TPTP Problem File: SEU588^1.p

View Solutions - Solve Problem

%------------------------------------------------------------------------------
% File     : SEU588^1 : TPTP v7.0.0. Released v3.7.0.
% Domain   : Set Theory
% Problem  : Preliminary Notions - Ops on Sets - Unions and Intersections
% Version  : Especial.
% English  : (! A:i.! B:i.subset B (binunion A B))

% Refs     : [Bro08] Brown (2008), Email to G. Sutcliffe
% Source   : [Bro08]
% Names    : ZFC090g [Bro08]

% Status   : Theorem
% Rating   : 0.38 v7.0.0, 0.29 v6.4.0, 0.33 v6.3.0, 0.40 v6.2.0, 0.29 v6.1.0, 0.43 v5.5.0, 0.33 v5.4.0, 0.40 v5.1.0, 0.60 v5.0.0, 0.40 v4.1.0, 0.67 v4.0.1, 1.00 v3.7.0
% Syntax   : Number of formulae    :  227 (   0 unit; 120 type; 106 defn)
%            Number of atoms       : 1283 ( 155 equality; 607 variable)
%            Maximal formula depth :  110 (   6 average)
%            Number of connectives :  895 (  29   ~;   6   |;  27   &; 563   @)
%                                         (  14 <=>; 256  =>;   0  <=;   0 <~>)
%                                         (   0  ~|;   0  ~&)
%            Number of type conns  :   57 (  57   >;   0   *;   0   +;   0  <<)
%            Number of symbols     :  124 ( 120   :;   0   =)
%            Number of variables   :  313 (   1 sgn; 255   !;  28   ?;  30   ^)
%                                         ( 313   :;   0  !>;   0  ?*)
%                                         (   0  @-;   0  @+)
% SPC      : TH0_THM_EQU_NAR

% Comments : http://mathgate.info/detsetitem.php?id=164
%          : 
%------------------------------------------------------------------------------
thf(in_type,type,(
    in: $i > $i > $o )).

thf(exu_type,type,(
    exu: ( $i > $o ) > $o )).

thf(exu,definition,
    ( exu
    = ( ^ [Xphi: $i > $o] :
        ? [Xx: $i] :
          ( ( Xphi @ Xx )
          & ! [Xy: $i] :
              ( ( Xphi @ Xy )
             => ( Xx = Xy ) ) ) ) )).

thf(setextAx_type,type,(
    setextAx: $o )).

thf(setextAx,definition,
    ( setextAx
    = ( ! [A: $i,B: $i] :
          ( ! [Xx: $i] :
              ( ( in @ Xx @ A )
            <=> ( in @ Xx @ B ) )
         => ( A = B ) ) ) )).

thf(emptyset_type,type,(
    emptyset: $i )).

thf(emptysetAx_type,type,(
    emptysetAx: $o )).

thf(emptysetAx,definition,
    ( emptysetAx
    = ( ! [Xx: $i] :
          ~ ( in @ Xx @ emptyset ) ) )).

thf(setadjoin_type,type,(
    setadjoin: $i > $i > $i )).

thf(setadjoinAx_type,type,(
    setadjoinAx: $o )).

thf(setadjoinAx,definition,
    ( setadjoinAx
    = ( ! [Xx: $i,A: $i,Xy: $i] :
          ( ( in @ Xy @ ( setadjoin @ Xx @ A ) )
        <=> ( ( Xy = Xx )
            | ( in @ Xy @ A ) ) ) ) )).

thf(powerset_type,type,(
    powerset: $i > $i )).

thf(powersetAx_type,type,(
    powersetAx: $o )).

thf(powersetAx,definition,
    ( powersetAx
    = ( ! [A: $i,B: $i] :
          ( ( in @ B @ ( powerset @ A ) )
        <=> ! [Xx: $i] :
              ( ( in @ Xx @ B )
             => ( in @ Xx @ A ) ) ) ) )).

thf(setunion_type,type,(
    setunion: $i > $i )).

thf(setunionAx_type,type,(
    setunionAx: $o )).

thf(setunionAx,definition,
    ( setunionAx
    = ( ! [A: $i,Xx: $i] :
          ( ( in @ Xx @ ( setunion @ A ) )
        <=> ? [B: $i] :
              ( ( in @ Xx @ B )
              & ( in @ B @ A ) ) ) ) )).

thf(omega_type,type,(
    omega: $i )).

thf(omega0Ax_type,type,(
    omega0Ax: $o )).

thf(omega0Ax,definition,
    ( omega0Ax
    = ( in @ emptyset @ omega ) )).

thf(omegaSAx_type,type,(
    omegaSAx: $o )).

thf(omegaSAx,definition,
    ( omegaSAx
    = ( ! [Xx: $i] :
          ( ( in @ Xx @ omega )
         => ( in @ ( setadjoin @ Xx @ Xx ) @ omega ) ) ) )).

thf(omegaIndAx_type,type,(
    omegaIndAx: $o )).

thf(omegaIndAx,definition,
    ( omegaIndAx
    = ( ! [A: $i] :
          ( ( ( in @ emptyset @ A )
            & ! [Xx: $i] :
                ( ( ( in @ Xx @ omega )
                  & ( in @ Xx @ A ) )
               => ( in @ ( setadjoin @ Xx @ Xx ) @ A ) ) )
         => ! [Xx: $i] :
              ( ( in @ Xx @ omega )
             => ( in @ Xx @ A ) ) ) ) )).

thf(replAx_type,type,(
    replAx: $o )).

thf(replAx,definition,
    ( replAx
    = ( ! [Xphi: $i > $i > $o,A: $i] :
          ( ! [Xx: $i] :
              ( ( in @ Xx @ A )
             => ( exu
                @ ^ [Xy: $i] :
                    ( Xphi @ Xx @ Xy ) ) )
         => ? [B: $i] :
            ! [Xx: $i] :
              ( ( in @ Xx @ B )
            <=> ? [Xy: $i] :
                  ( ( in @ Xy @ A )
                  & ( Xphi @ Xy @ Xx ) ) ) ) ) )).

