# Entrants' Sample Solutions

## Crossbow 0.1

Charles University in Prague, Czech Republic

### Sample solution for NLP042+1

% domain size: 4
fof(interp, fi_domain, ![X] : (X = 0 | X = 1 | X = 2 | X = 3)).
fof(interp, fi_predicates, ~abstraction(0, 0) & abstraction(0, 1) &
~abstraction(0, 2) &
~abstraction(0, 3) &
~abstraction(1, 0) &
abstraction(1, 1) &
~abstraction(1, 2) &
~abstraction(1, 3) &
~abstraction(2, 0) &
abstraction(2, 1) &
~abstraction(2, 2) &
~abstraction(2, 3) &
~abstraction(3, 0) &
abstraction(3, 1) &
~abstraction(3, 2) &
~abstraction(3, 3)).
fof(interp, fi_predicates, ~act(0, 0) & ~act(0, 1) & ~act(0, 2) & act(0, 3) &
~act(1, 0) &
~act(1, 1) &
~act(1, 2) &
act(1, 3) &
~act(2, 0) &
~act(2, 1) &
~act(2, 2) &
act(2, 3) &
~act(3, 0) &
~act(3, 1) &
~act(3, 2) &
act(3, 3)).
fof(interp, fi_predicates, actual_world(0) & actual_world(1) & actual_world(2) &
actual_world(3)).
fof(interp, fi_predicates, ~agent(0, 0, 0) & ~agent(0, 0, 1) & ~agent(0, 0, 2) &
~agent(0, 0, 3) &
~agent(0, 1, 0) &
~agent(0, 1, 1) &
~agent(0, 1, 2) &
~agent(0, 1, 3) &
~agent(0, 2, 0) &
~agent(0, 2, 1) &
~agent(0, 2, 2) &
~agent(0, 2, 3) &
agent(0, 3, 0) &
~agent(0, 3, 1) &
~agent(0, 3, 2) &
~agent(0, 3, 3) &
~agent(1, 0, 0) &
~agent(1, 0, 1) &
~agent(1, 0, 2) &
~agent(1, 0, 3) &
~agent(1, 1, 0) &
~agent(1, 1, 1) &
~agent(1, 1, 2) &
~agent(1, 1, 3) &
~agent(1, 2, 0) &
~agent(1, 2, 1) &
~agent(1, 2, 2) &
~agent(1, 2, 3) &
agent(1, 3, 0) &
~agent(1, 3, 1) &
~agent(1, 3, 2) &
~agent(1, 3, 3) &
~agent(2, 0, 0) &
~agent(2, 0, 1) &
~agent(2, 0, 2) &
~agent(2, 0, 3) &
~agent(2, 1, 0) &
~agent(2, 1, 1) &
~agent(2, 1, 2) &
~agent(2, 1, 3) &
~agent(2, 2, 0) &
~agent(2, 2, 1) &
~agent(2, 2, 2) &
~agent(2, 2, 3) &
agent(2, 3, 0) &
~agent(2, 3, 1) &
~agent(2, 3, 2) &
~agent(2, 3, 3) &
~agent(3, 0, 0) &
~agent(3, 0, 1) &
~agent(3, 0, 2) &
~agent(3, 0, 3) &
~agent(3, 1, 0) &
~agent(3, 1, 1) &
~agent(3, 1, 2) &
~agent(3, 1, 3) &
~agent(3, 2, 0) &
~agent(3, 2, 1) &
~agent(3, 2, 2) &
~agent(3, 2, 3) &
agent(3, 3, 0) &
~agent(3, 3, 1) &
~agent(3, 3, 2) &
~agent(3, 3, 3)).
fof(interp, fi_predicates, animate(0, 0) & ~animate(0, 1) & ~animate(0, 2) &
~animate(0, 3) &
animate(1, 0) &
~animate(1, 1) &
~animate(1, 2) &
~animate(1, 3) &
animate(2, 0) &
~animate(2, 1) &
~animate(2, 2) &
~animate(2, 3) &
animate(3, 0) &
~animate(3, 1) &
~animate(3, 2) &
~animate(3, 3)).
fof(interp, fi_predicates, ~beverage(0, 0) & ~beverage(0, 1) & beverage(0, 2) &
~beverage(0, 3) &
~beverage(1, 0) &
~beverage(1, 1) &
beverage(1, 2) &
~beverage(1, 3) &
~beverage(2, 0) &
~beverage(2, 1) &
beverage(2, 2) &
~beverage(2, 3) &
~beverage(3, 0) &
~beverage(3, 1) &
beverage(3, 2) &
~beverage(3, 3)).
