patterns and
other attributes of the
bots in a simple Brain
class, shown in Listing
13.18. Every AIBot will
have an instance of the
Brain class.

• This is a bare class that
just includes fields for
each brain attribute. The
only function here is
one to fix the
probabilities so their
sum is 1.

40

Brain.java

public class Brain {

 public PathFinder attackPathFinder;
 public PathFinder dodgePathFinder;
 public PathFinder aimPathFinder;
 public PathFinder idlePathFinder;
 public PathFinder chasePathFinder;
 public PathFinder runAwayPathFinder;

 // probability of each battle state
 // (the sum should be 1)
 public float attackProbability;
 public float dodgeProbability;
 public float runAwayProbability;

 public long decisionTime;
 public long aimTime;
 public float hearDistance;

 public void fixProbabilites() {
 // make the sums of the odds == 1.
 float sum = attackProbability + dodgeProbability +
 runAwayProbability;
 if (sum > 0) {
 attackProbability /= sum;
 dodgeProbability /= sum;
 runAwayProbability /= sum;
 }
 }
}

Putting It All Together (3)

• 8.2. Health and Dying

• Of course, now that you've got bots that can move around an attack, you need
to make it so bots can be destroyed.

• In previous chapter demos, we had the "one strike and you're out" rule, where a
projectile hitting a bot destroyed it, making it immediately disappear. In a game,
you'll want to make it a bit more realistic than that. Here are some examples:

- Make some bots take more hits to destroy them than others.

- Make some bots more vulnerable to certain weapons. For example, a bot
might be able to shield laser blasts but might be completely defenseless
against missiles.

- When hit, make a bot move to a wounded state that causes the bot to stop
for a moment. Also, make the bot invulnerable to any more damage for the
short period of time it's in the wounded state.

41

Putting It All Together (4)

- Make different decisions depending on the health of a bot. A bot with full
health might be brave, while a bot with critically low health might just run
away from the player.

- After a bot is destroyed, don't make it immediately disappear. Have it lie there
for a short amount of time, and remove it a few seconds later. Some games
just let dead bots lie there throughout the entire game. Another idea is to
make the robot explode into oblivion (making blast marks on the floors) or
disappear in a puff of smoke.

- A destroyed bot could drop certain items, such as ammo or energy, that the
player can pick up.

- Be sure to find the right balance between the player and bad guys in your
game, and make enemies progressively more difficult as the game moves
forward.

- As always, be creative!

42

Putting It All Together (5)

• In this chapter, you'll create fairly simple health and dying routines. Each bot will
start with 100 health points, and the player's weapon will cause a random
amount of damage between 40 and 60 health points. Remember, the player fires
projectiles that are game objects, so you can use our collision code to check
whether a projectile hits anything.

• First, you'll add a couple more states to the bot, to signify when the bot has been
hit and when it is dead:

• Keep a bot in the hurt state for a few seconds after it gets hit. Likewise, if the
bot's AI state is dead, keep it in that state for a few seconds and then remove it
from the game object manager.

43

public static final int WOUNDED_STATE_HURT = 6;
public static final int WOUNDED_STATE_DEAD = 7;

Putting It All Together (6)
• First, add some health

functions to the AIBot
class, shown here in Listing
13.19.

• The addHealth() method is
where all the action
happens. Note that this
method decreases the
health and puts the bot in
the hurt state only if it's
not currently hurt.

• The isCriticalHealth()
method returns true if the
bot's health is critically
low; if so, you can make it
run away.