thf(foundationAx_type,type,(
    foundationAx: $o )).

thf(foundationAx,definition,
    ( foundationAx
    = ( ! [A: $i] :
          ( ? [Xx: $i] :
              ( in @ Xx @ A )
         => ? [B: $i] :
              ( ( in @ B @ A )
              & ~ ( ? [Xx: $i] :
                      ( ( in @ Xx @ B )
                      & ( in @ Xx @ A ) ) ) ) ) ) )).

thf(wellorderingAx_type,type,(
    wellorderingAx: $o )).

thf(wellorderingAx,definition,
    ( wellorderingAx
    = ( ! [A: $i] :
        ? [B: $i] :
          ( ! [C: $i] :
              ( ( in @ C @ B )
             => ! [Xx: $i] :
                  ( ( in @ Xx @ C )
                 => ( in @ Xx @ A ) ) )
          & ! [Xx: $i,Xy: $i] :
              ( ( ( in @ Xx @ A )
                & ( in @ Xy @ A ) )
             => ( ! [C: $i] :
                    ( ( in @ C @ B )
                   => ( ( in @ Xx @ C )
                    <=> ( in @ Xy @ C ) ) )
               => ( Xx = Xy ) ) )
          & ! [C: $i,D: $i] :
              ( ( ( in @ C @ B )
                & ( in @ D @ B ) )
             => ( ! [Xx: $i] :
                    ( ( in @ Xx @ C )
                   => ( in @ Xx @ D ) )
                | ! [Xx: $i] :
                    ( ( in @ Xx @ D )
                   => ( in @ Xx @ C ) ) ) )
          & ! [C: $i] :
              ( ( ! [Xx: $i] :
                    ( ( in @ Xx @ C )
                   => ( in @ Xx @ A ) )
                & ? [Xx: $i] :
                    ( in @ Xx @ C ) )
             => ? [D: $i,Xx: $i] :
                  ( ( in @ D @ B )
                  & ( in @ Xx @ C )
                  & ~ ( ? [Xy: $i] :
                          ( ( in @ Xy @ D )
                          & ( in @ Xy @ C ) ) )
                  & ! [E: $i] :
                      ( ( in @ E @ B )
                     => ( ! [Xy: $i] :
                            ( ( in @ Xy @ E )
                           => ( in @ Xy @ D ) )
                        | ( in @ Xx @ E ) ) ) ) ) ) ) )).

thf(descr_type,type,(
    descr: ( $i > $o ) > $i )).

thf(descrp_type,type,(
    descrp: $o )).

thf(descrp,definition,
    ( descrp
    = ( ! [Xphi: $i > $o] :
          ( ( exu
            @ ^ [Xx: $i] :
                ( Xphi @ Xx ) )
         => ( Xphi
            @ ( descr
              @ ^ [Xx: $i] :
                  ( Xphi @ Xx ) ) ) ) ) )).

thf(dsetconstr_type,type,(
    dsetconstr: $i > ( $i > $o ) > $i )).

thf(dsetconstrI_type,type,(
    dsetconstrI: $o )).

thf(dsetconstrI,definition,
    ( dsetconstrI
    = ( ! [A: $i,Xphi: $i > $o,Xx: $i] :
          ( ( in @ Xx @ A )
         => ( ( Xphi @ Xx )
           => ( in @ Xx
              @ ( dsetconstr @ A
                @ ^ [Xy: $i] :
                    ( Xphi @ Xy ) ) ) ) ) ) )).

thf(dsetconstrEL_type,type,(
    dsetconstrEL: $o )).

thf(dsetconstrEL,definition,
    ( dsetconstrEL
    = ( ! [A: $i,Xphi: $i > $o,Xx: $i] :
          ( ( in @ Xx
            @ ( dsetconstr @ A
              @ ^ [Xy: $i] :
                  ( Xphi @ Xy ) ) )
         => ( in @ Xx @ A ) ) ) )).

thf(dsetconstrER_type,type,(
    dsetconstrER: $o )).

thf(dsetconstrER,definition,
    ( dsetconstrER
    = ( ! [A: $i,Xphi: $i > $o,Xx: $i] :
          ( ( in @ Xx
            @ ( dsetconstr @ A
              @ ^ [Xy: $i] :
                  ( Xphi @ Xy ) ) )
         => ( Xphi @ Xx ) ) ) )).

thf(exuE1_type,type,(
    exuE1: $o )).

thf(exuE1,definition,
    ( exuE1
    = ( ! [Xphi: $i > $o] :
          ( ( exu
            @ ^ [Xx: $i] :
                ( Xphi @ Xx ) )
         => ? [Xx: $i] :
              ( ( Xphi @ Xx )
              & ! [Xy: $i] :
                  ( ( Xphi @ Xy )
                 => ( Xx = Xy ) ) ) ) ) )).

thf(prop2set_type,type,(
    prop2set: $o > $i )).

thf(prop2setE_type,type,(
    prop2setE: $o )).

thf(prop2setE,definition,
    ( prop2setE
    = ( ! [Xphi: $o,Xx: $i] :
          ( ( in @ Xx @ ( prop2set @ Xphi ) )
         => Xphi ) ) )).

thf(emptysetE_type,type,(
    emptysetE: $o )).

thf(emptysetE,definition,
    ( emptysetE
    = ( ! [Xx: $i] :
          ( ( in @ Xx @ emptyset )
         => ! [Xphi: $o] : Xphi ) ) )).

thf(emptysetimpfalse_type,type,(
    emptysetimpfalse: $o )).

thf(emptysetimpfalse,definition,
    ( emptysetimpfalse
    = ( ! [Xx: $i] :
          ( ( in @ Xx @ emptyset )
         => $false ) ) )).

thf(notinemptyset_type,type,(
    notinemptyset: $o )).

thf(notinemptyset,definition,
    ( notinemptyset
    = ( ! [Xx: $i] :
          ~ ( in @ Xx @ emptyset ) ) )).

