## TPTP Problem File: SEV154^5.p

View Solutions - Solve Problem

```%------------------------------------------------------------------------------
% File     : SEV154^5 : TPTP v7.2.0. Released v4.0.0.
% Domain   : Set Theory (Relations)
% Problem  : TPS problem from TRANSITIVE-CLOSURE
% Version  : Especial.
% English  :

% Refs     : [Bro09] Brown (2009), Email to Geoff Sutcliffe
% Source   : [Bro09]
% Names    : tps_1221 [Bro09]

% Status   : Theorem
% Rating   : 0.50 v7.1.0, 0.57 v7.0.0, 0.62 v6.4.0, 0.71 v6.3.0, 0.83 v6.1.0, 0.67 v6.0.0, 0.50 v5.5.0, 0.40 v5.4.0, 0.50 v5.2.0, 1.00 v5.0.0, 0.75 v4.1.0, 1.00 v4.0.0
% Syntax   : Number of formulae    :    2 (   0 unit;   1 type;   0 defn)
%            Number of atoms       :  148 (   0 equality; 148 variable)
%            Maximal formula depth :   24 (  13 average)
%            Number of connectives :  148 (   1   ~;  14   |;  18   &;  88   @)
%                                         (   0 <=>;  27  =>;   0  <=;   0 <~>)
%                                         (   0  ~|;   0  ~&)
%            Number of type conns  :   12 (  12   >;   0   *;   0   +;   0  <<)
%            Number of symbols     :    3 (   1   :;   0   =)
%            Number of variables   :   41 (   0 sgn;  41   !;   0   ?;   0   ^)
%                                         (  41   :;   0  !>;   0  ?*)
%                                         (   0  @-;   0  @+)
% SPC      : TH0_THM_NEQ_NAR

% Comments : This problem is from the TPS library. Copyright (c) 2009 The TPS
%            project in the Department of Mathematical Sciences at Carnegie
%          :
%------------------------------------------------------------------------------
thf(a_type,type,(
a: \$tType )).

thf(cTHM251G_pme,conjecture,(
! [R: a > a > \$o,S: a > a > \$o,Xx: a,Xy: a] :
( ! [Xq: a > \$o] :
( ( ! [Xw: a] :
( ( ( R @ Xx @ Xw )
| ( S @ Xx @ Xw ) )
=> ( Xq @ Xw ) )
& ! [Xu: a,Xv: a] :
( ( ( Xq @ Xu )
& ( ( R @ Xu @ Xv )
| ( S @ Xu @ Xv ) ) )
=> ( Xq @ Xv ) ) )
=> ( Xq @ Xy ) )
| ~ ( ( ! [Xx0: a,Xy0: a] :
( ( ! [Xq: a > \$o] :
( ( ! [Xw: a] :
( ( R @ Xx0 @ Xw )
=> ( Xq @ Xw ) )
& ! [Xu: a,Xv: a] :
( ( ( Xq @ Xu )
& ( R @ Xu @ Xv ) )
=> ( Xq @ Xv ) ) )
=> ( Xq @ Xy0 ) )
| ! [Xq: a > \$o] :
( ( ! [Xw: a] :
( ( S @ Xx0 @ Xw )
=> ( Xq @ Xw ) )
& ! [Xu: a,Xv: a] :
( ( ( Xq @ Xu )
& ( S @ Xu @ Xv ) )
=> ( Xq @ Xv ) ) )
=> ( Xq @ Xy0 ) ) )
=> ! [Xq: a > \$o] :
( ( ! [Xw: a] :
( ( ( R @ Xx0 @ Xw )
| ( S @ Xx0 @ Xw ) )
=> ( Xq @ Xw ) )
& ! [Xu: a,Xv: a] :
( ( ( Xq @ Xu )
& ( ( R @ Xu @ Xv )
| ( S @ Xu @ Xv ) ) )
=> ( Xq @ Xv ) ) )
=> ( Xq @ Xy0 ) ) )
& ! [Xx0: a,Xy0: a,Xz: a] :
( ( ! [Xq: a > \$o] :
( ( ! [Xw: a] :
( ( ( R @ Xx0 @ Xw )
| ( S @ Xx0 @ Xw ) )
=> ( Xq @ Xw ) )
& ! [Xu: a,Xv: a] :
( ( ( Xq @ Xu )
& ( ( R @ Xu @ Xv )
| ( S @ Xu @ Xv ) ) )
=> ( Xq @ Xv ) ) )
=> ( Xq @ Xy0 ) )
& ! [Xq: a > \$o] :
( ( ! [Xw: a] :
( ( ( R @ Xy0 @ Xw )
| ( S @ Xy0 @ Xw ) )
=> ( Xq @ Xw ) )
& ! [Xu: a,Xv: a] :
( ( ( Xq @ Xu )
& ( ( R @ Xu @ Xv )
| ( S @ Xu @ Xv ) ) )
=> ( Xq @ Xv ) ) )
=> ( Xq @ Xz ) ) )
=> ! [Xq: a > \$o] :
( ( ! [Xw: a] :
( ( ( R @ Xx0 @ Xw )
| ( S @ Xx0 @ Xw ) )
=> ( Xq @ Xw ) )
& ! [Xu: a,Xv: a] :
( ( ( Xq @ Xu )
& ( ( R @ Xu @ Xv )
| ( S @ Xu @ Xv ) ) )
=> ( Xq @ Xv ) ) )
=> ( Xq @ Xz ) ) ) )
=> ! [Xq: a > \$o] :
( ( ! [Xw: a] :
( ( ( R @ Xx @ Xw )
| ( S @ Xx @ Xw ) )
=> ( Xq @ Xw ) )
& ! [Xu: a,Xv: a] :
( ( ( Xq @ Xu )
& ( ( R @ Xu @ Xv )
| ( S @ Xu @ Xv ) ) )
=> ( Xq @ Xv ) ) )
=> ( Xq @ Xy ) ) ) ) )).

%------------------------------------------------------------------------------
```