fof(interp, fi_predicates, entity(0, 0) & ~entity(0, 1) & entity(0, 2) &
~entity(0, 3) &
entity(1, 0) &
~entity(1, 1) &
entity(1, 2) &
~entity(1, 3) &
entity(2, 0) &
~entity(2, 1) &
entity(2, 2) &
~entity(2, 3) &
entity(3, 0) &
~entity(3, 1) &
entity(3, 2) &
~entity(3, 3)).
fof(interp, fi_functors, esk1_0 = 0).
fof(interp, fi_functors, esk2_0 = 0).
fof(interp, fi_functors, esk3_0 = 1).
fof(interp, fi_functors, esk4_0 = 2).
fof(interp, fi_functors, esk5_0 = 3).
fof(interp, fi_predicates, ~event(0, 0) & ~event(0, 1) & ~event(0, 2) &
event(0, 3) &
~event(1, 0) &
~event(1, 1) &
~event(1, 2) &
event(1, 3) &
~event(2, 0) &
~event(2, 1) &
~event(2, 2) &
event(2, 3) &
~event(3, 0) &
~event(3, 1) &
~event(3, 2) &
event(3, 3)).
fof(interp, fi_predicates, ~eventuality(0, 0) & ~eventuality(0, 1) &
~eventuality(0, 2) &
eventuality(0, 3) &
~eventuality(1, 0) &
~eventuality(1, 1) &
~eventuality(1, 2) &
eventuality(1, 3) &
~eventuality(2, 0) &
~eventuality(2, 1) &
~eventuality(2, 2) &
eventuality(2, 3) &
~eventuality(3, 0) &
~eventuality(3, 1) &
~eventuality(3, 2) &
eventuality(3, 3)).
fof(interp, fi_predicates, existent(0, 0) & ~existent(0, 1) & existent(0, 2) &
~existent(0, 3) &
existent(1, 0) &
~existent(1, 1) &
existent(1, 2) &
~existent(1, 3) &
existent(2, 0) &
~existent(2, 1) &
existent(2, 2) &
~existent(2, 3) &
existent(3, 0) &
~existent(3, 1) &
existent(3, 2) &
~existent(3, 3)).
fof(interp, fi_predicates, female(0, 0) & ~female(0, 1) & ~female(0, 2) &
~female(0, 3) &
female(1, 0) &
~female(1, 1) &
~female(1, 2) &
~female(1, 3) &
female(2, 0) &
~female(2, 1) &
~female(2, 2) &
~female(2, 3) &
female(3, 0) &
~female(3, 1) &
~female(3, 2) &
~female(3, 3)).
fof(interp, fi_predicates, ~food(0, 0) & ~food(0, 1) & food(0, 2) & ~food(0, 3) &
~food(1, 0) &
~food(1, 1) &
food(1, 2) &
~food(1, 3) &
~food(2, 0) &
~food(2, 1) &
food(2, 2) &
~food(2, 3) &
~food(3, 0) &
~food(3, 1) &
food(3, 2) &
~food(3, 3)).
fof(interp, fi_predicates, ~forename(0, 0) & forename(0, 1) & ~forename(0, 2) &
~forename(0, 3) &
~forename(1, 0) &
forename(1, 1) &
~forename(1, 2) &
~forename(1, 3) &
~forename(2, 0) &
forename(2, 1) &
~forename(2, 2) &
~forename(2, 3) &
~forename(3, 0) &
forename(3, 1) &
~forename(3, 2) &
~forename(3, 3)).
fof(interp, fi_predicates, ~general(0, 0) & general(0, 1) & ~general(0, 2) &
~general(0, 3) &
~general(1, 0) &
general(1, 1) &
~general(1, 2) &
~general(1, 3) &
~general(2, 0) &
general(2, 1) &
~general(2, 2) &
~general(2, 3) &
~general(3, 0) &
general(3, 1) &
~general(3, 2) &
~general(3, 3)).
fof(interp, fi_predicates, human(0, 0) & ~human(0, 1) & ~human(0, 2) &
~human(0, 3) &
human(1, 0) &
~human(1, 1) &
~human(1, 2) &
~human(1, 3) &
human(2, 0) &
~human(2, 1) &
~human(2, 2) &
~human(2, 3) &
human(3, 0) &
~human(3, 1) &
~human(3, 2) &
~human(3, 3)).