thf(exuE3e_type,type,(
    exuE3e: $o )).

thf(exuE3e,definition,
    ( exuE3e
    = ( ! [Xphi: $i > $o] :
          ( ( exu
            @ ^ [Xx: $i] :
                ( Xphi @ Xx ) )
         => ? [Xx: $i] :
              ( Xphi @ Xx ) ) ) )).

thf(setext_type,type,(
    setext: $o )).

thf(setext,definition,
    ( setext
    = ( ! [A: $i,B: $i] :
          ( ! [Xx: $i] :
              ( ( in @ Xx @ A )
             => ( in @ Xx @ B ) )
         => ( ! [Xx: $i] :
                ( ( in @ Xx @ B )
               => ( in @ Xx @ A ) )
           => ( A = B ) ) ) ) )).

thf(emptyI_type,type,(
    emptyI: $o )).

thf(emptyI,definition,
    ( emptyI
    = ( ! [A: $i] :
          ( ! [Xx: $i] :
              ~ ( in @ Xx @ A )
         => ( A = emptyset ) ) ) )).

thf(noeltsimpempty_type,type,(
    noeltsimpempty: $o )).

thf(noeltsimpempty,definition,
    ( noeltsimpempty
    = ( ! [A: $i] :
          ( ! [Xx: $i] :
              ~ ( in @ Xx @ A )
         => ( A = emptyset ) ) ) )).

thf(setbeta_type,type,(
    setbeta: $o )).

thf(setbeta,definition,
    ( setbeta
    = ( ! [A: $i,Xphi: $i > $o,Xx: $i] :
          ( ( in @ Xx @ A )
         => ( ( in @ Xx
              @ ( dsetconstr @ A
                @ ^ [Xy: $i] :
                    ( Xphi @ Xy ) ) )
          <=> ( Xphi @ Xx ) ) ) ) )).

thf(nonempty_type,type,(
    nonempty: $i > $o )).

thf(nonempty,definition,
    ( nonempty
    = ( ^ [Xx: $i] : ( Xx != emptyset ) ) )).

thf(nonemptyE1_type,type,(
    nonemptyE1: $o )).

thf(nonemptyE1,definition,
    ( nonemptyE1
    = ( ! [A: $i] :
          ( ( nonempty @ A )
         => ? [Xx: $i] :
              ( in @ Xx @ A ) ) ) )).

thf(nonemptyI_type,type,(
    nonemptyI: $o )).

thf(nonemptyI,definition,
    ( nonemptyI
    = ( ! [A: $i,Xphi: $i > $o,Xx: $i] :
          ( ( in @ Xx @ A )
         => ( ( Xphi @ Xx )
           => ( nonempty
              @ ( dsetconstr @ A
                @ ^ [Xy: $i] :
                    ( Xphi @ Xy ) ) ) ) ) ) )).

thf(nonemptyI1_type,type,(
    nonemptyI1: $o )).

thf(nonemptyI1,definition,
    ( nonemptyI1
    = ( ! [A: $i] :
          ( ? [Xx: $i] :
              ( in @ Xx @ A )
         => ( nonempty @ A ) ) ) )).

thf(setadjoinIL_type,type,(
    setadjoinIL: $o )).

thf(setadjoinIL,definition,
    ( setadjoinIL
    = ( ! [Xx: $i,Xy: $i] :
          ( in @ Xx @ ( setadjoin @ Xx @ Xy ) ) ) )).

thf(emptyinunitempty_type,type,(
    emptyinunitempty: $o )).

thf(emptyinunitempty,definition,
    ( emptyinunitempty
    = ( in @ emptyset @ ( setadjoin @ emptyset @ emptyset ) ) )).

thf(setadjoinIR_type,type,(
    setadjoinIR: $o )).

thf(setadjoinIR,definition,
    ( setadjoinIR
    = ( ! [Xx: $i,A: $i,Xy: $i] :
          ( ( in @ Xy @ A )
         => ( in @ Xy @ ( setadjoin @ Xx @ A ) ) ) ) )).

thf(setadjoinE_type,type,(
    setadjoinE: $o )).

thf(setadjoinE,definition,
    ( setadjoinE
    = ( ! [Xx: $i,A: $i,Xy: $i] :
          ( ( in @ Xy @ ( setadjoin @ Xx @ A ) )
         => ! [Xphi: $o] :
              ( ( ( Xy = Xx )
               => Xphi )
             => ( ( ( in @ Xy @ A )
                 => Xphi )
               => Xphi ) ) ) ) )).

thf(setadjoinOr_type,type,(
    setadjoinOr: $o )).

thf(setadjoinOr,definition,
    ( setadjoinOr
    = ( ! [Xx: $i,A: $i,Xy: $i] :
          ( ( in @ Xy @ ( setadjoin @ Xx @ A ) )
         => ( ( Xy = Xx )
            | ( in @ Xy @ A ) ) ) ) )).

thf(setoftrueEq_type,type,(
    setoftrueEq: $o )).

thf(setoftrueEq,definition,
    ( setoftrueEq
    = ( ! [A: $i] :
          ( ( dsetconstr @ A
            @ ^ [Xx: $i] : $true )
          = A ) ) )).

thf(powersetI_type,type,(
    powersetI: $o )).

thf(powersetI,definition,
    ( powersetI
    = ( ! [A: $i,B: $i] :
          ( ! [Xx: $i] :
              ( ( in @ Xx @ B )
             => ( in @ Xx @ A ) )
         => ( in @ B @ ( powerset @ A ) ) ) ) )).

thf(emptyinPowerset_type,type,(
    emptyinPowerset: $o )).

thf(emptyinPowerset,definition,
    ( emptyinPowerset
    = ( ! [A: $i] :
          ( in @ emptyset @ ( powerset @ A ) ) ) )).

thf(emptyInPowerset_type,type,(
    emptyInPowerset: $o )).

thf(emptyInPowerset,definition,
    ( emptyInPowerset
    = ( ! [A: $i] :
          ( in @ emptyset @ ( powerset @ A ) ) ) )).