44
Health Methods in AIBot

private static final float DEFAULT_MAX_HEALTH = 100;
private static final float CRITICAL_HEALTH_PERCENT = 5;

private float maxHealth;
private float health;

...

protected void setHealth(float health) {
 this.health = health;
}

/**
 Adds the specified amount to this bot's health. If the
 amount is less than zero, the bot's state is set to
 WOUNDED_STATE_HURT.
*/
public void addHealth(float amount) {
 if (amount < 0) {
 if (health <= 0 || aiState == WOUNDED_STATE_HURT) {
 return;
 }
 setAiState(WOUNDED_STATE_HURT, null);
 }
 setHealth(health + amount);
}

/**
 Returns true if the health is critically low (less than
 CRITICAL_HEALTH_PERCENT).
*/
public boolean isCriticalHealth() {
 return (health / maxHealth < CRITICAL_HEALTH_PERCENT /
100);
}

Putting It All Together (7)
• Next you must make some

decisions based on the bot's
health and wounded state. You
need to make sure a bot stays in
the hurt state for a short period
of time, and you need to destroy
a bot if it has been dead for a
while. The code to do all this is
here in Listing 13.20.

• The code shows some decision-
making routines in the update()
method of AIBot. After a bot is
hurt, 500ms later it either moves
to the idle state or, if the bot's
health is 0, moves to the dead
state. When in the dead state, it
destroys itself after five seconds.
Finally, if the health of the bot is
critically low, the bot runs away
from the player.

45

Wounded and Dying Methods in AIBot

public void update(GameObject player, long elapsedTime) {

 elapsedTimeInState+=elapsedTime;

 ...

 if (aiState == WOUNDED_STATE_DEAD) {
 // destroy bot after five seconds
 if (elapsedTimeInState >= 5000) {
 setState(STATE_DESTROYED);
 }
 return;
 }
 else if (aiState == WOUNDED_STATE_HURT) {
 // after 500ms switch to either the idle or dead state.
 if (elapsedTimeInState >= 500) {
 if (health <= 0) {
 setAiState(WOUNDED_STATE_DEAD, player);
 return;
 }
 else {
 aiState = NORMAL_STATE_IDLE;
 }
 }
 else {
 return;
 }
 }

 // run away if health critical
 if (isCriticalHealth() && brain.runAwayPathFinder != null) {
 setAiState(BATTLE_STATE_RUN_AWAY, player);
 return;
 }

 ...

}

Putting It All Together (8)
• Another idea is to make the bot

disappear only when it's
offscreen so the player doesn't
notice it vanish.

• Alternatively, many games show
some sort of explosion effect
when a bot disappears. Earlier,
we talked about how you need
to set the appropriate
PathFinder whenever you set the
AI state.

• You also need to change the
object's animation at this time.
Listing 13.21 shows the
extended setAIState() method in
AIBot. In this code, when a bot is
hurt, it stops moving and spins
around a little bit, as if getting hit
made it dizzy.

46
Extended setAIState() Method of AIBot

protected void setAiState(int aiState, GameObject player) {

 if (this.aiState == aiState) {
 return;
 }

 this.aiState = aiState;

 elapsedTimeInState = 0;
 Vector3D playerLocation = null;
 if (player != null) {
 playerLocation = player.getLocation();
 }

 // update path
 switch (aiState) {
 case BATTLE_STATE_ATTACK:
 setPathFinder(brain.attackPathFinder);
 setFacing(playerLocation);
 break;
 case BATTLE_STATE_DODGE:
 setPathFinder(brain.dodgePathFinder);
 setFacing(null);
 break;

 ...

 case WOUNDED_STATE_HURT:
 setPathFinder(null);
 setFacing(null);
 getTransform().stop();
 getTransform().setAngleVelocityY(
 MoreMath.random(0.001f, 0.05f),
 MoreMath.random(100, 500));
 break;
 }

}

Putting It All Together (9)
• Now you need to show the health of the player because the AI bots can attack,

thus depleting the player's health. You'll accomplish this by adding a heads-up
display.

• 8.3. Adding a Heads-Up Display

• As far as I can tell, the term heads-up display, or HUD, originated from certain car
instrument panels. On common cars, the driver has to look down to see the
speed, fuel meter, odometer, flux capacitor, and whatever other gauges are on the
instrument panel. But with cars that have a heads-up display, the instrument panel
is projected onto the windshield or is displayed in a racing driver's helmet so
drivers can keep their heads up while driving.

