## TPTP Problem File: SEV210^5.p

View Solutions - Solve Problem

```%------------------------------------------------------------------------------
% File     : SEV210^5 : TPTP v7.1.0. Released v4.0.0.
% Domain   : Set Theory (Sets of sets)
% Problem  : TPS problem from S-THMS
% Version  : Especial.
% English  :

% Refs     : [Bro09] Brown (2009), Email to Geoff Sutcliffe
% Source   : [Bro09]
% Names    : tps_1222 [Bro09]

% Status   : Theorem
% Rating   : 0.25 v7.1.0, 0.38 v7.0.0, 0.29 v6.4.0, 0.33 v6.3.0, 0.40 v6.2.0, 0.29 v6.1.0, 0.43 v5.5.0, 0.50 v5.4.0, 0.60 v4.1.0, 1.00 v4.0.0
% Syntax   : Number of formulae    :    8 (   0 unit;   7 type;   0 defn)
%            Number of atoms       :  168 (  25 equality; 104 variable)
%            Maximal formula depth :   26 (   5 average)
%            Number of connectives :  118 (   1   ~;   6   |;  26   &;  73   @)
%                                         (   0 <=>;  12  =>;   0  <=;   0 <~>)
%                                         (   0  ~|;   0  ~&)
%            Number of type conns  :   12 (  12   >;   0   *;   0   +;   0  <<)
%            Number of symbols     :   10 (   7   :;   0   =)
%            Number of variables   :   40 (   0 sgn;  22   !;  18   ?;   0   ^)
%                                         (  40   :;   0  !>;   0  ?*)
%                                         (   0  @-;   0  @+)
% SPC      : TH0_THM_EQU_NAR

% Comments : This problem is from the TPS library. Copyright (c) 2009 The TPS
%            project in the Department of Mathematical Sciences at Carnegie
%          :
%------------------------------------------------------------------------------
thf(a_type,type,(
a: \$tType )).

thf(v,type,(
v: a )).

thf(u,type,(
u: a )).

thf(cP,type,(
cP: a > a > a )).

thf(y,type,(
y: a )).

thf(x,type,(
x: a )).

thf(cZ,type,(
cZ: a )).

thf(cS_LEM1E_pme,conjecture,
( ( ! [Xx0: a,Xy0: a] :
( ( cP @ Xx0 @ Xy0 )
!= cZ )
& ! [Xx0: a,Xy0: a,Xu0: a,Xv0: a] :
( ( ( cP @ Xx0 @ Xu0 )
= ( cP @ Xy0 @ Xv0 ) )
=> ( ( Xx0 = Xy0 )
& ( Xu0 = Xv0 ) ) )
& ! [X: a > \$o] :
( ( ( X @ cZ )
& ! [Xx0: a,Xy0: a] :
( ( ( X @ Xx0 )
& ( X @ Xy0 ) )
=> ( X @ ( cP @ Xx0 @ Xy0 ) ) ) )
=> ! [Xx0: a] :
( X @ Xx0 ) ) )
=> ( ! [R: a > a > a > \$o] :
( ( \$true
& ! [Xa: a,Xb: a,Xc: a] :
( ( ( ( Xa = cZ )
& ( Xb = Xc ) )
| ( ( Xb = cZ )
& ( Xa = Xc ) )
| ? [Xx1: a,Xx2: a,Xy1: a,Xy2: a,Xz1: a,Xz2: a] :
( ( Xa
= ( cP @ Xx1 @ Xx2 ) )
& ( Xb
= ( cP @ Xy1 @ Xy2 ) )
& ( Xc
= ( cP @ Xz1 @ Xz2 ) )
& ( R @ Xx1 @ Xy1 @ Xz1 )
& ( R @ Xx2 @ Xy2 @ Xz2 ) ) )
=> ( R @ Xa @ Xb @ Xc ) ) )
=> ( R @ x @ u @ u ) )
=> ( ! [R: a > a > a > \$o] :
( ( \$true
& ! [Xa: a,Xb: a,Xc: a] :
( ( ( ( Xa = cZ )
& ( Xb = Xc ) )
| ( ( Xb = cZ )
& ( Xa = Xc ) )
| ? [Xx1: a,Xx2: a,Xy1: a,Xy2: a,Xz1: a,Xz2: a] :
( ( Xa
= ( cP @ Xx1 @ Xx2 ) )
& ( Xb
= ( cP @ Xy1 @ Xy2 ) )
& ( Xc
= ( cP @ Xz1 @ Xz2 ) )
& ( R @ Xx1 @ Xy1 @ Xz1 )
& ( R @ Xx2 @ Xy2 @ Xz2 ) ) )
=> ( R @ Xa @ Xb @ Xc ) ) )
=> ( R @ y @ v @ v ) )
=> ! [R: a > a > a > \$o] :
( ( \$true
& ! [Xa: a,Xb: a,Xc: a] :
( ( ( ( Xa = cZ )
& ( Xb = Xc ) )
| ( ( Xb = cZ )
& ( Xa = Xc ) )
| ? [Xx1: a,Xx2: a,Xy1: a,Xy2: a,Xz1: a,Xz2: a] :
( ( Xa
= ( cP @ Xx1 @ Xx2 ) )
& ( Xb
= ( cP @ Xy1 @ Xy2 ) )
& ( Xc
= ( cP @ Xz1 @ Xz2 ) )
& ( R @ Xx1 @ Xy1 @ Xz1 )
& ( R @ Xx2 @ Xy2 @ Xz2 ) ) )
=> ( R @ Xa @ Xb @ Xc ) ) )
=> ( R @ ( cP @ x @ y ) @ ( cP @ u @ v ) @ ( cP @ u @ v ) ) ) ) ) )).

%------------------------------------------------------------------------------
```