thf(powersetE_type,type,(
    powersetE: $o )).

thf(powersetE,definition,
    ( powersetE
    = ( ! [A: $i,B: $i,Xx: $i] :
          ( ( in @ B @ ( powerset @ A ) )
         => ( ( in @ Xx @ B )
           => ( in @ Xx @ A ) ) ) ) )).

thf(setunionI_type,type,(
    setunionI: $o )).

thf(setunionI,definition,
    ( setunionI
    = ( ! [A: $i,Xx: $i,B: $i] :
          ( ( in @ Xx @ B )
         => ( ( in @ B @ A )
           => ( in @ Xx @ ( setunion @ A ) ) ) ) ) )).

thf(setunionE_type,type,(
    setunionE: $o )).

thf(setunionE,definition,
    ( setunionE
    = ( ! [A: $i,Xx: $i] :
          ( ( in @ Xx @ ( setunion @ A ) )
         => ! [Xphi: $o] :
              ( ! [B: $i] :
                  ( ( in @ Xx @ B )
                 => ( ( in @ B @ A )
                   => Xphi ) )
             => Xphi ) ) ) )).

thf(subPowSU_type,type,(
    subPowSU: $o )).

thf(subPowSU,definition,
    ( subPowSU
    = ( ! [A: $i,Xx: $i] :
          ( ( in @ Xx @ A )
         => ( in @ Xx @ ( powerset @ ( setunion @ A ) ) ) ) ) )).

thf(exuE2_type,type,(
    exuE2: $o )).

thf(exuE2,definition,
    ( exuE2
    = ( ! [Xphi: $i > $o] :
          ( ( exu
            @ ^ [Xx: $i] :
                ( Xphi @ Xx ) )
         => ? [Xx: $i] :
            ! [Xy: $i] :
              ( ( Xphi @ Xy )
            <=> ( Xy = Xx ) ) ) ) )).

thf(nonemptyImpWitness_type,type,(
    nonemptyImpWitness: $o )).

thf(nonemptyImpWitness,definition,
    ( nonemptyImpWitness
    = ( ! [A: $i] :
          ( ( nonempty @ A )
         => ? [Xx: $i] :
              ( ( in @ Xx @ A )
              & $true ) ) ) )).

thf(uniqinunit_type,type,(
    uniqinunit: $o )).

thf(uniqinunit,definition,
    ( uniqinunit
    = ( ! [Xx: $i,Xy: $i] :
          ( ( in @ Xx @ ( setadjoin @ Xy @ emptyset ) )
         => ( Xx = Xy ) ) ) )).

thf(notinsingleton_type,type,(
    notinsingleton: $o )).

thf(notinsingleton,definition,
    ( notinsingleton
    = ( ! [Xx: $i,Xy: $i] :
          ( ( Xx != Xy )
         => ~ ( in @ Xy @ ( setadjoin @ Xx @ emptyset ) ) ) ) )).

thf(eqinunit_type,type,(
    eqinunit: $o )).

thf(eqinunit,definition,
    ( eqinunit
    = ( ! [Xx: $i,Xy: $i] :
          ( ( Xx = Xy )
         => ( in @ Xx @ ( setadjoin @ Xy @ emptyset ) ) ) ) )).

thf(singletonsswitch_type,type,(
    singletonsswitch: $o )).

thf(singletonsswitch,definition,
    ( singletonsswitch
    = ( ! [Xx: $i,Xy: $i] :
          ( ( in @ Xx @ ( setadjoin @ Xy @ emptyset ) )
         => ( in @ Xy @ ( setadjoin @ Xx @ emptyset ) ) ) ) )).

thf(upairsetE_type,type,(
    upairsetE: $o )).

thf(upairsetE,definition,
    ( upairsetE
    = ( ! [Xx: $i,Xy: $i,Xz: $i] :
          ( ( in @ Xz @ ( setadjoin @ Xx @ ( setadjoin @ Xy @ emptyset ) ) )
         => ( ( Xz = Xx )
            | ( Xz = Xy ) ) ) ) )).

thf(upairsetIL_type,type,(
    upairsetIL: $o )).

thf(upairsetIL,definition,
    ( upairsetIL
    = ( ! [Xx: $i,Xy: $i] :
          ( in @ Xx @ ( setadjoin @ Xx @ ( setadjoin @ Xy @ emptyset ) ) ) ) )).

thf(upairsetIR_type,type,(
    upairsetIR: $o )).

thf(upairsetIR,definition,
    ( upairsetIR
    = ( ! [Xx: $i,Xy: $i] :
          ( in @ Xy @ ( setadjoin @ Xx @ ( setadjoin @ Xy @ emptyset ) ) ) ) )).

thf(emptyE1_type,type,(
    emptyE1: $o )).

thf(emptyE1,definition,
    ( emptyE1
    = ( ! [A: $i,Xphi: $i > $o] :
          ( ? [Xx: $i] :
              ( ( in @ Xx @ A )
              & ( Xphi @ Xx ) )
         => ( ( ( dsetconstr @ A
                @ ^ [Xx: $i] :
                    ( Xphi @ Xx ) )
              = emptyset )
           => $false ) ) ) )).

thf(vacuousDall_type,type,(
    vacuousDall: $o )).

thf(vacuousDall,definition,
    ( vacuousDall
    = ( ! [Xphi: $i > $o,Xx: $i] :
          ( ( in @ Xx @ emptyset )
         => ( Xphi @ Xx ) ) ) )).

thf(quantDeMorgan1_type,type,(
    quantDeMorgan1: $o )).

thf(quantDeMorgan1,definition,
    ( quantDeMorgan1
    = ( ! [A: $i,Xphi: $i > $o] :
          ( ~ ( ! [Xx: $i] :
                  ( ( in @ Xx @ A )
                 => ( Xphi @ Xx ) ) )
         => ? [Xx: $i] :
              ( ( in @ Xx @ A )
              & ~ ( Xphi @ Xx ) ) ) ) )).

