## TPTP Problem File: SEV089^5.p

View Solutions - Solve Problem

```%------------------------------------------------------------------------------
% File     : SEV089^5 : TPTP v7.0.0. Released v4.0.0.
% Domain   : Set Theory (Relations)
% Problem  : TPS problem from RELN-THMS
% Version  : Especial.
% English  :

% Refs     : [Bro09] Brown (2009), Email to Geoff Sutcliffe
% Source   : [Bro09]
% Names    : tps_1003 [Bro09]

% Status   : Theorem
% Rating   : 0.75 v7.0.0, 0.71 v6.4.0, 0.83 v6.3.0, 0.80 v6.2.0, 1.00 v6.1.0, 0.86 v5.5.0, 0.83 v5.4.0, 0.80 v5.1.0, 1.00 v5.0.0, 0.80 v4.1.0, 0.67 v4.0.0
% Syntax   : Number of formulae    :    2 (   0 unit;   1 type;   0 defn)
%            Number of atoms       :   36 (   6 equality;  30 variable)
%            Maximal formula depth :   14 (   8 average)
%            Number of connectives :   23 (   0   ~;   0   |;   4   &;  14   @)
%                                         (   0 <=>;   5  =>;   0  <=;   0 <~>)
%                                         (   0  ~|;   0  ~&)
%            Number of type conns  :    4 (   4   >;   0   *;   0   +;   0  <<)
%            Number of symbols     :    3 (   1   :;   0   =)
%            Number of variables   :   16 (   0 sgn;   6   !;   4   ?;   6   ^)
%                                         (  16   :;   0  !>;   0  ?*)
%                                         (   0  @-;   0  @+)
% SPC      : TH0_THM_EQU_NAR

% Comments : This problem is from the TPS library. Copyright (c) 2009 The TPS
%            project in the Department of Mathematical Sciences at Carnegie
%          :
%------------------------------------------------------------------------------
thf(a_type,type,(
a: \$tType )).

thf(cEQP_1B_pme,conjecture,(
! [Xx: a > \$o,Xy: a > \$o] :
( ? [Xs: a > a] :
( ! [Xx0: a] :
( ( Xx @ Xx0 )
=> ( Xy @ ( Xs @ Xx0 ) ) )
& ! [Xy0: a] :
( ( Xy @ Xy0 )
=> ? [Xy_38: a] :
( ( ^ [Xx0: a] :
( ( Xx @ Xx0 )
& ( Xy0
= ( Xs @ Xx0 ) ) ) )
= ( ^ [Xx: a,Xy: a] : ( Xx = Xy )
@ Xy_38 ) ) ) )
=> ? [Xs: a > a] :
( ! [Xx0: a] :
( ( Xy @ Xx0 )
=> ( Xx @ ( Xs @ Xx0 ) ) )
& ! [Xy0: a] :
( ( Xx @ Xy0 )
=> ? [Xy_39: a] :
( ( ^ [Xx0: a] :
( ( Xy @ Xx0 )
& ( Xy0
= ( Xs @ Xx0 ) ) ) )
= ( ^ [Xx: a,Xy: a] : ( Xx = Xy )
@ Xy_39 ) ) ) ) ) )).

%------------------------------------------------------------------------------
```