47

Putting It All Together (10)
• The primary purpose of heads-up displays is to provide information on the state of

the game that can't be displayed in the game itself. Some types of information that
are common in heads-up displays are listed here:

- Amount of health, ammo, remaining lives, and so on

- In-game messages (which could include displaying icons when you pick up an
item)

- Any currently active power-ups (such as super health or quad damage)

- Time left to play

• Heads-up displays in games are normally drawn as an overlay on top of the view
window. Also, they are often resolution independent, meaning they stay the same
size onscreen no matter what the resolution of the screen is. Conversely, a
resolution-dependent HUD, such as one designed for a 640x480 screen, would
look smaller on a higher-resolution screen such as 1,024x768.

48

Putting It All Together (11)

• This implementation will be
resolution independent. Start
your implementation by creating
a simple Overlay interface in
Listing 13.22.

• Overlays are updated just like
game objects and are drawn after
each frame is drawn so they
appear on top.

49

Overlay.java

public interface Overlay {

 /**
 Updates this overlay with the specified amount of
 elapsed time since the last update.
 */
 public void update(long elapsedTime);

 /**
 Draws an overlay onto a frame. The ViewWindow specifies
 the bounds of the view window (usually, the entire
 screen). The screen bounds can be retrieved by calling
 g.getDeviceConfiguration().getBounds();
 */
 public void draw(Graphics2D g, ViewWindow viewWindow);

 /**
 Returns true if this overlay is enabled (should be
drawn).
 */
 public boolean isEnabled();
}

Putting It All Together (12)

• As an example, you'll create a simple heads-up display that shows the health of the
player, both as a number and as a bar. The HeadsUpDisplay class, in Listing 13.23, is a
resolution-independent display of the player's health.

• Also, it's animated: The displayed health slightly lags behind the actual health of the
player.

50

Putting It All Together (13)

51

public class HeadsUpDisplay implements Overlay {

 // increase health display by 20 points per second
 private static final float DISPLAY_INC_RATE = 0.04f;

 private Player player;
 private float displayedHealth;
 private Font font;

 public HeadsUpDisplay(Player player) {
 this.player = player;
 displayedHealth = 0;
 }

 public void update(long elapsedTime) {
 // increase or decrease displayedHealth a small amount
 // at a time, instead of just setting it to the player's
 // health.
 float actualHealth = player.getHealth();
 if (actualHealth > displayedHealth) {
 displayedHealth = Math.min(actualHealth,
 displayedHealth + elapsedTime * DISPLAY_INC_RATE);
 }
 else if (actualHealth < displayedHealth) {
 displayedHealth = Math.max(actualHealth,
 displayedHealth - elapsedTime * DISPLAY_INC_RATE);
 }
 }
 ...

 ...
 public void draw(Graphics2D g, ViewWindow window) {

 // set the font (scaled for this view window)
 int fontHeight = Math.max(9, window.getHeight() / 20);
 int spacing = fontHeight / 5;
 if (font == null || fontHeight != font.getSize()) {
 font = new Font("Dialog", Font.PLAIN, fontHeight);
 }
 g.setFont(font);
 g.translate(window.getLeftOffset(), window.getTopOffset());

 // draw health value (number)
 String str = Integer.toString(Math.round(displayedHealth));
 Rectangle2D strBounds = font.getStringBounds(str,
 g.getFontRenderContext());
 g.setColor(Color.WHITE);
 g.drawString(str, spacing, (int)strBounds.getHeight());

 // draw health bar
 Rectangle bar = new Rectangle(
 (int)strBounds.getWidth() + spacing * 2,
 (int)strBounds.getHeight() / 2,
 window.getWidth() / 4,
 window.getHeight() / 60);
 g.setColor(Color.GRAY);
 g.fill(bar);

 // draw highlighted part of health bar
 bar.width = Math.round(bar.width *
 displayedHealth / player.getMaxHealth());
 g.setColor(Color.WHITE);
 g.fill(bar);
 }

 public boolean isEnabled() {
 return (player != null &&
 (player.isAlive() || displayedHealth > 0));
 }
}

HeadsUpDisplay.java

Putting It All Together (14)

• The font size and the health bar size are determined by the size of the view window.
Other than that, there's really nothing special about this heads-up display. A text
string and a couple of rectangles are drawn, and that's it. The health bar makes a great
animated effect, though.

