## TPTP Problem File: SYO180^5.p

View Solutions - Solve Problem

```%------------------------------------------------------------------------------
% File     : SYO180^5 : TPTP v7.2.0. Released v4.0.0.
% Domain   : Syntactic
% Problem  : TPS problem from BASIC-FO-THMS
% Version  : Especial.
% English  :

% Refs     : [Bro09] Brown (2009), Email to Geoff Sutcliffe
% Source   : [Bro09]
% Names    : tps_1177 [Bro09]

% Status   : Theorem
% Rating   : 0.30 v7.2.0, 0.38 v7.1.0, 0.43 v7.0.0, 0.38 v6.4.0, 0.43 v6.3.0, 0.50 v6.0.0, 0.33 v5.5.0, 0.20 v5.4.0, 0.25 v5.2.0, 0.00 v4.1.0, 0.33 v4.0.0
% Syntax   : Number of formulae    :    1 (   0 unit;   0 type;   0 defn)
%            Number of atoms       :   58 (   0 equality;  58 variable)
%            Maximal formula depth :   31 (  31 average)
%            Number of connectives :   80 (  23   ~;   0   |;  40   &;   0   @)
%                                         (   0 <=>;  17  =>;   0  <=;   0 <~>)
%                                         (   0  ~|;   0  ~&)
%            Number of type conns  :    0 (   0   >;   0   *;   0   +;   0  <<)
%            Number of symbols     :    1 (   0   :;   0   =)
%            Number of variables   :   11 (   0 sgn;  11   !;   0   ?;   0   ^)
%                                         (  11   :;   0  !>;   0  ?*)
%                                         (   0  @-;   0  @+)
% SPC      : TH0_THM_NEQ_NAR

% Comments : This problem is from the TPS library. Copyright (c) 2009 The TPS
%            project in the Department of Mathematical Sciences at Carnegie
%          :
%------------------------------------------------------------------------------
thf(cPORKCHOP2,conjecture,(
! [L: \$o,P: \$o,M: \$o,G: \$o,R: \$o,E: \$o,N: \$o,F: \$o,K: \$o,B: \$o,C: \$o] :
( ( ( ( L
& P )
=> M )
& ( ( G
& ~ ( R ) )
=> M )
& ( ( ~ ( K )
& N
& M )
=> F )
& ( ( ~ ( G )
& ~ ( P ) )
=> R )
& ( ( K
& B )
=> C )
& ( ( R
& ~ ( N )
& ~ ( F ) )
=> P )
& ( ( L
& M )
=> C )
& ( ( E
& ~ ( K )
& G
& ~ ( N ) )
=> ~ ( M ) )
& ( ( ~ ( G )
& ~ ( R ) )
=> K )
& ( ( K
& L
& E )
=> ~ ( M ) )
& ( ( R
& E )
=> ~ ( C ) )
& ( ( G
& ~ ( K )
& ~ ( M ) )
=> ~ ( B ) )
& ( ( N
& ~ ( P )
& ~ ( F ) )
=> C )
& ( ( G
& B
& ~ ( R ) )
=> ~ ( C ) )
& ( ( R
& ~ ( K )
& ~ ( M ) )
=> G ) )
=> ( ( E
& L )
=> ( F
& ~ ( B ) ) ) ) )).

%------------------------------------------------------------------------------
```