## TPTP Problem File: SYO323^5.p

View Solutions - Solve Problem

```%------------------------------------------------------------------------------
% File     : SYO323^5 : TPTP v7.1.0. Released v4.0.0.
% Domain   : Syntactic
% Problem  : TPS problem from BASIC-HO-THMS
% Version  : Especial.
% English  :

% Refs     : [Bro09] Brown (2009), Email to Geoff Sutcliffe
% Source   : [Bro09]
% Names    : tps_0969 [Bro09]

% Status   : CounterSatisfiable
% Rating   : 0.33 v5.4.0, 1.00 v5.0.0, 0.33 v4.1.0, 0.00 v4.0.0
% Syntax   : Number of formulae    :    5 (   0 unit;   4 type;   0 defn)
%            Number of atoms       :   34 (   0 equality;  16 variable)
%            Maximal formula depth :   14 (   5 average)
%            Number of connectives :   33 (   0   ~;   0   |;   5   &;  25   @)
%                                         (   0 <=>;   3  =>;   0  <=;   0 <~>)
%                                         (   0  ~|;   0  ~&)
%            Number of type conns  :    7 (   7   >;   0   *;   0   +;   0  <<)
%            Number of symbols     :    6 (   4   :;   0   =)
%            Number of variables   :    7 (   0 sgn;   7   !;   0   ?;   0   ^)
%                                         (   7   :;   0  !>;   0  ?*)
%                                         (   0  @-;   0  @+)
% SPC      : TH0_CSA_NEQ_NAR

% Comments : This problem is from the TPS library. Copyright (c) 2009 The TPS
%            project in the Department of Mathematical Sciences at Carnegie
%          :
%------------------------------------------------------------------------------
thf(cS,type,(
cS: \$i > \$i )).

thf(cHALF,type,(
cHALF: \$i > \$i > \$o )).

thf(c0,type,(
c0: \$i )).

thf(cDOUBLE,type,(
cDOUBLE: \$i > \$i > \$o )).

thf(cDOUBLE_TO_HALF_1,conjecture,
( ! [Q: \$i > \$i > \$o,Xu: \$i,Xv: \$i] :
( ( ( cDOUBLE @ Xu @ Xv )
& ( Q @ c0 @ c0 )
& ! [Xx: \$i,Xy: \$i] :
( ( Q @ Xx @ Xy )
=> ( Q @ ( cS @ Xx ) @ ( cS @ ( cS @ Xy ) ) ) ) )
=> ( Q @ Xu @ Xv ) )
& ( cHALF @ c0 @ c0 )
& ( cHALF @ c0 @ ( cS @ c0 ) )
& ! [Xx: \$i,Xy: \$i] :
( ( cHALF @ Xx @ Xy )
=> ( cHALF @ ( cS @ ( cS @ Xx ) ) @ ( cS @ Xy ) ) ) )).

%------------------------------------------------------------------------------
```