• This chapter's demo (called AIBotTest) includes one more overlay that acts as a
message queue. In this case, the message queue displays the various changes in the AI
bots' state in the upper-right corner of the screen. This helps debug the AI bots'
behavior and gives developers a clue to what the bots are thinking, including whether
a bot really can see or hear the player. Check out Figure 13.9 for a screenshot.

52

Putting It All Together (15)

• Note that you should include a heads-up display only when it's necessary. If you
can show the health of the player in the game itself, do so. For example, in the
original Mario games, Mario's health was directly related to his size: A big Mario
could get hit twice before dying, but a small Mario could get hit only once. The
game didn't need the words big or small in the heads-up display because it was
already visually apparent.

• And you don't have to limit the health display to a bar, either. Some games use pie
charts or heart icons. Feel free to be creative with how you display the health
because a bar can be considered passé. For example, the game Doom shows a
graphic of your face—the more damage you take, the bloodier your face
becomes.

• Finally, keep in mind that the heads-up display doesn't have to be onscreen at all
times. Parts of it could appear only when a significant change occurs, such as
when the player gets more points or acquires a new power-up. In this case, the
heads-up display could scroll on and off the screen as needed.

53

9. Evolution

• The last topic on our list of game AI concepts is evolution. Evolving AI bots
gradually change their behavior over time, ideally becoming more adept at
offensive and defensive tactics against the player.

• The advantage of adding evolution in a game is that the bots can become more
challenging to an individual user's playing style. The idea is that each user will play
a game using different tactics, and evolving bots will be able to adjust accordingly
and gradually become more difficult for the player.

54

Evolution (2)

• You can implement evolution in a game in several ways. It can be done on the fly
or with a bot occasionally modifying its own attributes to become better at
attacking the player. Here are a few examples:

- The bot could change attack and aim patterns until it finds one that hits the
player more often.

- The bot could fire several simultaneous "virtual" projectiles using different
aim patterns to see which one is more likely to hit the player. Using virtual
projectiles that the bot keeps track of instead of real projectiles means the
bot can test several different aim patterns at once, instead of waiting to aim
before firing a real projectile one at a time.

- The bot could tweak other attributes on the fly as well, such as speed,
decision time, hearing distance, and amount of time between making
decisions.

55

Evolution (3)

• Another way to implement evolution is the old-fashioned way: through
reproduction and genetic mutation. No, you won't actually make bots mate and
have children—sorry to disappoint. But you can implement the idea of
reproduction and mutation. Here it goes:

- Only the "best" bots reproduce.

- An offspring is a slightly mutated version of its parent—or, in other words, is
the same as its parent, but with a few altered attributes.

56

Evolution (4)

• The idea behind mutation is that if a "bad" brain is created, it will be at the low
end of the gene pool and won't be able to reproduce. But "good" brains will be
at the high end of the gene pool and can reproduce. So, over time, the high end
of the gene pool will get better and result in better bots. Here's how you'll
implement evolution in this chapter:

- When a bot is destroyed, it records how well it performed, which is the same
as the amount of damage it caused to the player. The bot's brain is kept in a
"gene pool."

- Next, the bot is regenerated with a new brain, which is either one of the
best-performing brains from the gene pool or a mutated offspring of one of
the best-performing brains.

• Before we get to implementing evolution, though, we need to fill in one concept:
bot regeneration.

57

Evolution (5)

• 9.1. Regeneration

• Regeneration is a technique common
in many games. This technique allows
bots to "regenerate" after they die,
restoring themselves to their starting
location and state. This can be useful
if you want to create a never-ending
supply of baddies.

