## TPTP Problem File: PUZ119^5.p

View Solutions - Solve Problem

```%------------------------------------------------------------------------------
% File     : PUZ119^5 : TPTP v7.2.0. Bugfixed v5.2.0.
% Domain   : Puzzles
% Problem  : TPS problem from CHECKERBOARD-THMS
% Version  : Especial.
% English  :

% Refs     : [Bro09] Brown (2009), Email to Geoff Sutcliffe
% Source   : [Bro09]
% Names    : tps_0788 [Bro09]

% Status   : CounterSatisfiable
% Rating   : 0.50 v7.2.0, 0.33 v6.4.0, 0.67 v6.3.0, 0.33 v5.2.0
% Syntax   : Number of formulae    :    5 (   0 unit;   3 type;   1 defn)
%            Number of atoms       :   25 (   3 equality;  13 variable)
%            Maximal formula depth :   10 (   5 average)
%            Number of connectives :   17 (   0   ~;   0   |;   3   &;  11   @)
%                                         (   0 <=>;   3  =>;   0  <=;   0 <~>)
%                                         (   0  ~|;   0  ~&)
%            Number of type conns  :    3 (   3   >;   0   *;   0   +;   0  <<)
%            Number of symbols     :    5 (   3   :;   0   =)
%            Number of variables   :    5 (   0 sgn;   4   !;   0   ?;   1   ^)
%                                         (   5   :;   0  !>;   0  ?*)
%                                         (   0  @-;   0  @+)
% SPC      : TH0_CSA_EQU_NAR

% Comments : This problem is from the TPS library. Copyright (c) 2009 The TPS
%            project in the Department of Mathematical Sciences at Carnegie
% Bugfixes : v5.2.0 - Added missing type declarations.
%------------------------------------------------------------------------------
thf(c1_type,type,(
c1: \$i )).

thf(s_type,type,(
s: \$i > \$i )).

thf(cCKB6_NUM_type,type,(
cCKB6_NUM: \$i > \$o )).

thf(cCKB6_NUM_def,definition,
( cCKB6_NUM
= ( ^ [Xx: \$i] :
! [Xp: \$i > \$o] :
( ( ( Xp @ c1 )
& ! [Xw: \$i] :
( ( Xp @ Xw )
=> ( Xp @ ( s @ Xw ) ) ) )
=> ( Xp @ Xx ) ) ) )).

thf(cCKB6_L25000A,conjecture,(
! [Xx: \$i,Xy: \$i] :
( ( ( cCKB6_NUM @ Xx )
& ( cCKB6_NUM @ Xy )
& ( ( s @ ( s @ Xx ) )
= ( s @ ( s @ Xy ) ) ) )
=> ( Xx = Xy ) ) )).

%------------------------------------------------------------------------------
```