TPTP Problem File: SEV312^5.p

View Solutions - Solve Problem

%------------------------------------------------------------------------------
% File     : SEV312^5 : TPTP v7.1.0. Released v4.0.0.
% Domain   : Set Theory
% Problem  : TPS problem from SET-KNASTER-TARSKI
% Version  : Especial.
% English  : Related to the Knaster-Tarski theorem.

% Refs     : [Bro09] Brown (2009), Email to Geoff Sutcliffe
% Source   : [Bro09]
% Names    : tps_0970 [Bro09]

% Status   : Theorem
% Rating   : 0.88 v7.1.0, 0.86 v7.0.0, 0.88 v6.4.0, 0.86 v6.3.0, 0.83 v5.5.0, 0.80 v5.4.0, 0.75 v4.1.0, 0.67 v4.0.0
% Syntax   : Number of formulae    :    1 (   0 unit;   0 type;   0 defn)
%            Number of atoms       :   25 (   0 equality;  25 variable)
%            Maximal formula depth :   11 (  11 average)
%            Number of connectives :   24 (   0   ~;   0   |;   1   &;  15   @)
%                                         (   1 <=>;   7  =>;   0  <=;   0 <~>)
%                                         (   0  ~|;   0  ~&)
%            Number of type conns  :    8 (   8   >;   0   *;   0   +;   0  <<)
%            Number of symbols     :    2 (   0   :;   0   =)
%            Number of variables   :   11 (   0 sgn;  10   !;   1   ?;   0   ^)
%                                         (  11   :;   0  !>;   0  ?*)
%                                         (   0  @-;   0  @+)
% SPC      : TH0_THM_NEQ_NAR

% Comments : This problem is from the TPS library. Copyright (c) 2009 The TPS
%            project in the Department of Mathematical Sciences at Carnegie
%            Mellon University. Distributed under the Creative Commons copyleft
%            license: http://creativecommons.org/licenses/by-sa/3.0/
%          : 
%------------------------------------------------------------------------------
thf(cTHM2_B_pme,conjecture,(
    ! [K: ( $i > $o ) > $i > $o] :
      ( ( ! [Xx: $i > $o,Xy: $i > $o] :
            ( ! [Xx0: $i] :
                ( ( Xx @ Xx0 )
               => ( Xy @ Xx0 ) )
           => ! [Xx0: $i] :
                ( ( K @ Xx @ Xx0 )
               => ( K @ Xy @ Xx0 ) ) )
        & ! [Xx: $i > $o,Xy: $i > $o] :
            ( ! [Xx0: $i] :
                ( ( Xx @ Xx0 )
               => ( Xy @ Xx0 ) )
           => ! [Xx0: $i] :
                ( ( K @ Xx @ Xx0 )
               => ( K @ Xy @ Xx0 ) ) ) )
     => ? [Xu: $i > $o] :
        ! [Xx: $i] :
          ( ( K @ Xu @ Xx )
        <=> ( Xu @ Xx ) ) ) )).

%------------------------------------------------------------------------------