• You implement regeneration in the
AIBot class in Listing 13.24. Instead of
destroying the bot when it dies, it has
the option to regenerate itself by
completely restoring its state.

58

Regeneration Code of AIBot

/**
 Returns true if this bot regenerates after it dies.
*/
public boolean isRegenerating() {
 return isRegenerating;
}

/**
 Sets whether this bot regenerates after it dies.
*/
public void setRegenerating(boolean isRegenerating) {
 this.isRegenerating = isRegenerating;
}

/**
 Causes this bot to regenerate, restoring its location
 to its start location.
*/
protected void regenerate() {
 setHealth(maxHealth);
 setState(STATE_ACTIVE);
 setAiState(DECESION_READY, null);
 getLocation().setTo(startLocation);
 getTransform().stop();
 setJumping(false);
 setPathFinder(null);
 setFacing(null);
 // let the game object manager know this object regenerated
 // (so collision detection from old location to new
 // location won't be performed)
 addSpawn(this);
}
public void update(GameObject player, long elapsedTime) {

 ...

 elapsedTimeInState+=elapsedTime;

 // record first location
 if (startLocation == null) {
 startLocation = new Vector3D(getLocation());
 }

 // regenerate if dead for 5 seconds
 if (aiState == WOUNDED_STATE_DEAD) {
 if (elapsedTimeInState >= 5000) {
 if (isRegenerating()) {
 regenerate();
 }
 else {
 setState(STATE_DESTROYED);
 }
 }
 return;
 }
}

Evolution (6)

• The update() method is modified so that the regenerate() method is called if
the bot has been dead for a few seconds and the bot has regeneration capabilities
(isRegenerating()). The regenerate() method resets the bot and, in this case, sets its
location to the place where it originated (startLocation).

• Also in the regenerate() method, you call the addSpawn() method to mark itself
as a spawn. This is like sending a note to the game object manager that says, "Hey,
I'm regenerating. Please don't perform collision detection on me this time." If
collision detection were performed, the engine could think the bot virtually moved
from the place where it died to the place where it regenerated instead of just
reappearing there, and the bot could get stuck on a wall or against another object
between those two locations. Not performing collision detection means the bot
can correctly reappear at the location where it originated.

59

Evolution (7)

• 9.2. Evolving Bots

• To allow only the best brains to
reproduce, you need a way to
track which brains are, in fact, the
best. You can include many
different factors in determining
what makes one brain better than
another, but in this case, you'll just
look at the average amount of
damage a bot caused with that
brain.

• It's summed up in the BrainStat
class in Listing 13.25, which is a
subclass of the Brain class. It
keeps track of the damage caused
and the generation of the brain.

60BrainStat Inner Class of EvolutionGenePool

private class BrainStat extends Brain implements Comparable {
 long totalDamageCaused;
 int numBots;
 int generation;

 /**
 Gets the average damage this brain causes.
 */
 public float getAverageDamageCaused() {
 return (float)totalDamageCaused / numBots;
 }

 /**
 Reports damaged caused by a bot with this brain
 after the bot was destroyed.
 */
 public void report(long damageCaused) {
 totalDamageCaused+=damageCaused;
 numBots++;
 }

 /**
 Mutates this brain. The specified mutationProbability
 is the probability that each brain attribute
 becomes a different value, or "mutates."
 */
 public void mutate(float probability) {
 ...
 }

 /**
 Returns a smaller number if this brain caused more
 damage that the specified object, which should
 also be a brain.
 */
 public int compareTo(Object obj) {
 BrainStat other = (BrainStat)obj;
 if (this.numBots == 0 || other.numBots == 0) {
 return (other.numBots - this.numBots);
 }
 else {
 return (int)MoreMath.sign(
 other.getAverageDamageCaused() -
 this.getAverageDamageCaused());
 }
 }
}

Evolution (8)

• The BrainStat class implements the Comparable interface so that a list of brains
can easily be sorted from best to worst. You could use lots of other criteria to
decide which brains are better, but using the amount of damage works well in
this case.

