## TPTP Problem File: CSR152^2.p

View Solutions - Solve Problem

```%------------------------------------------------------------------------------
% File     : CSR152^2 : TPTP v7.0.0. Released v4.1.0.
% Domain   : Commonsense Reasoning
% Problem  : Does Chris know that Sue likes Bill?
% Version  : Especial > Reduced > Especial.
% English  : Everybody knows that Chris is equal to Chris. Mary likes Bill.
%            Chris knows that Sue likes whoever Mary likes. Does Chris know
%            that Sue likes Bill?

% Refs     : [PS07]  Pease & Sutcliffe (2007), First Order Reasoning on a L
%          : [BP10]  Benzmueller & Pease (2010), Progress in Automating Hig
%          : [Ben10] Benzmueller (2010), Email to Geoff Sutcliffe
% Source   : [Ben10]
% Names    : paar_8.tq_SUMO_sine [Ben10]

% Status   : Theorem
% Rating   : 0.25 v7.0.0, 0.29 v6.4.0, 0.33 v6.3.0, 0.40 v6.2.0, 0.29 v6.1.0, 0.86 v6.0.0, 0.57 v5.5.0, 0.50 v5.4.0, 0.60 v5.1.0, 0.80 v5.0.0, 0.60 v4.1.0
% Syntax   : Number of formulae    :   90 (   0 unit;  41 type;   0 defn)
%            Number of atoms       :  249 (   4 equality;  75 variable)
%            Maximal formula depth :   10 (   4 average)
%            Number of connectives :  192 (   0   ~;   2   |;   8   &; 166   @)
%                                         (   3 <=>;  13  =>;   0  <=;   0 <~>)
%                                         (   0  ~|;   0  ~&)
%            Number of type conns  :   63 (  63   >;   0   *;   0   +;   0  <<)
%            Number of symbols     :   45 (  41   :;   0   =)
%            Number of variables   :   36 (   0 sgn;  34   !;   2   ?;   0   ^)
%                                         (  36   :;   0  !>;   0  ?*)
%                                         (   0  @-;   0  @+)
% SPC      : TH0_THM_EQU_NAR

% Comments : This is a simple test problem for reasoning in/about SUMO.
%            Initally the problem has been hand generated in KIF syntax in
%            SigmaKEE and then automatically translated by Benzmueller's
%            KIF2TH0 translator into THF syntax.
%          : The translation has been applied in two modes: local and SInE.
%            The local mode only translates the local assumptions and the
%            query. The SInE mode additionally translates the SInE-extract
%            of the loaded knowledge base (usually SUMO).
%          : The examples are selected to illustrate the benefits of
%            higher-order reasoning in ontology reasoning.
%------------------------------------------------------------------------------
%----The extracted Signature
thf(numbers,type,(
num: \$tType )).

thf(agent_THFTYPE_IiioI,type,(
agent_THFTYPE_IiioI: \$i > \$i > \$o )).

thf(attribute_THFTYPE_i,type,(
attribute_THFTYPE_i: \$i )).

thf(domain_THFTYPE_IIiioIiioI,type,(
domain_THFTYPE_IIiioIiioI: ( \$i > \$i > \$o ) > \$i > \$i > \$o )).

thf(domain_THFTYPE_IIiooIiioI,type,(
domain_THFTYPE_IIiooIiioI: ( \$i > \$o > \$o ) > \$i > \$i > \$o )).

thf(domain_THFTYPE_IiiioI,type,(
domain_THFTYPE_IiiioI: \$i > \$i > \$i > \$o )).

thf(equal_THFTYPE_i,type,(
equal_THFTYPE_i: \$i )).

thf(holdsDuring_THFTYPE_IiooI,type,(
holdsDuring_THFTYPE_IiooI: \$i > \$o > \$o )).

thf(instance_THFTYPE_IIIiioIIiioIoIioI,type,(
instance_THFTYPE_IIIiioIIiioIoIioI: ( ( \$i > \$i > \$o ) > ( \$i > \$i > \$o ) > \$o ) > \$i > \$o )).