thf(quantDeMorgan2_type,type,(
    quantDeMorgan2: $o )).

thf(quantDeMorgan2,definition,
    ( quantDeMorgan2
    = ( ! [A: $i,Xphi: $i > $o] :
          ( ! [Xx: $i] :
              ( ( in @ Xx @ A )
             => ~ ( Xphi @ Xx ) )
         => ~ ( ? [Xx: $i] :
                  ( ( in @ Xx @ A )
                  & ( Xphi @ Xx ) ) ) ) ) )).

thf(quantDeMorgan3_type,type,(
    quantDeMorgan3: $o )).

thf(quantDeMorgan3,definition,
    ( quantDeMorgan3
    = ( ! [A: $i,Xphi: $i > $o] :
          ( ~ ( ? [Xx: $i] :
                  ( ( in @ Xx @ A )
                  & ( Xphi @ Xx ) ) )
         => ! [Xx: $i] :
              ( ( in @ Xx @ A )
             => ~ ( Xphi @ Xx ) ) ) ) )).

thf(quantDeMorgan4_type,type,(
    quantDeMorgan4: $o )).

thf(quantDeMorgan4,definition,
    ( quantDeMorgan4
    = ( ! [A: $i,Xphi: $i > $o] :
          ( ? [Xx: $i] :
              ( ( in @ Xx @ A )
              & ~ ( Xphi @ Xx ) )
         => ~ ( ! [Xx: $i] :
                  ( ( in @ Xx @ A )
                 => ( Xphi @ Xx ) ) ) ) ) )).

thf(prop2setI_type,type,(
    prop2setI: $o )).

thf(prop2setI,definition,
    ( prop2setI
    = ( ! [Xphi: $o] :
          ( Xphi
         => ( in @ emptyset @ ( prop2set @ Xphi ) ) ) ) )).

thf(set2prop_type,type,(
    set2prop: $i > $o )).

thf(prop2set2propI_type,type,(
    prop2set2propI: $o )).

thf(prop2set2propI,definition,
    ( prop2set2propI
    = ( ! [Xphi: $o] :
          ( Xphi
         => ( set2prop @ ( prop2set @ Xphi ) ) ) ) )).

thf(notdexE_type,type,(
    notdexE: $o )).

thf(notdexE,definition,
    ( notdexE
    = ( ! [A: $i,Xphi: $i > $o] :
          ( ~ ( ? [Xx: $i] :
                  ( ( in @ Xx @ A )
                  & ( Xphi @ Xx ) ) )
         => ! [Xx: $i] :
              ( ( in @ Xx @ A )
             => ~ ( Xphi @ Xx ) ) ) ) )).

thf(notdallE_type,type,(
    notdallE: $o )).

thf(notdallE,definition,
    ( notdallE
    = ( ! [A: $i,Xphi: $i > $o] :
          ( ~ ( ! [Xx: $i] :
                  ( ( in @ Xx @ A )
                 => ( Xphi @ Xx ) ) )
         => ? [Xx: $i] :
              ( ( in @ Xx @ A )
              & ~ ( Xphi @ Xx ) ) ) ) )).

thf(exuI1_type,type,(
    exuI1: $o )).

thf(exuI1,definition,
    ( exuI1
    = ( ! [Xphi: $i > $o] :
          ( ? [Xx: $i] :
              ( ( Xphi @ Xx )
              & ! [Xy: $i] :
                  ( ( Xphi @ Xy )
                 => ( Xx = Xy ) ) )
         => ( exu
            @ ^ [Xx: $i] :
                ( Xphi @ Xx ) ) ) ) )).

thf(exuI3_type,type,(
    exuI3: $o )).

thf(exuI3,definition,
    ( exuI3
    = ( ! [Xphi: $i > $o] :
          ( ? [Xx: $i] :
              ( Xphi @ Xx )
         => ( ! [Xx: $i,Xy: $i] :
                ( ( Xphi @ Xx )
               => ( ( Xphi @ Xy )
                 => ( Xx = Xy ) ) )
           => ( exu
              @ ^ [Xx: $i] :
                  ( Xphi @ Xx ) ) ) ) ) )).

thf(exuI2_type,type,(
    exuI2: $o )).

thf(exuI2,definition,
    ( exuI2
    = ( ! [Xphi: $i > $o] :
          ( ? [Xx: $i] :
            ! [Xy: $i] :
              ( ( Xphi @ Xy )
            <=> ( Xy = Xx ) )
         => ( exu
            @ ^ [Xx: $i] :
                ( Xphi @ Xx ) ) ) ) )).

thf(inCongP_type,type,(
    inCongP: $o )).

thf(inCongP,definition,
    ( inCongP
    = ( ! [A: $i,B: $i] :
          ( ( A = B )
         => ! [Xx: $i,Xy: $i] :
              ( ( Xx = Xy )
             => ( ( in @ Xx @ A )
               => ( in @ Xy @ B ) ) ) ) ) )).

thf(in__Cong_type,type,(
    in__Cong: $o )).

thf(in__Cong,definition,
    ( in__Cong
    = ( ! [A: $i,B: $i] :
          ( ( A = B )
         => ! [Xx: $i,Xy: $i] :
              ( ( Xx = Xy )
             => ( ( in @ Xx @ A )
              <=> ( in @ Xy @ B ) ) ) ) ) )).

thf(exuE3u_type,type,(
    exuE3u: $o )).

thf(exuE3u,definition,
    ( exuE3u
    = ( ! [Xphi: $i > $o] :
          ( ( exu
            @ ^ [Xx: $i] :
                ( Xphi @ Xx ) )
         => ! [Xx: $i,Xy: $i] :
              ( ( Xphi @ Xx )
             => ( ( Xphi @ Xy )
               => ( Xx = Xy ) ) ) ) ) )).

thf(exu__Cong_type,type,(
    exu__Cong: $o )).