• When a bot's projectile hits the player, the projectile needs to report back to the
bot to tell it how much damaged was caused. You'll accomplish this when you
implement the EvolutionBot in a little bit.

• The mutate() method isn't shown here, but it simply mutates each brain attribute
if a certain random chance occurs. For example, if mutationProbability is 0.10,
each attribute has a 10% chance of mutating. The code for mutating the aim time
would look like this:

61

if (MoreMath.chance(mutationProbability)) {
 aimTime = MoreMath.random(300, 2000);
}

Evolution (9)

• When a brain is mutated, its generation count is incremented.

• Also, we're not showing the clone() method because it's a trivial method.

• Next, you must come up with a storage mechanism for all these brains in the
EvolutionGenePool class in Listing 13.26.

62

Evolution (10)

63

public class EvolutionGenePool {

 private static final int NUM_TOP_BRAINS = 5;
 private static final int NUM_TOTAL_BRAINS = 10;

 private List brains;

 ...

 /**
 Gets a new brain from the gene pool. The brain will either
 be a "top" brain or a new, mutated "top" brain.
 */
 public Brain getNewBrain() {

 // 50% chance of creating a new, mutated brain
 if (MoreMath.chance(.5f)) {
 BrainStat brain =
 (BrainStat)getRandomTopBrain().clone();

 // 10% to 25% chance of changing each attribute
 float p = MoreMath.random(0.10f, 0.25f);
 brain.mutate(p);
 return brain;
 }
 else {
 return getRandomTopBrain();
 }
 }

 /**
 Gets a random top-performing brain.
 */
 public Brain getRandomTopBrain() {
 int index = MoreMath.random(NUM_TOP_BRAINS-1);
 return (Brain)brains.get(index);
 }

 /**
 Notify that a creature with the specified brain has
 been destroyed. The brain's stats are recorded. If the
 brain's stats are within the top total brains
 then we keep the brain around.
 */
 public void notifyDead(Brain brain, long damageCaused) {
 // update statistics for this brain
 if (brain instanceof BrainStat) {
 BrainStat stat = (BrainStat)brain;

 // report the damage
 stat.report(damageCaused);

 // sort and trim the list
 if (!brains.contains(stat)) {
 brains.add(stat);
 }
 Collections.sort(brains);
 while (brains.size() > NUM_TOTAL_BRAINS) {
 brains.remove(NUM_TOTAL_BRAINS);
 }
 }
 }
}

EvolutionGenePool.java

Evolution (11)

• This class keeps track of 10 brains total, and only the top 5 brains are allowed
to have offspring.

• When a bot dies, it calls the notifyDead() method to let the gene pool
know how much damage it caused using the specified brain. When a new bot
is created or regenerated, it calls the getNewBrain() method to get a
brain. This method has a 50% chance of creating a mutated offspring and a
50% chance of just returning one of the top brains.

64

Evolution (12)

• Finally, create the
EvolutionBot class in
Listing 13.27. This bot is a
subclass of AIBot and
performs all the necessary
functions to regenerate
and report how much
damage it caused to the
gene pool.

• The regenerate() method
just overrides AIBot's
method to perform the
extra functionality you
need.

65

EvolutionBot.java

public class EvolutionBot extends AIBot {

 private EvolutionGenePool genePool;
 private long damagedCaused;

 public EvolutionBot(PolygonGroup polygonGroup,
 CollisionDetection collisionDetection,
 EvolutionGenePool genePool, PolygonGroup blastModel)
 {
 super(polygonGroup, collisionDetection,
 genePool.getNewBrain(), blastModel);
 this.genePool = genePool;
 setRegenerating(true);
 }

 public void regenerate() {
 genePool.notifyDead(brain, damagedCaused);
 brain = genePool.getNewBrain();
 damagedCaused = 0;
 super.regenerate();
 }

 public void notifyHitPlayer(long damage) {
 damagedCaused+=damage;
 }
}

Evolution (13)

• Furthermore, when the game exits, it prints the attributes of the top five brains
to the console so you can get an idea of what the best brains were. The longer
you play, the more likely it is that this list will contain really valuable brains.

