TPTP Problem File: SEU969^5.p

View Solutions - Solve Problem

%------------------------------------------------------------------------------
% File     : SEU969^5 : TPTP v7.0.0. Bugfixed v5.2.0.
% Domain   : Set Theory (Relations)
% Problem  : TPS problem from CHECKERBOARD-RELNS
% Version  : Especial.
% English  :

% Refs     : [Bro09] Brown (2009), Email to Geoff Sutcliffe
% Source   : [Bro09]
% Names    : tps_0682 [Bro09]

% Status   : Theorem
% Rating   : 0.62 v7.0.0, 0.57 v6.4.0, 0.50 v6.3.0, 0.60 v6.2.0, 0.57 v5.5.0, 0.67 v5.4.0, 0.80 v5.2.0
% Syntax   : Number of formulae    :    7 (   0 unit;   4 type;   2 defn)
%            Number of atoms       :   39 (   2 equality;  24 variable)
%            Maximal formula depth :   15 (   6 average)
%            Number of connectives :   32 (   0   ~;   0   |;   4   &;  23   @)
%                                         (   0 <=>;   5  =>;   0  <=;   0 <~>)
%                                         (   0  ~|;   0  ~&)
%            Number of type conns  :    7 (   7   >;   0   *;   0   +;   0  <<)
%            Number of symbols     :    6 (   4   :;   0   =)
%            Number of variables   :   10 (   0 sgn;   7   !;   0   ?;   3   ^)
%                                         (  10   :;   0  !>;   0  ?*)
%                                         (   0  @-;   0  @+)
% SPC      : TH0_THM_EQU_NAR

% Comments : This problem is from the TPS library. Copyright (c) 2009 The TPS
%            project in the Department of Mathematical Sciences at Carnegie
%            Mellon University. Distributed under the Creative Commons copyleft
%            license: http://creativecommons.org/licenses/by-sa/3.0/
%          : 
% Bugfixes : v5.2.0 - Added missing type declarations.
%------------------------------------------------------------------------------
thf(c1_type,type,(
    c1: $i )).

thf(s_type,type,(
    s: $i > $i )).

thf(cCKB6_BLACK_type,type,(
    cCKB6_BLACK: $i > $i > $o )).

thf(cCKB6_NUM_type,type,(
    cCKB6_NUM: $i > $o )).

thf(cCKB6_BLACK_def,definition,
    ( cCKB6_BLACK
    = ( ^ [Xu: $i,Xv: $i] :
        ! [Xw: $i > $i > $o] :
          ( ( ( Xw @ c1 @ c1 )
            & ! [Xj: $i,Xk: $i] :
                ( ( Xw @ Xj @ Xk )
               => ( ( Xw @ ( s @ ( s @ Xj ) ) @ Xk )
                  & ( Xw @ ( s @ Xj ) @ ( s @ Xk ) ) ) ) )
         => ( Xw @ Xu @ Xv ) ) ) )).

thf(cCKB6_NUM_def,definition,
    ( cCKB6_NUM
    = ( ^ [Xx: $i] :
        ! [Xp: $i > $o] :
          ( ( ( Xp @ c1 )
            & ! [Xw: $i] :
                ( ( Xp @ Xw )
               => ( Xp @ ( s @ Xw ) ) ) )
         => ( Xp @ Xx ) ) ) )).

thf(cCKB6_L6000_pme,conjecture,(
    ! [Xx: $i,Xy: $i] :
      ( ( cCKB6_BLACK @ Xx @ Xy )
     => ( ( cCKB6_NUM @ Xx )
        & ( cCKB6_NUM @ Xy ) ) ) )).

%------------------------------------------------------------------------------