thf(exu__Cong,definition,
    ( exu__Cong
    = ( ! [Xphi: $i > $o,Xpsi: $i > $o] :
          ( ! [Xx: $i,Xy: $i] :
              ( ( Xx = Xy )
             => ( ( Xphi @ Xx )
              <=> ( Xpsi @ Xy ) ) )
         => ( ( exu
              @ ^ [Xx: $i] :
                  ( Xphi @ Xx ) )
          <=> ( exu
              @ ^ [Xx: $i] :
                  ( Xpsi @ Xx ) ) ) ) ) )).

thf(emptyset__Cong_type,type,(
    emptyset__Cong: $o )).

thf(emptyset__Cong,definition,
    ( emptyset__Cong
    = ( emptyset = emptyset ) )).

thf(setadjoin__Cong_type,type,(
    setadjoin__Cong: $o )).

thf(setadjoin__Cong,definition,
    ( setadjoin__Cong
    = ( ! [Xx: $i,Xy: $i] :
          ( ( Xx = Xy )
         => ! [Xz: $i,Xu: $i] :
              ( ( Xz = Xu )
             => ( ( setadjoin @ Xx @ Xz )
                = ( setadjoin @ Xy @ Xu ) ) ) ) ) )).

thf(powerset__Cong_type,type,(
    powerset__Cong: $o )).

thf(powerset__Cong,definition,
    ( powerset__Cong
    = ( ! [A: $i,B: $i] :
          ( ( A = B )
         => ( ( powerset @ A )
            = ( powerset @ B ) ) ) ) )).

thf(setunion__Cong_type,type,(
    setunion__Cong: $o )).

thf(setunion__Cong,definition,
    ( setunion__Cong
    = ( ! [A: $i,B: $i] :
          ( ( A = B )
         => ( ( setunion @ A )
            = ( setunion @ B ) ) ) ) )).

thf(omega__Cong_type,type,(
    omega__Cong: $o )).

thf(omega__Cong,definition,
    ( omega__Cong
    = ( omega = omega ) )).

thf(exuEu_type,type,(
    exuEu: $o )).

thf(exuEu,definition,
    ( exuEu
    = ( ! [Xphi: $i > $o] :
          ( ( exu
            @ ^ [Xx: $i] :
                ( Xphi @ Xx ) )
         => ! [Xx: $i,Xy: $i] :
              ( ( Xphi @ Xx )
             => ( ( Xphi @ Xy )
               => ( Xx = Xy ) ) ) ) ) )).

thf(descr__Cong_type,type,(
    descr__Cong: $o )).

thf(descr__Cong,definition,
    ( descr__Cong
    = ( ! [Xphi: $i > $o,Xpsi: $i > $o] :
          ( ! [Xx: $i,Xy: $i] :
              ( ( Xx = Xy )
             => ( ( Xphi @ Xx )
              <=> ( Xpsi @ Xy ) ) )
         => ( ( exu
              @ ^ [Xx: $i] :
                  ( Xphi @ Xx ) )
           => ( ( exu
                @ ^ [Xx: $i] :
                    ( Xpsi @ Xx ) )
             => ( ( descr
                  @ ^ [Xx: $i] :
                      ( Xphi @ Xx ) )
                = ( descr
                  @ ^ [Xx: $i] :
                      ( Xpsi @ Xx ) ) ) ) ) ) ) )).

thf(dsetconstr__Cong_type,type,(
    dsetconstr__Cong: $o )).

thf(dsetconstr__Cong,definition,
    ( dsetconstr__Cong
    = ( ! [A: $i,B: $i] :
          ( ( A = B )
         => ! [Xphi: $i > $o,Xpsi: $i > $o] :
              ( ! [Xx: $i] :
                  ( ( in @ Xx @ A )
                 => ! [Xy: $i] :
                      ( ( in @ Xy @ B )
                     => ( ( Xx = Xy )
                       => ( ( Xphi @ Xx )
                        <=> ( Xpsi @ Xy ) ) ) ) )
             => ( ( dsetconstr @ A
                  @ ^ [Xx: $i] :
                      ( Xphi @ Xx ) )
                = ( dsetconstr @ B
                  @ ^ [Xx: $i] :
                      ( Xpsi @ Xx ) ) ) ) ) ) )).

thf(subset_type,type,(
    subset: $i > $i > $o )).

thf(disjoint_type,type,(
    disjoint: $i > $i > $o )).

thf(setsmeet_type,type,(
    setsmeet: $i > $i > $o )).

thf(subsetI1_type,type,(
    subsetI1: $o )).

thf(subsetI1,definition,
    ( subsetI1
    = ( ! [A: $i,B: $i] :
          ( ! [Xx: $i] :
              ( ( in @ Xx @ A )
             => ( in @ Xx @ B ) )
         => ( subset @ A @ B ) ) ) )).

thf(eqimpsubset2_type,type,(
    eqimpsubset2: $o )).

thf(eqimpsubset2,definition,
    ( eqimpsubset2
    = ( ! [A: $i,B: $i] :
          ( ( A = B )
         => ( subset @ B @ A ) ) ) )).

thf(eqimpsubset1_type,type,(
    eqimpsubset1: $o )).

thf(eqimpsubset1,definition,
    ( eqimpsubset1
    = ( ! [A: $i,B: $i] :
          ( ( A = B )
         => ( subset @ A @ B ) ) ) )).

thf(subsetI2_type,type,(
    subsetI2: $o )).

thf(subsetI2,definition,
    ( subsetI2
    = ( ! [A: $i,B: $i] :
          ( ! [Xx: $i] :
              ( ( in @ Xx @ A )
             => ( in @ Xx @ B ) )
         => ( subset @ A @ B ) ) ) )).

thf(emptysetsubset_type,type,(
    emptysetsubset: $o )).

thf(emptysetsubset,definition,
    ( emptysetsubset
    = ( ! [A: $i] :
          ( subset @ emptyset @ A ) ) )).

thf(subsetE_type,type,(
    subsetE: $o )).

thf(subsetE,definition,
    ( subsetE
    = ( ! [A: $i,B: $i,Xx: $i] :
          ( ( subset @ A @ B )
         => ( ( in @ Xx @ A )
           => ( in @ Xx @ B ) ) ) ) )).