fof(interp, fi_predicates, human_person(0, 0) & ~human_person(0, 1) &
~human_person(0, 2) &
~human_person(0, 3) &
human_person(1, 0) &
~human_person(1, 1) &
~human_person(1, 2) &
~human_person(1, 3) &
human_person(2, 0) &
~human_person(2, 1) &
~human_person(2, 2) &
~human_person(2, 3) &
human_person(3, 0) &
~human_person(3, 1) &
~human_person(3, 2) &
~human_person(3, 3)).
fof(interp, fi_predicates, impartial(0, 0) & ~impartial(0, 1) & impartial(0, 2) &
~impartial(0, 3) &
impartial(1, 0) &
~impartial(1, 1) &
impartial(1, 2) &
~impartial(1, 3) &
impartial(2, 0) &
~impartial(2, 1) &
impartial(2, 2) &
~impartial(2, 3) &
impartial(3, 0) &
~impartial(3, 1) &
impartial(3, 2) &
~impartial(3, 3)).
fof(interp, fi_predicates, living(0, 0) & ~living(0, 1) & ~living(0, 2) &
~living(0, 3) &
living(1, 0) &
~living(1, 1) &
~living(1, 2) &
~living(1, 3) &
living(2, 0) &
~living(2, 1) &
~living(2, 2) &
~living(2, 3) &
living(3, 0) &
~living(3, 1) &
~living(3, 2) &
~living(3, 3)).
fof(interp, fi_predicates, ~mia_forename(0, 0) & mia_forename(0, 1) &
~mia_forename(0, 2) &
~mia_forename(0, 3) &
~mia_forename(1, 0) &
mia_forename(1, 1) &
~mia_forename(1, 2) &
~mia_forename(1, 3) &
~mia_forename(2, 0) &
mia_forename(2, 1) &
~mia_forename(2, 2) &
~mia_forename(2, 3) &
~mia_forename(3, 0) &
mia_forename(3, 1) &
~mia_forename(3, 2) &
~mia_forename(3, 3)).
fof(interp, fi_predicates, ~nonexistent(0, 0) & ~nonexistent(0, 1) &
~nonexistent(0, 2) &
nonexistent(0, 3) &
~nonexistent(1, 0) &
~nonexistent(1, 1) &
~nonexistent(1, 2) &
nonexistent(1, 3) &
~nonexistent(2, 0) &
~nonexistent(2, 1) &
~nonexistent(2, 2) &
nonexistent(2, 3) &
~nonexistent(3, 0) &
~nonexistent(3, 1) &
~nonexistent(3, 2) &
nonexistent(3, 3)).
fof(interp, fi_predicates, ~nonhuman(0, 0) & nonhuman(0, 1) & ~nonhuman(0, 2) &
~nonhuman(0, 3) &
~nonhuman(1, 0) &
nonhuman(1, 1) &
~nonhuman(1, 2) &
~nonhuman(1, 3) &
~nonhuman(2, 0) &
nonhuman(2, 1) &
~nonhuman(2, 2) &
~nonhuman(2, 3) &
~nonhuman(3, 0) &
nonhuman(3, 1) &
~nonhuman(3, 2) &
~nonhuman(3, 3)).
fof(interp, fi_predicates, ~nonliving(0, 0) & ~nonliving(0, 1) & nonliving(0, 2) &
~nonliving(0, 3) &
~nonliving(1, 0) &
~nonliving(1, 1) &
nonliving(1, 2) &
~nonliving(1, 3) &
~nonliving(2, 0) &
~nonliving(2, 1) &
nonliving(2, 2) &
~nonliving(2, 3) &
~nonliving(3, 0) &
~nonliving(3, 1) &
nonliving(3, 2) &
~nonliving(3, 3)).
fof(interp, fi_predicates, ~nonreflexive(0, 0) & ~nonreflexive(0, 1) &
~nonreflexive(0, 2) &
nonreflexive(0, 3) &
~nonreflexive(1, 0) &
~nonreflexive(1, 1) &
~nonreflexive(1, 2) &
nonreflexive(1, 3) &
~nonreflexive(2, 0) &
~nonreflexive(2, 1) &
~nonreflexive(2, 2) &
nonreflexive(2, 3) &
~nonreflexive(3, 0) &
~nonreflexive(3, 1) &
~nonreflexive(3, 2) &
nonreflexive(3, 3)).