thf(instance_THFTYPE_IIiioIioI,type,(
instance_THFTYPE_IIiioIioI: ( \$i > \$i > \$o ) > \$i > \$o )).

thf(instance_THFTYPE_IIiooIioI,type,(
instance_THFTYPE_IIiooIioI: ( \$i > \$o > \$o ) > \$i > \$o )).

thf(instance_THFTYPE_IiioI,type,(
instance_THFTYPE_IiioI: \$i > \$i > \$o )).

thf(knows_THFTYPE_IiooI,type,(
knows_THFTYPE_IiooI: \$i > \$o > \$o )).

thf(lAgent_THFTYPE_i,type,(
lAgent_THFTYPE_i: \$i )).

thf(lAsymmetricRelation_THFTYPE_i,type,(
lAsymmetricRelation_THFTYPE_i: \$i )).

thf(lBill_THFTYPE_i,type,(
lBill_THFTYPE_i: \$i )).

thf(lBinaryPredicate_THFTYPE_i,type,(
lBinaryPredicate_THFTYPE_i: \$i )).

thf(lChris_THFTYPE_i,type,(
lChris_THFTYPE_i: \$i )).

thf(lCognitiveAgent_THFTYPE_i,type,(
lCognitiveAgent_THFTYPE_i: \$i )).

thf(lFormula_THFTYPE_i,type,(
lFormula_THFTYPE_i: \$i )).

thf(lHuman_THFTYPE_i,type,(
lHuman_THFTYPE_i: \$i )).

thf(lIntentionalProcess_THFTYPE_i,type,(
lIntentionalProcess_THFTYPE_i: \$i )).

thf(lMary_THFTYPE_i,type,(
lMary_THFTYPE_i: \$i )).

thf(lObject_THFTYPE_i,type,(
lObject_THFTYPE_i: \$i )).

thf(lOrganism_THFTYPE_i,type,(
lOrganism_THFTYPE_i: \$i )).

thf(lOrganization_THFTYPE_i,type,(
lOrganization_THFTYPE_i: \$i )).

thf(lProcess_THFTYPE_i,type,(
lProcess_THFTYPE_i: \$i )).

thf(lSelfConnectedObject_THFTYPE_i,type,(
lSelfConnectedObject_THFTYPE_i: \$i )).

thf(lSue_THFTYPE_i,type,(
lSue_THFTYPE_i: \$i )).

thf(likes_THFTYPE_IiioI,type,(
likes_THFTYPE_IiioI: \$i > \$i > \$o )).

thf(member_THFTYPE_IiioI,type,(
member_THFTYPE_IiioI: \$i > \$i > \$o )).

thf(n1_THFTYPE_i,type,(
n1_THFTYPE_i: \$i )).

thf(n2_THFTYPE_i,type,(
n2_THFTYPE_i: \$i )).

thf(part_THFTYPE_i,type,(
part_THFTYPE_i: \$i )).

thf(patient_THFTYPE_i,type,(
patient_THFTYPE_i: \$i )).

thf(range_THFTYPE_IiioI,type,(
range_THFTYPE_IiioI: \$i > \$i > \$o )).

thf(relatedInternalConcept_THFTYPE_IIiioIIiioIoI,type,(
relatedInternalConcept_THFTYPE_IIiioIIiioIoI: ( \$i > \$i > \$o ) > ( \$i > \$i > \$o ) > \$o )).

thf(subclass_THFTYPE_IiioI,type,(
subclass_THFTYPE_IiioI: \$i > \$i > \$o )).

thf(subrelation_THFTYPE_IIiioIioI,type,(
subrelation_THFTYPE_IIiioIioI: ( \$i > \$i > \$o ) > \$i > \$o )).

thf(subrelation_THFTYPE_IIioIIioIoI,type,(
subrelation_THFTYPE_IIioIIioIoI: ( \$i > \$o ) > ( \$i > \$o ) > \$o )).

