## TPTP Problem File: PUZ096^5.p

View Solutions - Solve Problem

```%------------------------------------------------------------------------------
% File     : PUZ096^5 : TPTP v7.2.0. Bugfixed v5.2.0.
% Domain   : Puzzles
% Problem  : TPS problem from CHECKERBOARD-THMS
% Version  : Especial.
% English  :

% Refs     : [Bro09] Brown (2009), Email to Geoff Sutcliffe
% Source   : [Bro09]
% Names    : tps_0581 [Bro09]

% Status   : CounterSatisfiable
% Rating   : 0.75 v7.2.0, 0.67 v5.4.0, 0.33 v5.2.0
% Syntax   : Number of formulae    :   13 (   0 unit;   9 type;   3 defn)
%            Number of atoms       :  114 (  17 equality;  53 variable)
%            Maximal formula depth :   16 (   6 average)
%            Number of connectives :   76 (   0   ~;   3   |;  13   &;  57   @)
%                                         (   0 <=>;   3  =>;   0  <=;   0 <~>)
%                                         (   0  ~|;   0  ~&)
%            Number of type conns  :   20 (  20   >;   0   *;   0   +;   0  <<)
%            Number of symbols     :   11 (   9   :;   0   =)
%            Number of variables   :   16 (   0 sgn;   9   !;   0   ?;   7   ^)
%                                         (  16   :;   0  !>;   0  ?*)
%                                         (   0  @-;   0  @+)
% SPC      : TH0_CSA_EQU_NAR

% Comments : This problem is from the TPS library. Copyright (c) 2009 The TPS
%            project in the Department of Mathematical Sciences at Carnegie
% Bugfixes : v5.2.0 - Added missing type declarations.
%------------------------------------------------------------------------------
thf(c1_type,type,(
c1: \$i )).

thf(c2_type,type,(
c2: \$i )).

thf(c3_type,type,(
c3: \$i )).

thf(c4_type,type,(
c4: \$i )).

thf(g_type,type,(
g: \$i > \$i > \$i )).

thf(s_type,type,(
s: \$i > \$i )).

thf(cCKB6_BLACK_type,type,(
cCKB6_BLACK: \$i > \$i > \$o )).

thf(cCKB6_H_type,type,(
cCKB6_H: \$i > \$i > \$i > \$i > \$o )).

thf(cCKB_INJ_type,type,(
cCKB_INJ: ( \$i > \$i > \$i > \$i > \$o ) > \$o )).

thf(cCKB6_BLACK_def,definition,
( cCKB6_BLACK
= ( ^ [Xu: \$i,Xv: \$i] :
! [Xw: \$i > \$i > \$o] :
( ( ( Xw @ c1 @ c1 )
& ! [Xj: \$i,Xk: \$i] :
( ( Xw @ Xj @ Xk )
=> ( ( Xw @ ( s @ ( s @ Xj ) ) @ Xk )
& ( Xw @ ( s @ Xj ) @ ( s @ Xk ) ) ) ) )
=> ( Xw @ Xu @ Xv ) ) ) )).

thf(cCKB6_H_def,definition,
( cCKB6_H
= ( ^ [Xx: \$i,Xy: \$i,Xu: \$i,Xv: \$i] :
( ( cCKB6_BLACK @ Xx @ Xy )
& ( ( ( ( g @ ( s @ ( s @ Xx ) ) @ ( s @ Xy ) )
= c1 )
& ( Xu
= ( s @ ( s @ ( s @ Xx ) ) ) )
& ( Xv
= ( s @ Xy ) ) )
| ( ( ( g @ ( s @ ( s @ Xx ) ) @ ( s @ Xy ) )
= c2 )
& ( Xu
= ( s @ ( s @ Xx ) ) )
& ( Xv
= ( s @ ( s @ Xy ) ) ) )
| ( ( ( g @ ( s @ ( s @ Xx ) ) @ ( s @ Xy ) )
= c3 )
& ( Xu
= ( s @ Xx ) )
& ( Xv
= ( s @ Xy ) ) )
| ( ( ( g @ ( s @ ( s @ Xx ) ) @ ( s @ Xy ) )
= c4 )
& ( Xu
= ( s @ ( s @ Xx ) ) )
& ( Xv = Xy ) ) ) ) ) )).

thf(cCKB_INJ_def,definition,
( cCKB_INJ
= ( ^ [Xh: \$i > \$i > \$i > \$i > \$o] :
! [Xx1: \$i,Xy1: \$i,Xx2: \$i,Xy2: \$i,Xu: \$i,Xv: \$i] :
( ( ( Xh @ Xx1 @ Xy1 @ Xu @ Xv )
& ( Xh @ Xx2 @ Xy2 @ Xu @ Xv ) )
=> ( ( Xx1 = Xx2 )
& ( Xy1 = Xy2 ) ) ) ) )).

thf(cCKB6_L25000,conjecture,
( cCKB_INJ @ cCKB6_H )).

%------------------------------------------------------------------------------
```