thf(subsetE2_type,type,(
    subsetE2: $o )).

thf(subsetE2,definition,
    ( subsetE2
    = ( ! [A: $i,B: $i,Xx: $i] :
          ( ( subset @ A @ B )
         => ( ~ ( in @ Xx @ B )
           => ~ ( in @ Xx @ A ) ) ) ) )).

thf(notsubsetI_type,type,(
    notsubsetI: $o )).

thf(notsubsetI,definition,
    ( notsubsetI
    = ( ! [A: $i,B: $i,Xx: $i] :
          ( ( in @ Xx @ A )
         => ( ~ ( in @ Xx @ B )
           => ~ ( subset @ A @ B ) ) ) ) )).

thf(notequalI1_type,type,(
    notequalI1: $o )).

thf(notequalI1,definition,
    ( notequalI1
    = ( ! [A: $i,B: $i] :
          ( ~ ( subset @ A @ B )
         => ( A != B ) ) ) )).

thf(notequalI2_type,type,(
    notequalI2: $o )).

thf(notequalI2,definition,
    ( notequalI2
    = ( ! [A: $i,B: $i,Xx: $i] :
          ( ( in @ Xx @ A )
         => ( ~ ( in @ Xx @ B )
           => ( A != B ) ) ) ) )).

thf(subsetRefl_type,type,(
    subsetRefl: $o )).

thf(subsetRefl,definition,
    ( subsetRefl
    = ( ! [A: $i] :
          ( subset @ A @ A ) ) )).

thf(subsetTrans_type,type,(
    subsetTrans: $o )).

thf(subsetTrans,definition,
    ( subsetTrans
    = ( ! [A: $i,B: $i,C: $i] :
          ( ( subset @ A @ B )
         => ( ( subset @ B @ C )
           => ( subset @ A @ C ) ) ) ) )).

thf(setadjoinSub_type,type,(
    setadjoinSub: $o )).

thf(setadjoinSub,definition,
    ( setadjoinSub
    = ( ! [Xx: $i,A: $i] :
          ( subset @ A @ ( setadjoin @ Xx @ A ) ) ) )).

thf(setadjoinSub2_type,type,(
    setadjoinSub2: $o )).

thf(setadjoinSub2,definition,
    ( setadjoinSub2
    = ( ! [A: $i,Xx: $i,B: $i] :
          ( ( subset @ A @ B )
         => ( subset @ A @ ( setadjoin @ Xx @ B ) ) ) ) )).

thf(subset2powerset_type,type,(
    subset2powerset: $o )).

thf(subset2powerset,definition,
    ( subset2powerset
    = ( ! [A: $i,B: $i] :
          ( ( subset @ A @ B )
         => ( in @ A @ ( powerset @ B ) ) ) ) )).

thf(setextsub_type,type,(
    setextsub: $o )).

thf(setextsub,definition,
    ( setextsub
    = ( ! [A: $i,B: $i] :
          ( ( subset @ A @ B )
         => ( ( subset @ B @ A )
           => ( A = B ) ) ) ) )).

thf(subsetemptysetimpeq_type,type,(
    subsetemptysetimpeq: $o )).

thf(subsetemptysetimpeq,definition,
    ( subsetemptysetimpeq
    = ( ! [A: $i] :
          ( ( subset @ A @ emptyset )
         => ( A = emptyset ) ) ) )).

thf(powersetI1_type,type,(
    powersetI1: $o )).

thf(powersetI1,definition,
    ( powersetI1
    = ( ! [A: $i,B: $i] :
          ( ( subset @ B @ A )
         => ( in @ B @ ( powerset @ A ) ) ) ) )).

thf(powersetE1_type,type,(
    powersetE1: $o )).

thf(powersetE1,definition,
    ( powersetE1
    = ( ! [A: $i,B: $i] :
          ( ( in @ B @ ( powerset @ A ) )
         => ( subset @ B @ A ) ) ) )).

thf(inPowerset_type,type,(
    inPowerset: $o )).

thf(inPowerset,definition,
    ( inPowerset
    = ( ! [A: $i] :
          ( in @ A @ ( powerset @ A ) ) ) )).

thf(powersetsubset_type,type,(
    powersetsubset: $o )).

thf(powersetsubset,definition,
    ( powersetsubset
    = ( ! [A: $i,B: $i] :
          ( ( subset @ A @ B )
         => ( subset @ ( powerset @ A ) @ ( powerset @ B ) ) ) ) )).

thf(sepInPowerset_type,type,(
    sepInPowerset: $o )).

thf(sepInPowerset,definition,
    ( sepInPowerset
    = ( ! [A: $i,Xphi: $i > $o] :
          ( in
          @ ( dsetconstr @ A
            @ ^ [Xx: $i] :
                ( Xphi @ Xx ) )
          @ ( powerset @ A ) ) ) )).

thf(sepSubset_type,type,(
    sepSubset: $o )).

thf(sepSubset,definition,
    ( sepSubset
    = ( ! [A: $i,Xphi: $i > $o] :
          ( subset
          @ ( dsetconstr @ A
            @ ^ [Xx: $i] :
                ( Xphi @ Xx ) )
          @ A ) ) )).

thf(binunion_type,type,(
    binunion: $i > $i > $i )).

thf(binunionIL_type,type,(
    binunionIL: $o )).

thf(binunionIL,definition,
    ( binunionIL
    = ( ! [A: $i,B: $i,Xx: $i] :
          ( ( in @ Xx @ A )
         => ( in @ Xx @ ( binunion @ A @ B ) ) ) ) )).

thf(upairset2IR_type,type,(
    upairset2IR: $o )).

thf(upairset2IR,definition,
    ( upairset2IR
    = ( ! [Xx: $i,Xy: $i] :
          ( in @ Xy @ ( setadjoin @ Xx @ ( setadjoin @ Xy @ emptyset ) ) ) ) )).

thf(binunionIR_type,type,(
    binunionIR: $o )).