thf(subrelation_THFTYPE_IiioI,type,(
subrelation_THFTYPE_IiioI: \$i > \$i > \$o )).

%----The translated axioms
%KIF documentation:(documentation instance EnglishLanguage "An object is an &%instance of a &%SetOrClass if it is included in that &%SetOrClass. An individual may be an instance of many classes, some of which may be subclasses of others. Thus, there is no assumption in the meaning of &%instance about specificity or uniqueness.")
%KIF documentation:(documentation range EnglishLanguage "Gives the range of a function. In other words, (&%range ?FUNCTION ?CLASS) means that all of the values assigned by ?FUNCTION are &%instances of ?CLASS.")
%KIF documentation:(documentation EnglishLanguage EnglishLanguage "A Germanic language that incorporates many roots from the Romance languages. It is the official language of the &%UnitedStates, the &%UnitedKingdom, and many other countries.")
%KIF documentation:(documentation patient EnglishLanguage "(&%patient ?PROCESS ?ENTITY) means that ?ENTITY is a participant in ?PROCESS that may be moved, said, experienced, etc. For example, the direct objects in the sentences 'The cat swallowed the canary' and 'Billy likes the beer' would be examples of &%patients. Note that the &%patient of a &%Process may or may not undergo structural change as a result of the &%Process. The &%CaseRole of &%patient is used when one wants to specify as broadly as possible the object of a &%Process.")
%KIF documentation:(documentation Process EnglishLanguage "The class of things that happen and have temporal parts or stages. Examples include extended events like a football match or a race, actions like &%Pursuing and &%Reading, and biological processes. The formal definition is: anything that occurs in time but is not an &%Object. Note that a &%Process may have participants 'inside' it which are &%Objects, such as the players in a football match. In a 4D ontology, a &%Process is something whose spatiotemporal extent is thought of as dividing into temporal stages roughly perpendicular to the time-axis.")
thf(ax,axiom,(
! [X: \$i,Y: \$i,Z: \$i] :
( ( ( subclass_THFTYPE_IiioI @ X @ Y )
& ( instance_THFTYPE_IiioI @ Z @ X ) )
=> ( instance_THFTYPE_IiioI @ Z @ Y ) ) )).

%KIF documentation:(documentation Agent EnglishLanguage "Something or someone that can act on its own and produce changes in the world.")
%KIF documentation:(documentation knows EnglishLanguage "The epistemic predicate of knowing. (&%knows ?AGENT ?FORMULA) means that ?AGENT knows the proposition expressed by ?FORMULA. Note that &%knows entails conscious awareness, so this &%Predicate cannot be used to express tacit or subconscious or unconscious knowledge.")
thf(ax_001,axiom,
( subclass_THFTYPE_IiioI @ lSelfConnectedObject_THFTYPE_i @ lObject_THFTYPE_i )).

%KIF documentation:(documentation member EnglishLanguage "A specialized common sense notion of part for uniform parts of &%Collections. For example, each sheep in a flock of sheep would have the relationship of member to the flock.")
thf(ax_002,axiom,(
! [CLASS1: \$i,CLASS2: \$i] :
( ( CLASS1 = CLASS2 )
=> ! [THING: \$i] :
( ( instance_THFTYPE_IiioI @ THING @ CLASS1 )
<=> ( instance_THFTYPE_IiioI @ THING @ CLASS2 ) ) ) )).

%KIF documentation:(documentation equal EnglishLanguage "(equal ?ENTITY1 ?ENTITY2) is true just in case ?ENTITY1 is identical with ?ENTITY2.")
%KIF documentation:(documentation AsymmetricRelation EnglishLanguage "A &%BinaryRelation is asymmetric if and only if it is both an &%AntisymmetricRelation and an &%IrreflexiveRelation.")
%KIF documentation:(documentation SelfConnectedObject EnglishLanguage "A &%SelfConnectedObject is any &%Object that does not consist of two or more disconnected parts.")
thf(ax_003,axiom,
( subclass_THFTYPE_IiioI @ lHuman_THFTYPE_i @ lCognitiveAgent_THFTYPE_i )).