fof(interp, fi_predicates, ~object(0, 0) & ~object(0, 1) & object(0, 2) &
~object(0, 3) &
~object(1, 0) &
~object(1, 1) &
object(1, 2) &
~object(1, 3) &
~object(2, 0) &
~object(2, 1) &
object(2, 2) &
~object(2, 3) &
~object(3, 0) &
~object(3, 1) &
object(3, 2) &
~object(3, 3)).
fof(interp, fi_predicates, ~of(0, 0, 0) & ~of(0, 0, 1) & ~of(0, 0, 2) &
~of(0, 0, 3) &
of(0, 1, 0) &
~of(0, 1, 1) &
~of(0, 1, 2) &
~of(0, 1, 3) &
~of(0, 2, 0) &
~of(0, 2, 1) &
~of(0, 2, 2) &
~of(0, 2, 3) &
~of(0, 3, 0) &
~of(0, 3, 1) &
~of(0, 3, 2) &
~of(0, 3, 3) &
~of(1, 0, 0) &
~of(1, 0, 1) &
~of(1, 0, 2) &
~of(1, 0, 3) &
of(1, 1, 0) &
~of(1, 1, 1) &
~of(1, 1, 2) &
~of(1, 1, 3) &
~of(1, 2, 0) &
~of(1, 2, 1) &
~of(1, 2, 2) &
~of(1, 2, 3) &
~of(1, 3, 0) &
~of(1, 3, 1) &
~of(1, 3, 2) &
~of(1, 3, 3) &
~of(2, 0, 0) &
~of(2, 0, 1) &
~of(2, 0, 2) &
~of(2, 0, 3) &
of(2, 1, 0) &
~of(2, 1, 1) &
~of(2, 1, 2) &
~of(2, 1, 3) &
~of(2, 2, 0) &
~of(2, 2, 1) &
~of(2, 2, 2) &
~of(2, 2, 3) &
~of(2, 3, 0) &
~of(2, 3, 1) &
~of(2, 3, 2) &
~of(2, 3, 3) &
~of(3, 0, 0) &
~of(3, 0, 1) &
~of(3, 0, 2) &
~of(3, 0, 3) &
of(3, 1, 0) &
~of(3, 1, 1) &
~of(3, 1, 2) &
~of(3, 1, 3) &
~of(3, 2, 0) &
~of(3, 2, 1) &
~of(3, 2, 2) &
~of(3, 2, 3) &
~of(3, 3, 0) &
~of(3, 3, 1) &
~of(3, 3, 2) &
~of(3, 3, 3)).
fof(interp, fi_predicates, ~order(0, 0) & ~order(0, 1) & ~order(0, 2) &
order(0, 3) &
~order(1, 0) &
~order(1, 1) &
~order(1, 2) &
order(1, 3) &
~order(2, 0) &
~order(2, 1) &
~order(2, 2) &
order(2, 3) &
~order(3, 0) &
~order(3, 1) &
~order(3, 2) &
order(3, 3)).
fof(interp, fi_predicates, organism(0, 0) & ~organism(0, 1) & ~organism(0, 2) &
~organism(0, 3) &
organism(1, 0) &
~organism(1, 1) &
~organism(1, 2) &
~organism(1, 3) &
organism(2, 0) &
~organism(2, 1) &
~organism(2, 2) &
~organism(2, 3) &
organism(3, 0) &
~organism(3, 1) &
~organism(3, 2) &
~organism(3, 3)).
fof(interp, fi_predicates, ~past(0, 0) & ~past(0, 1) & ~past(0, 2) & past(0, 3) &
~past(1, 0) &
~past(1, 1) &
~past(1, 2) &
past(1, 3) &
~past(2, 0) &
~past(2, 1) &
~past(2, 2) &
past(2, 3) &
~past(3, 0) &
~past(3, 1) &
~past(3, 2) &
past(3, 3)).