• Note that the player has one of the biggest effects on evolution. The player might
have a preference to kill certain types of bots first. For example, bots that
perform the strafe attack pattern might be so dangerous that the player tries to
kill them first, allowing others to get in more damage, thus affecting evolution.
Also, some bots might have a worse tactical advantage at their starting location
than others, and a player could just hover around the regeneration location to
pick off bots quickly, even if they would have been really smart.

• As we mentioned earlier, the amount of damage a bot causes isn't the only way
to choose which brains are the best. Some other ideas include long life, the
percentage of shots that hit the target, and the number of bullets dodged. Ideally,
the best bots would have a combination of these positive characteristics.

66

Evolution (14)

• 9.2. Demo Enhancements

• As usual, lots of features can be added to make the demo better. The game demo
could use refinements such as health and ammo power-ups, different weapons,
and "lock-on" targeting so the player can more easily attack the bots.

• The bots could use more patterns in general, including a better run away pattern,
and the patterns could be smart enough to check the environment to decide on
the best possible pattern (for example, a pattern could attempt to avoid a wall
collision).

• Finally, the player could lose all of its health, but it never dies. You could use some
sort of death sequence here. Also, a damage indicator on the heads-up display
would help show when the player gets hit. This could be as easy as flashing the
screen red for a few milliseconds.

67

10. Other Game AI Ideas

• If you're making a 2D platform game, the AI will probably be minimal, with creatures
following simple patterns most of the time. Be sure to give the creatures varying level
of intelligence, though. For example, some creatures could detect the edge of a
platform and avoid them, while others would just fall right off.

• For a first-person shooter, the bots could spend some time trying to predict the
movement of the player and adjust patterns accordingly. A bot could fire its weapon
in the direction the player is predicted to be rather than where the player is when
the shot was fired. Also, bots could try to "learn" a player's common patterns.

• Besides hearing and seeing, some bots could have other senses. For example, a bot
could "smell" to pick up on the player's trail. Or, some bots could have special heat-
sensing or x-ray vision to help them track down the player.

• You could extend evolution in a game by running the reproduction and mutation
simulation over a long period, and then including only the smartest bots in the final
game.

68

Other Game AI Ideas (2)
• 10.1. Team AI

• In a strategy game, it can often be advantageous for AI bots to be arranged in
a hierarchy of leadership. The team leaders would send commands to troops,
trying to create a tactical advantage for the group as a whole rather than
each troop trying to make decisions individually. This can make a game more
challenging for the user. If the team leader is killed, either the troops become
disorganized or one of the troops is promoted to team leader.

• There could also be team-based patterns, such as flocking to one point or
completely surrounding a player on all sides.

• Flocking can show some cool AI behavior and is also common with AI for
groups of fish or birds. Flocking algorithms involve keeping each bot near the
group, keeping each bot a certain distance away from each other (having a
"personal space"), and steering each bot in the average direction of the group.
The group can be defined explicitly or can be just the bot's nearest
neighbors.

69

Other Game AI Ideas (3)
• Also, troops could call for backup. Note that if you do something like this,

make it visually apparent that a troop is calling for backup, or it could just
look like more troops showing up randomly.

• Or, instead of a hierarchy, nearby troops could simply "communicate" with
each other and negotiate the best possible strategy among them.

70

11. Summary
• In this chapter, we covered a lot of useful game AI, such as seeing and hearing,

state machines, probability, and evolution. In the process, you made a demo
with bots that can attack the player, and you added some basic game
elements to accommodate this demo, such as bot health and dying,
regeneration, and a simple overlay framework showing a heads-up display.

• As mentioned before, how you implement AI is really up to the needs of
your game. A lot of the work will just be in finding a good balance that makes
the game both challenging and fun. And sometimes you just have to find that
balance by trial and error. So experiment, make the bad guys smart, and make
some games with some cool AI.

71