thf(ax_004,axiom,(
! [REL2: \$i > \$o,ROW: \$i,REL1: \$i > \$o] :
( ( ( subrelation_THFTYPE_IIioIIioIoI @ REL1 @ REL2 )
& ( REL1 @ ROW ) )
=> ( REL2 @ ROW ) ) )).

%KIF documentation:(documentation subrelation EnglishLanguage "(&%subrelation ?REL1 ?REL2) means that every tuple of ?REL1 is also a tuple of ?REL2. In other words, if the &%Relation ?REL1 holds for some arguments arg_1, arg_2, ... arg_n, then the &%Relation ?REL2 holds for the same arguments. A consequence of this is that a &%Relation and its subrelations must have the same &%valence.")
thf(ax_005,axiom,(
! [TIME: \$i,SITUATION: \$o] :
( ( holdsDuring_THFTYPE_IiooI @ TIME @ ( ~ @ SITUATION ) )
=> ( ~ @ ( holdsDuring_THFTYPE_IiooI @ TIME @ SITUATION ) ) ) )).

%KIF documentation:(documentation holdsDuring EnglishLanguage "(&%holdsDuring ?TIME ?FORMULA) means that the proposition denoted by ?FORMULA is true in the time frame ?TIME. Note that this implies that ?FORMULA is true at every &%TimePoint which is a &%temporalPart of ?TIME.")
thf(ax_006,axiom,
( likes_THFTYPE_IiioI @ lMary_THFTYPE_i @ lBill_THFTYPE_i )).

thf(ax_007,axiom,
( likes_THFTYPE_IiioI @ lMary_THFTYPE_i @ lBill_THFTYPE_i )).

thf(ax_008,axiom,(
! [THING2: \$i,THING1: \$i] :
( ( THING1 = THING2 )
=> ! [CLASS: \$i] :
( ( instance_THFTYPE_IiioI @ THING1 @ CLASS )
<=> ( instance_THFTYPE_IiioI @ THING2 @ CLASS ) ) ) )).

thf(ax_009,axiom,(
! [ORG: \$i,AGENT: \$i] :
( ( ( instance_THFTYPE_IiioI @ ORG @ lOrganization_THFTYPE_i )
& ( member_THFTYPE_IiioI @ AGENT @ ORG ) )
=> ( instance_THFTYPE_IiioI @ AGENT @ lAgent_THFTYPE_i ) ) )).

thf(ax_010,axiom,(
! [CLASS1: \$i,REL: \$i,CLASS2: \$i] :
( ( ( range_THFTYPE_IiioI @ REL @ CLASS1 )
& ( range_THFTYPE_IiioI @ REL @ CLASS2 ) )
=> ( ( subclass_THFTYPE_IiioI @ CLASS1 @ CLASS2 )
| ( subclass_THFTYPE_IiioI @ CLASS2 @ CLASS1 ) ) ) )).

%KIF documentation:(documentation domain EnglishLanguage "Provides a computationally and heuristically convenient mechanism for declaring the argument types of a given relation. The formula (&%domain ?REL ?INT ?CLASS) means that the ?INT'th element of each tuple in the relation ?REL must be an instance of ?CLASS. Specifying argument types is very helpful in maintaining ontologies. Representation systems can use these specifications to classify terms and check integrity constraints. If the restriction on the argument type of a &%Relation is not captured by a &%SetOrClass already defined in the ontology, one can specify a &%SetOrClass compositionally with the functions &%UnionFn, &%IntersectionFn, etc.")
thf(ax_011,axiom,
( subclass_THFTYPE_IiioI @ lOrganism_THFTYPE_i @ lAgent_THFTYPE_i )).

thf(ax_012,axiom,(
! [AGENT: \$i] :
( ( instance_THFTYPE_IiioI @ AGENT @ lAgent_THFTYPE_i )
<=> ? [PROC: \$i] :
( agent_THFTYPE_IiioI @ PROC @ AGENT ) ) )).

