## TPTP Problem File: SYO328^5.p

View Solutions - Solve Problem

```%------------------------------------------------------------------------------
% File     : SYO328^5 : TPTP v7.1.0. Released v4.0.0.
% Domain   : Syntactic
% Problem  : TPS problem from BASIC-HO-THMS
% Version  : Especial.
% English  :

% Refs     : [Bro09] Brown (2009), Email to Geoff Sutcliffe
% Source   : [Bro09]
% Names    : tps_1018 [Bro09]

% Status   : CounterSatisfiable
% Rating   : 0.33 v6.2.0, 0.00 v6.0.0, 0.33 v5.5.0, 0.00 v4.0.0
% Syntax   : Number of formulae    :   12 (   0 unit;  11 type;   0 defn)
%            Number of atoms       :   39 (   0 equality;   9 variable)
%            Maximal formula depth :   10 (   4 average)
%            Number of connectives :   38 (   0   ~;   0   |;   5   &;  25   @)
%                                         (   0 <=>;   8  =>;   0  <=;   0 <~>)
%                                         (   0  ~|;   0  ~&)
%            Number of type conns  :   13 (  13   >;   0   *;   0   +;   0  <<)
%            Number of symbols     :   13 (  11   :;   0   =)
%            Number of variables   :    9 (   0 sgn;   0   !;   0   ?;   9   ^)
%                                         (   9   :;   0  !>;   0  ?*)
%                                         (   0  @-;   0  @+)
% SPC      : TH0_CSA_NEQ_NAR

% Comments : This problem is from the TPS library. Copyright (c) 2009 The TPS
%            project in the Department of Mathematical Sciences at Carnegie
%          :
%------------------------------------------------------------------------------
thf(a_type,type,(
a: \$tType )).

thf(cG2_0,type,(
cG2_0: a > a )).

thf(cG1_0,type,(
cG1_0: a > a )).

thf(cP_0,type,(
cP_0: ( a > a ) > \$o )).

thf(j_7,type,(
j_7: a > a )).

thf(cF_0,type,(
cF_0: a > a )).

thf(j_6,type,(
j_6: a > a )).

thf(p_6,type,(
p_6: ( a > a ) > \$o )).

thf(cJ_1,type,(
cJ_1: a > a )).

thf(p_4,type,(
p_4: ( a > a ) > \$o )).

thf(cJ_0,type,(
cJ_0: a > a )).

thf(cTHM135A_EXP,conjecture,
( ( ( ( ( p_4
@ ^ [Xu_3: a] : Xu_3 )
& ( ( p_4 @ cJ_0 )
=> ( p_4
@ ^ [Xx_4: a] :
( cF_0 @ ( cJ_0 @ Xx_4 ) ) ) ) )
=> ( p_4 @ cG1_0 ) )
& ( ( ( p_6
@ ^ [Xu_4: a] : Xu_4 )
& ( ( p_6 @ cJ_1 )
=> ( p_6
@ ^ [Xx_5: a] :
( cF_0 @ ( cJ_1 @ Xx_5 ) ) ) ) )
=> ( p_6
@ ^ [Xx: a] :
( cG2_0 @ Xx ) ) ) )
=> ( ( ( cP_0
@ ^ [Xu_5: a] : Xu_5 )
& ( ( cP_0 @ j_6 )
=> ( cP_0
@ ^ [Xx_7: a] :
( cF_0 @ ( j_6 @ Xx_7 ) ) ) )
& ( ( cP_0 @ j_7 )
=> ( cP_0
@ ^ [Xx_7: a] :
( cF_0 @ ( j_7 @ Xx_7 ) ) ) ) )
=> ( cP_0
@ ^ [Xx_6: a] :
( cG1_0 @ ( cG2_0 @ Xx_6 ) ) ) ) )).

%------------------------------------------------------------------------------
```