fof(interp, fi_predicates, ~patient(0, 0, 0) & ~patient(0, 0, 1) &
~patient(0, 0, 2) &
~patient(0, 0, 3) &
~patient(0, 1, 0) &
~patient(0, 1, 1) &
~patient(0, 1, 2) &
~patient(0, 1, 3) &
~patient(0, 2, 0) &
~patient(0, 2, 1) &
~patient(0, 2, 2) &
~patient(0, 2, 3) &
~patient(0, 3, 0) &
~patient(0, 3, 1) &
patient(0, 3, 2) &
~patient(0, 3, 3) &
~patient(1, 0, 0) &
~patient(1, 0, 1) &
~patient(1, 0, 2) &
~patient(1, 0, 3) &
~patient(1, 1, 0) &
~patient(1, 1, 1) &
~patient(1, 1, 2) &
~patient(1, 1, 3) &
~patient(1, 2, 0) &
~patient(1, 2, 1) &
~patient(1, 2, 2) &
~patient(1, 2, 3) &
~patient(1, 3, 0) &
~patient(1, 3, 1) &
patient(1, 3, 2) &
~patient(1, 3, 3) &
~patient(2, 0, 0) &
~patient(2, 0, 1) &
~patient(2, 0, 2) &
~patient(2, 0, 3) &
~patient(2, 1, 0) &
~patient(2, 1, 1) &
~patient(2, 1, 2) &
~patient(2, 1, 3) &
~patient(2, 2, 0) &
~patient(2, 2, 1) &
~patient(2, 2, 2) &
~patient(2, 2, 3) &
~patient(2, 3, 0) &
~patient(2, 3, 1) &
patient(2, 3, 2) &
~patient(2, 3, 3) &
~patient(3, 0, 0) &
~patient(3, 0, 1) &
~patient(3, 0, 2) &
~patient(3, 0, 3) &
~patient(3, 1, 0) &
~patient(3, 1, 1) &
~patient(3, 1, 2) &
~patient(3, 1, 3) &
~patient(3, 2, 0) &
~patient(3, 2, 1) &
~patient(3, 2, 2) &
~patient(3, 2, 3) &
~patient(3, 3, 0) &
~patient(3, 3, 1) &
patient(3, 3, 2) &
~patient(3, 3, 3)).
fof(interp, fi_predicates, ~relation(0, 0) & relation(0, 1) & ~relation(0, 2) &
~relation(0, 3) &
~relation(1, 0) &
relation(1, 1) &
~relation(1, 2) &
~relation(1, 3) &
~relation(2, 0) &
relation(2, 1) &
~relation(2, 2) &
~relation(2, 3) &
~relation(3, 0) &
relation(3, 1) &
~relation(3, 2) &
~relation(3, 3)).
fof(interp, fi_predicates, ~relname(0, 0) & relname(0, 1) & ~relname(0, 2) &
~relname(0, 3) &
~relname(1, 0) &
relname(1, 1) &
~relname(1, 2) &
~relname(1, 3) &
~relname(2, 0) &
relname(2, 1) &
~relname(2, 2) &
~relname(2, 3) &
~relname(3, 0) &
relname(3, 1) &
~relname(3, 2) &
~relname(3, 3)).
fof(interp, fi_predicates, ~shake_beverage(0, 0) & ~shake_beverage(0, 1) &
shake_beverage(0, 2) &
~shake_beverage(0, 3) &
~shake_beverage(1, 0) &
~shake_beverage(1, 1) &
shake_beverage(1, 2) &
~shake_beverage(1, 3) &
~shake_beverage(2, 0) &
~shake_beverage(2, 1) &
shake_beverage(2, 2) &
~shake_beverage(2, 3) &
~shake_beverage(3, 0) &
~shake_beverage(3, 1) &
shake_beverage(3, 2) &
~shake_beverage(3, 3)).
fof(interp, fi_predicates, singleton(0, 0) & singleton(0, 1) & singleton(0, 2) &
singleton(0, 3) &
singleton(1, 0) &
singleton(1, 1) &
singleton(1, 2) &
singleton(1, 3) &
singleton(2, 0) &
singleton(2, 1) &
singleton(2, 2) &
singleton(2, 3) &
singleton(3, 0) &
singleton(3, 1) &
singleton(3, 2) &
singleton(3, 3)).
fof(interp, fi_predicates, specific(0, 0) & ~specific(0, 1) & specific(0, 2) &
specific(0, 3) &
specific(1, 0) &
~specific(1, 1) &
specific(1, 2) &
specific(1, 3) &
specific(2, 0) &
~specific(2, 1) &
specific(2, 2) &
specific(2, 3) &
specific(3, 0) &
~specific(3, 1) &
specific(3, 2) &
specific(3, 3)).