thf(binunionIR,definition,
    ( binunionIR
    = ( ! [A: $i,B: $i,Xx: $i] :
          ( ( in @ Xx @ B )
         => ( in @ Xx @ ( binunion @ A @ B ) ) ) ) )).

thf(binunionEcases_type,type,(
    binunionEcases: $o )).

thf(binunionEcases,definition,
    ( binunionEcases
    = ( ! [A: $i,B: $i,Xx: $i,Xphi: $o] :
          ( ( in @ Xx @ ( binunion @ A @ B ) )
         => ( ( ( in @ Xx @ A )
             => Xphi )
           => ( ( ( in @ Xx @ B )
               => Xphi )
             => Xphi ) ) ) ) )).

thf(binunionE_type,type,(
    binunionE: $o )).

thf(binunionE,definition,
    ( binunionE
    = ( ! [A: $i,B: $i,Xx: $i] :
          ( ( in @ Xx @ ( binunion @ A @ B ) )
         => ( ( in @ Xx @ A )
            | ( in @ Xx @ B ) ) ) ) )).

thf(binunionLsub_type,type,(
    binunionLsub: $o )).

thf(binunionLsub,definition,
    ( binunionLsub
    = ( ! [A: $i,B: $i] :
          ( subset @ A @ ( binunion @ A @ B ) ) ) )).

thf(binunionRsub,conjecture,
    ( setextAx
   => ( emptysetAx
     => ( setadjoinAx
       => ( powersetAx
         => ( setunionAx
           => ( omega0Ax
             => ( omegaSAx
               => ( omegaIndAx
                 => ( replAx
                   => ( foundationAx
                     => ( wellorderingAx
                       => ( descrp
                         => ( dsetconstrI
                           => ( dsetconstrEL
                             => ( dsetconstrER
                               => ( exuE1
                                 => ( prop2setE
                                   => ( emptysetE
                                     => ( emptysetimpfalse
                                       => ( notinemptyset
                                         => ( exuE3e
                                           => ( setext
                                             => ( emptyI
                                               => ( noeltsimpempty
                                                 => ( setbeta
                                                   => ( nonemptyE1
                                                     => ( nonemptyI
                                                       => ( nonemptyI1
                                                         => ( setadjoinIL
                                                           => ( emptyinunitempty
                                                             => ( setadjoinIR
                                                               => ( setadjoinE
                                                                 => ( setadjoinOr
                                                                   => ( setoftrueEq
                                                                     => ( powersetI
                                                                       => ( emptyinPowerset
                                                                         => ( emptyInPowerset
                                                                           => ( powersetE
                                                                             => ( setunionI
                                                                               => ( setunionE
                                                                                 => ( subPowSU
                                                                                   => ( exuE2
                                                                                     => ( nonemptyImpWitness
                                                                                       => ( uniqinunit
                                                                                         => ( notinsingleton
                                                                                           => ( eqinunit
                                                                                             => ( singletonsswitch
                                                                                               => ( upairsetE
                                                                                                 => ( upairsetIL
                                                                                                   => ( upairsetIR
                                                                                                     => ( emptyE1
                                                                                                       => ( vacuousDall
                                                                                                         => ( quantDeMorgan1
                                                                                                           => ( quantDeMorgan2
                                                                                                             => ( quantDeMorgan3
                                                                                                               => ( quantDeMorgan4
                                                                                                                 => ( prop2setI
                                                                                                                   => ( prop2set2propI
                                                                                                                     => ( notdexE
                                                                                                                       => ( notdallE
                                                                                                                         => ( exuI1
                                                                                                                           => ( exuI3
                                                                                                                             => ( exuI2
                                                                                                                               => ( inCongP
                                                                                                                                 => ( in__Cong
                                                                                                                                   => ( exuE3u
                                                                                                                                     => ( exu__Cong
                                                                                                                                       => ( emptyset__Cong
                                                                                                                                         => ( setadjoin__Cong
                                                                                                                                           => ( powerset__Cong
                                                                                                                                             => ( setunion__Cong
                                                                                                                                               => ( omega__Cong
                                                                                                                                                 => ( exuEu
                                                                                                                                                   => ( descr__Cong
                                                                                                                                                     => ( dsetconstr__Cong
                                                                                                                                                       => ( subsetI1
                                                                                                                                                         => ( eqimpsubset2
                                                                                                                                                           => ( eqimpsubset1
                                                                                                                                                             => ( subsetI2
                                                                                                                                                               => ( emptysetsubset
                                                                                                                                                                 => ( subsetE
                                                                                                                                                                   => ( subsetE2
                                                                                                                                                                     => ( notsubsetI
                                                                                                                                                                       => ( notequalI1
                                                                                                                                                                         => ( notequalI2
                                                                                                                                                                           => ( subsetRefl
                                                                                                                                                                             => ( subsetTrans
                                                                                                                                                                               => ( setadjoinSub
                                                                                                                                                                                 => ( setadjoinSub2
                                                                                                                                                                                   => ( subset2powerset
                                                                                                                                                                                     => ( setextsub
                                                                                                                                                                                       => ( subsetemptysetimpeq
                                                                                                                                                                                         => ( powersetI1
                                                                                                                                                                                           => ( powersetE1
                                                                                                                                                                                             => ( inPowerset
                                                                                                                                                                                               => ( powersetsubset
                                                                                                                                                                                                 => ( sepInPowerset
                                                                                                                                                                                                   => ( sepSubset
                                                                                                                                                                                                     => ( binunionIL
                                                                                                                                                                                                       => ( upairset2IR
                                                                                                                                                                                                         => ( binunionIR
                                                                                                                                                                                                           => ( binunionEcases
                                                                                                                                                                                                             => ( binunionE
                                                                                                                                                                                                               => ( binunionLsub
                                                                                                                                                                                                                 => ! [A: $i,B: $i] :
                                                                                                                                                                                                                      ( subset @ B @ ( binunion @ A @ B ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) )).

%------------------------------------------------------------------------------