%KIF documentation:(documentation attribute EnglishLanguage "(&%attribute ?OBJECT ?PROPERTY) means that ?PROPERTY is a &%Attribute of ?OBJECT. For example, (&%attribute &%MyLittleRedWagon &%Red).")
%KIF documentation:(documentation Organism EnglishLanguage "Generally, a living individual, including all &%Plants and &%Animals.")
%KIF documentation:(documentation relatedInternalConcept EnglishLanguage "Means that the two arguments are related concepts within the SUMO, i.e. there is a significant similarity of meaning between them. To indicate a meaning relation between a SUMO concept and a concept from another source, use the Predicate &%relatedExternalConcept.")
%KIF documentation:(documentation BinaryPredicate EnglishLanguage "A &%Predicate relating two items - its valence is two.")
thf(ax_013,axiom,
( subclass_THFTYPE_IiioI @ lOrganization_THFTYPE_i @ lCognitiveAgent_THFTYPE_i )).

%KIF documentation:(documentation Formula EnglishLanguage "A syntactically well-formed formula in the SUO-KIF knowledge representation language.")
thf(ax_014,axiom,(
! [REL2: \$i,CLASS1: \$i,REL1: \$i] :
( ( ( subrelation_THFTYPE_IiioI @ REL1 @ REL2 )
& ( range_THFTYPE_IiioI @ REL2 @ CLASS1 ) )
=> ( range_THFTYPE_IiioI @ REL1 @ CLASS1 ) ) )).

%KIF documentation:(documentation subclass EnglishLanguage "(&%subclass ?CLASS1 ?CLASS2) means that ?CLASS1 is a subclass of ?CLASS2, i.e. every instance of ?CLASS1 is also an instance of ?CLASS2. A class may have multiple superclasses and subclasses.")
thf(ax_015,axiom,
( knows_THFTYPE_IiooI @ lChris_THFTYPE_i @ ( lChris_THFTYPE_i = lChris_THFTYPE_i ) )).

thf(ax_016,axiom,
( knows_THFTYPE_IiooI @ lChris_THFTYPE_i @ ( lChris_THFTYPE_i = lChris_THFTYPE_i ) )).

%KIF documentation:(documentation part EnglishLanguage "The basic mereological relation. All other mereological relations are defined in terms of this one. (&%part ?PART ?WHOLE) simply means that the &%Object ?PART is part of the &%Object ?WHOLE. Note that, since &%part is a &%ReflexiveRelation, every &%Object is a part of itself.")
%KIF documentation:(documentation IntentionalProcess EnglishLanguage "A &%Process that has a specific purpose for the &%CognitiveAgent who performs it.")
thf(ax_017,axiom,
( knows_THFTYPE_IiooI @ lChris_THFTYPE_i
@ ! [X: \$i] :
( ( likes_THFTYPE_IiioI @ lMary_THFTYPE_i @ X )
=> ( likes_THFTYPE_IiioI @ lSue_THFTYPE_i @ X ) ) )).

%KIF documentation:(documentation Human EnglishLanguage "Modern man, the only remaining species of the Homo genus.")
thf(ax_018,axiom,
( knows_THFTYPE_IiooI @ lChris_THFTYPE_i
@ ! [X: \$i] :
( ( likes_THFTYPE_IiioI @ lMary_THFTYPE_i @ X )
=> ( likes_THFTYPE_IiioI @ lSue_THFTYPE_i @ X ) ) )).

%KIF documentation:(documentation documentation EnglishLanguage "A relation between objects in the domain of discourse and strings of natural language text stated in a particular &%HumanLanguage. The domain of &%documentation is not constants (names), but the objects themselves. This means that one does not quote the names when associating them with their documentation.")