fof(interp, fi_predicates, ~substance_matter(0, 0) & ~substance_matter(0, 1) &
substance_matter(0, 2) &
~substance_matter(0, 3) &
~substance_matter(1, 0) &
~substance_matter(1, 1) &
substance_matter(1, 2) &
~substance_matter(1, 3) &
~substance_matter(2, 0) &
~substance_matter(2, 1) &
substance_matter(2, 2) &
~substance_matter(2, 3) &
~substance_matter(3, 0) &
~substance_matter(3, 1) &
substance_matter(3, 2) &
~substance_matter(3, 3)).
fof(interp, fi_predicates, thing(0, 0) & thing(0, 1) & thing(0, 2) & thing(0, 3) &
thing(1, 0) &
thing(1, 1) &
thing(1, 2) &
thing(1, 3) &
thing(2, 0) &
thing(2, 1) &
thing(2, 2) &
thing(2, 3) &
thing(3, 0) &
thing(3, 1) &
thing(3, 2) &
thing(3, 3)).
fof(interp, fi_predicates, ~unisex(0, 0) & unisex(0, 1) & unisex(0, 2) &
unisex(0, 3) &
~unisex(1, 0) &
unisex(1, 1) &
unisex(1, 2) &
unisex(1, 3) &
~unisex(2, 0) &
unisex(2, 1) &
unisex(2, 2) &
unisex(2, 3) &
~unisex(3, 0) &
unisex(3, 1) &
unisex(3, 2) &
unisex(3, 3)).
fof(interp, fi_predicates, woman(0, 0) & ~woman(0, 1) & ~woman(0, 2) &
~woman(0, 3) &
woman(1, 0) &
~woman(1, 1) &
~woman(1, 2) &
~woman(1, 3) &
woman(2, 0) &
~woman(2, 1) &
~woman(2, 2) &
~woman(2, 3) &
woman(3, 0) &
~woman(3, 1) &
~woman(3, 2) &
~woman(3, 3)).


### Sample solution for SWV017+1

% domain size: 2
fof(interp, fi_domain, ![X] : (X = 0 | X = 1)).
fof(interp, fi_functors, a = 0).
fof(interp, fi_predicates, a_holds(0) & a_holds(1)).
fof(interp, fi_predicates, ~a_key(0) & a_key(1)).
fof(interp, fi_predicates, a_nonce(0) & ~a_nonce(1)).
fof(interp, fi_predicates, ~a_stored(0) & a_stored(1)).
fof(interp, fi_functors, an_a_nonce = 0).
fof(interp, fi_functors, an_intruder_nonce = 0).
fof(interp, fi_functors, at = 1).
fof(interp, fi_functors, b = 0).
fof(interp, fi_predicates, b_holds(0) & b_holds(1)).
fof(interp, fi_predicates, ~b_stored(0) & b_stored(1)).
fof(interp, fi_functors, bt = 1).
fof(interp, fi_functors, encrypt(0, 0) = 1 & encrypt(0, 1) = 1 &
encrypt(1, 0) = 1 &
encrypt(1, 1) = 1).
fof(interp, fi_predicates, fresh_intruder_nonce(0) & ~fresh_intruder_nonce(1)).
fof(interp, fi_predicates, fresh_to_b(0) & ~fresh_to_b(1)).
fof(interp, fi_functors, generate_b_nonce(0) = 0 & generate_b_nonce(1) = 0).
fof(interp, fi_functors, generate_expiration_time(0) = 0 &
generate_expiration_time(1) = 0).
fof(interp, fi_functors, generate_intruder_nonce(0) = 0 &
generate_intruder_nonce(1) = 0).
fof(interp, fi_functors, generate_key(0) = 1 & generate_key(1) = 1).
fof(interp, fi_predicates, intruder_holds(0) & intruder_holds(1)).
fof(interp, fi_predicates, intruder_message(0) & intruder_message(1)).
fof(interp, fi_functors, key(0, 0) = 0 & key(0, 1) = 1 & key(1, 0) = 0 &
key(1, 1) = 1).
fof(interp, fi_predicates, message(0) & ~message(1)).
fof(interp, fi_functors, pair(0, 0) = 1 & pair(0, 1) = 0 & pair(1, 0) = 1 &
pair(1, 1) = 0).
fof(interp, fi_predicates, party_of_protocol(0) & ~party_of_protocol(1)).
