## TPTP Problem File: SEV123^5.p

View Solutions - Solve Problem

```%------------------------------------------------------------------------------
% File     : SEV123^5 : TPTP v7.2.0. Released v4.0.0.
% Domain   : Set Theory (Relations)
% Problem  : TPS problem from SETS-OF-RELNS-THMS
% Version  : Especial.
% English  :

% Refs     : [Bro09] Brown (2009), Email to Geoff Sutcliffe
% Source   : [Bro09]
% Names    : tps_1077 [Bro09]

% Status   : Theorem
% Rating   : 0.44 v7.2.0, 0.38 v7.0.0, 0.29 v6.4.0, 0.33 v6.3.0, 0.40 v6.2.0, 0.29 v5.5.0, 0.17 v5.4.0, 0.20 v5.2.0, 0.40 v5.1.0, 0.60 v5.0.0, 0.20 v4.1.0, 0.33 v4.0.0
% Syntax   : Number of formulae    :    2 (   0 unit;   1 type;   0 defn)
%            Number of atoms       :   39 (   1 equality;  38 variable)
%            Maximal formula depth :   27 (  14 average)
%            Number of connectives :   36 (   0   ~;   0   |;   6   &;  23   @)
%                                         (   0 <=>;   7  =>;   0  <=;   0 <~>)
%                                         (   0  ~|;   0  ~&)
%            Number of type conns  :   18 (  18   >;   0   *;   0   +;   0  <<)
%            Number of symbols     :    3 (   1   :;   0   =)
%            Number of variables   :   18 (   0 sgn;  13   !;   3   ?;   2   ^)
%                                         (  18   :;   0  !>;   0  ?*)
%                                         (   0  @-;   0  @+)
% SPC      : TH0_THM_EQU_NAR

% Comments : This problem is from the TPS library. Copyright (c) 2009 The TPS
%            project in the Department of Mathematical Sciences at Carnegie
%          :
%------------------------------------------------------------------------------
thf(a_type,type,(
a: \$tType )).

thf(cTHM254_B_pme,conjecture,(
! [PROP: ( a > a > \$o ) > \$o,S: ( a > a > \$o ) > \$o,Xx: a,Xy: a] :
( ! [Xp: a > a > \$o] :
( ( ! [Xx0: a,Xy0: a] :
( ? [R: a > a > \$o] :
( ? [Q: a > a > \$o] :
( ( S @ Q )
& ( R
= ( ^ [Xx1: a,Xy1: a] :
! [Xp0: a > a > \$o] :
( ( ! [Xx2: a,Xy2: a] :
( ( Q @ Xx2 @ Xy2 )
=> ( Xp0 @ Xx2 @ Xy2 ) )
& ( PROP @ Xp0 ) )
=> ( Xp0 @ Xx1 @ Xy1 ) ) ) ) )
& ( R @ Xx0 @ Xy0 ) )
=> ( Xp @ Xx0 @ Xy0 ) )
& ( PROP @ Xp ) )
=> ( Xp @ Xx @ Xy ) )
=> ! [Xp: a > a > \$o] :
( ( ! [Xx0: a,Xy0: a] :
( ? [R: a > a > \$o] :
( ( S @ R )
& ( R @ Xx0 @ Xy0 ) )
=> ( Xp @ Xx0 @ Xy0 ) )
& ( PROP @ Xp ) )
=> ( Xp @ Xx @ Xy ) ) ) )).

%------------------------------------------------------------------------------
```