TPTP Problem File: SEU709^2.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEU709^2 : TPTP v7.1.0. Released v3.7.0.
% Domain : Set Theory
% Problem : Conditionals
% Version : Especial > Reduced > Especial.
% English : (! A:i.! phi:o.! x:i.in x A -> (! y:i.in y A ->
% in (if A phi x y) (setadjoin x (setadjoin y emptyset))))
% Refs : [Bro08] Brown (2008), Email to G. Sutcliffe
% Source : [Bro08]
% Names : ZFC211l [Bro08]
% Status : Theorem
% Rating : 0.12 v7.1.0, 0.38 v7.0.0, 0.29 v6.4.0, 0.33 v6.3.0, 0.40 v6.2.0, 0.29 v6.1.0, 0.43 v5.5.0, 0.50 v5.4.0, 0.60 v5.2.0, 0.80 v5.0.0, 0.60 v4.1.0, 0.33 v4.0.1, 0.67 v4.0.0, 0.33 v3.7.0
% Syntax : Number of formulae : 15 ( 0 unit; 9 type; 5 defn)
% Number of atoms : 84 ( 9 equality; 44 variable)
% Maximal formula depth : 18 ( 7 average)
% Number of connectives : 61 ( 1 ~; 0 |; 0 &; 44 @)
% ( 1 <=>; 15 =>; 0 <=; 0 <~>)
% ( 0 ~|; 0 ~&)
% Number of type conns : 8 ( 8 >; 0 *; 0 +; 0 <<)
% Number of symbols : 11 ( 9 :; 0 =)
% Number of variables : 20 ( 0 sgn; 20 !; 0 ?; 0 ^)
% ( 20 :; 0 !>; 0 ?*)
% ( 0 @-; 0 @+)
% SPC : TH0_THM_EQU_NAR
% Comments : http://mathgate.info/detsetitem.php?id=265
% :
%------------------------------------------------------------------------------
thf(in_type,type,(
in: $i > $i > $o )).
thf(emptyset_type,type,(
emptyset: $i )).
thf(setadjoin_type,type,(
setadjoin: $i > $i > $i )).
thf(setadjoinIL_type,type,(
setadjoinIL: $o )).
thf(setadjoinIL,definition,
( setadjoinIL
= ( ! [Xx: $i,Xy: $i] :
( in @ Xx @ ( setadjoin @ Xx @ Xy ) ) ) )).
thf(in__Cong_type,type,(
in__Cong: $o )).
thf(in__Cong,definition,
( in__Cong
= ( ! [A: $i,B: $i] :
( ( A = B )
=> ! [Xx: $i,Xy: $i] :
( ( Xx = Xy )
=> ( ( in @ Xx @ A )
<=> ( in @ Xy @ B ) ) ) ) ) )).
thf(secondinupair_type,type,(
secondinupair: $o )).
thf(secondinupair,definition,
( secondinupair
= ( ! [Xx: $i,Xy: $i] :
( in @ Xy @ ( setadjoin @ Xx @ ( setadjoin @ Xy @ emptyset ) ) ) ) )).
thf(if_type,type,(
if: $i > $o > $i > $i > $i )).
thf(iftrue_type,type,(
iftrue: $o )).
thf(iftrue,definition,
( iftrue
= ( ! [A: $i,Xphi: $o,Xx: $i] :
( ( in @ Xx @ A )
=> ! [Xy: $i] :
( ( in @ Xy @ A )
=> ( Xphi
=> ( ( if @ A @ Xphi @ Xx @ Xy )
= Xx ) ) ) ) ) )).
thf(iffalse_type,type,(
iffalse: $o )).
thf(iffalse,definition,
( iffalse
= ( ! [A: $i,Xphi: $o,Xx: $i] :
( ( in @ Xx @ A )
=> ! [Xy: $i] :
( ( in @ Xy @ A )
=> ( ~ ( Xphi )
=> ( ( if @ A @ Xphi @ Xx @ Xy )
= Xy ) ) ) ) ) )).
thf(iftrueorfalse,conjecture,
( setadjoinIL
=> ( in__Cong
=> ( secondinupair
=> ( iftrue
=> ( iffalse
=> ! [A: $i,Xphi: $o,Xx: $i] :
( ( in @ Xx @ A )
=> ! [Xy: $i] :
( ( in @ Xy @ A )
=> ( in @ ( if @ A @ Xphi @ Xx @ Xy ) @ ( setadjoin @ Xx @ ( setadjoin @ Xy @ emptyset ) ) ) ) ) ) ) ) ) )).
%------------------------------------------------------------------------------