%KIF documentation:(documentation Organization EnglishLanguage "An &%Organization is a corporate or similar institution. The &%members of an &%Organization typically have a common purpose or function. Note that this class also covers divisions, departments, etc. of organizations. For example, both the Shell Corporation and the accounting department at Shell would both be instances of &%Organization. Note too that the existence of an &%Organization is dependent on the existence of at least one &%member (since &%Organization is a subclass of &%Collection). Accordingly, in cases of purely legal organizations, a fictitious &%member should be assumed.")
%KIF documentation:(documentation CognitiveAgent EnglishLanguage "A &%SentientAgent with responsibilities and the ability to reason, deliberate, make plans, etc. This is essentially the legal/ ethical notion of a person. Note that, although &%Human is a subclass of &%CognitiveAgent, there may be instances of &%CognitiveAgent which are not also instances of &%Human. For example, chimpanzees, gorillas, dolphins, whales, and some extraterrestrials (if they exist) may be &%CognitiveAgents.")
thf(ax_019,axiom,
( subclass_THFTYPE_IiioI @ lIntentionalProcess_THFTYPE_i @ lProcess_THFTYPE_i )).

%KIF documentation:(documentation Object EnglishLanguage "Corresponds roughly to the class of ordinary objects. Examples include normal physical objects, geographical regions, and locations of &%Processes, the complement of &%Objects in the &%Physical class. In a 4D ontology, an &%Object is something whose spatiotemporal extent is thought of as dividing into spatial parts roughly parallel to the time-axis.")
thf(ax_020,axiom,(
! [NUMBER: \$i,CLASS1: \$i,REL: \$i,CLASS2: \$i] :
( ( ( domain_THFTYPE_IiiioI @ REL @ NUMBER @ CLASS1 )
& ( domain_THFTYPE_IiiioI @ REL @ NUMBER @ CLASS2 ) )
=> ( ( subclass_THFTYPE_IiioI @ CLASS1 @ CLASS2 )
| ( subclass_THFTYPE_IiioI @ CLASS2 @ CLASS1 ) ) ) )).

thf(ax_021,axiom,(
! [PROC: \$i] :
( ( instance_THFTYPE_IiioI @ PROC @ lIntentionalProcess_THFTYPE_i )
=> ? [AGENT: \$i] :
( ( instance_THFTYPE_IiioI @ AGENT @ lCognitiveAgent_THFTYPE_i )
& ( agent_THFTYPE_IiioI @ PROC @ AGENT ) ) ) )).

thf(ax_022,axiom,(
! [NUMBER: \$i,PRED1: \$i,CLASS1: \$i,PRED2: \$i] :
( ( ( subrelation_THFTYPE_IiioI @ PRED1 @ PRED2 )
& ( domain_THFTYPE_IiiioI @ PRED2 @ NUMBER @ CLASS1 ) )
=> ( domain_THFTYPE_IiiioI @ PRED1 @ NUMBER @ CLASS1 ) ) )).

thf(ax_023,axiom,
( subclass_THFTYPE_IiioI @ lAgent_THFTYPE_i @ lObject_THFTYPE_i )).

%KIF documentation:(documentation agent EnglishLanguage "(&%agent ?PROCESS ?AGENT) means that ?AGENT is an active determinant, either animate or inanimate, of the &%Process ?PROCESS, with or without voluntary intention. For example, Eve is an &%agent in the following proposition: Eve bit an apple.")
thf(ax_024,axiom,
( domain_THFTYPE_IiiioI @ patient_THFTYPE_i @ n1_THFTYPE_i @ lProcess_THFTYPE_i )).

thf(ax_025,axiom,
( instance_THFTYPE_IIiioIioI @ range_THFTYPE_IiioI @ lAsymmetricRelation_THFTYPE_i )).

thf(ax_026,axiom,
( domain_THFTYPE_IIiioIiioI @ member_THFTYPE_IiioI @ n1_THFTYPE_i @ lSelfConnectedObject_THFTYPE_i )).

thf(ax_027,axiom,
( instance_THFTYPE_IIiioIioI @ range_THFTYPE_IiioI @ lBinaryPredicate_THFTYPE_i )).

thf(ax_028,axiom,
( domain_THFTYPE_IIiooIiioI @ knows_THFTYPE_IiooI @ n2_THFTYPE_i @ lFormula_THFTYPE_i )).

thf(ax_029,axiom,
( instance_THFTYPE_IIiioIioI @ member_THFTYPE_IiioI @ lAsymmetricRelation_THFTYPE_i )).

thf(ax_030,axiom,
( domain_THFTYPE_IIiioIiioI @ agent_THFTYPE_IiioI @ n2_THFTYPE_i @ lAgent_THFTYPE_i )).

thf(ax_031,axiom,
( instance_THFTYPE_IIiooIioI @ knows_THFTYPE_IiooI @ lBinaryPredicate_THFTYPE_i )).

thf(ax_032,axiom,
( instance_THFTYPE_IIiooIioI @ holdsDuring_THFTYPE_IiooI @ lAsymmetricRelation_THFTYPE_i )).

thf(ax_033,axiom,
( relatedInternalConcept_THFTYPE_IIiioIIiioIoI @ member_THFTYPE_IiioI @ instance_THFTYPE_IiioI )).

thf(ax_034,axiom,
( domain_THFTYPE_IIiooIiioI @ holdsDuring_THFTYPE_IiooI @ n2_THFTYPE_i @ lFormula_THFTYPE_i )).

thf(ax_035,axiom,
( instance_THFTYPE_IIiioIioI @ subrelation_THFTYPE_IiioI @ lBinaryPredicate_THFTYPE_i )).

thf(ax_036,axiom,
( domain_THFTYPE_IIiooIiioI @ knows_THFTYPE_IiooI @ n1_THFTYPE_i @ lCognitiveAgent_THFTYPE_i )).

thf(ax_037,axiom,
( domain_THFTYPE_IIiioIiioI @ agent_THFTYPE_IiioI @ n1_THFTYPE_i @ lProcess_THFTYPE_i )).

thf(ax_038,axiom,
( instance_THFTYPE_IiioI @ equal_THFTYPE_i @ lBinaryPredicate_THFTYPE_i )).

thf(ax_039,axiom,
( instance_THFTYPE_IIIiioIIiioIoIioI @ relatedInternalConcept_THFTYPE_IIiioIIiioIoI @ lBinaryPredicate_THFTYPE_i )).

thf(ax_040,axiom,
( subrelation_THFTYPE_IIiioIioI @ member_THFTYPE_IiioI @ part_THFTYPE_i )).

thf(ax_041,axiom,
( domain_THFTYPE_IiiioI @ part_THFTYPE_i @ n1_THFTYPE_i @ lObject_THFTYPE_i )).

thf(ax_042,axiom,
( instance_THFTYPE_IIiioIioI @ subclass_THFTYPE_IiioI @ lBinaryPredicate_THFTYPE_i )).

thf(ax_043,axiom,
( domain_THFTYPE_IiiioI @ attribute_THFTYPE_i @ n1_THFTYPE_i @ lObject_THFTYPE_i )).

thf(ax_044,axiom,
( instance_THFTYPE_IiioI @ attribute_THFTYPE_i @ lAsymmetricRelation_THFTYPE_i )).

thf(ax_045,axiom,
( instance_THFTYPE_IIiioIioI @ instance_THFTYPE_IiioI @ lBinaryPredicate_THFTYPE_i )).

thf(ax_046,axiom,
( instance_THFTYPE_IIiooIioI @ holdsDuring_THFTYPE_IiooI @ lBinaryPredicate_THFTYPE_i )).

thf(ax_047,axiom,
( domain_THFTYPE_IiiioI @ part_THFTYPE_i @ n2_THFTYPE_i @ lObject_THFTYPE_i )).

%----The translated conjectures
thf(con,conjecture,
( knows_THFTYPE_IiooI @ lChris_THFTYPE_i @ ( likes_THFTYPE_IiioI @ lSue_THFTYPE_i @ lBill_THFTYPE_i ) )).

%------------------------------------------------------------------------------
```