fof(interp, fi_functors, quadruple(0, 0, 0, 0) = 0 & quadruple(0, 0, 0, 1) = 0 &
quadruple(0, 0, 1, 0) = 0 &
quadruple(0, 0, 1, 1) = 0 &
quadruple(0, 1, 0, 0) = 0 &
quadruple(0, 1, 0, 1) = 0 &
quadruple(0, 1, 1, 0) = 1 &
quadruple(0, 1, 1, 1) = 0 &
quadruple(1, 0, 0, 0) = 1 &
quadruple(1, 0, 0, 1) = 1 &
quadruple(1, 0, 1, 0) = 0 &
quadruple(1, 0, 1, 1) = 0 &
quadruple(1, 1, 0, 0) = 0 &
quadruple(1, 1, 0, 1) = 0 &
quadruple(1, 1, 1, 0) = 0 &
quadruple(1, 1, 1, 1) = 0).
fof(interp, fi_functors, sent(0, 0, 0) = 0 & sent(0, 0, 1) = 0 &
sent(0, 1, 0) = 0 &
sent(0, 1, 1) = 0 &
sent(1, 0, 0) = 0 &
sent(1, 0, 1) = 1 &
sent(1, 1, 0) = 0 &
sent(1, 1, 1) = 0).
fof(interp, fi_functors, t = 0).
fof(interp, fi_predicates, t_holds(0) & ~t_holds(1)).
fof(interp, fi_functors, triple(0, 0, 0) = 1 & triple(0, 0, 1) = 0 &
triple(0, 1, 0) = 0 &
triple(0, 1, 1) = 0 &
triple(1, 0, 0) = 0 &
triple(1, 0, 1) = 0 &
triple(1, 1, 0) = 1 &
triple(1, 1, 1) = 1).


## CVC4 1.4

Andrew Reynolds
EPFL, Switzerland CVC4 uses the SMT2 format for models. In this format, the model for function and predicate symbols are provided using the define-fun command. All models produced by CVC4 are finite. In other words, for unsorted inputs, the input is interpreted as a problem having a single uninterpreted sort, $$unsorted, which all models interpret as a finite set. In the output of these models, the domain elements of$$unsorted are named @uc___unsorted_0, ..., @uc___unsorted_n, where n is finite. The cardinality of $$unsorted is specified in a line of the form "; cardinality of$$unsorted is n". For instance, the cardinality of $$unsorted is 4 in the model for NLP042+1, and 2 in the model for SWV017+1. For proofs, CVC4 provides the (fresh) skolem constants it used when witnessing the negation of universally quantified formulas, and a set of tuples of ground terms it used for instantiating universal quantified formulas. The corresponding ground instances of these formulas, along with the ground formulas from the input (if any), are unsatisfiable at the ground level. ### Sample solution for SEU140+2 % SZS status Theorem for SEU140+2 % SZS output start Proof for SEU140+2 Skolem constants of (forall ((A$$unsorted)) (not (empty A)) ) :
( skv_1 )

Skolem constants of (forall ((A $$unsorted)) (empty A) ) : ( skv_2 ) Skolem constants of (forall ((A$$unsorted) (B $$unsorted) (C$$unsorted)) (or (not (and (subset A B) (disjoint B C))) (disjoint A C)) ) :
( skv_3, skv_4, skv_5 )

Skolem constants of (forall ((C $$unsorted)) (not (and (in C skv_3) (in C skv_5))) ) : ( skv_6 ) Skolem constants of (forall ((C$$unsorted)) (not (in C (set_intersection2 skv_3 skv_5))) ) :
( skv_7 )

Skolem constants of (forall ((C $$unsorted)) (or (not (in C skv_4)) (in C skv_3)) ) : ( skv_10 ) Skolem constants of (forall ((C$$unsorted)) (not (and (in C skv_5) (in C skv_3))) ) :
( skv_8 )

Skolem constants of (forall ((C $$unsorted)) (not (in C (set_intersection2 skv_5 skv_3))) ) : ( skv_9 ) Instantiations of (forall ((A$$unsorted) (B $$unsorted)) (= (= A B) (and (subset A B) (subset B A))) ) : ( skv_3, skv_4 ) ( skv_4, skv_3 ) Instantiations of (forall ((A$$unsorted) (B $$unsorted)) (= (proper_subset A B) (and (subset A B) (not (= A B)))) ) : ( skv_3, skv_4 ) ( skv_4, skv_3 ) Instantiations of (forall ((A$$unsorted) (B $$unsorted)) (subset (set_intersection2 A B) A) ) : ( skv_3, skv_4 ) ( skv_3, skv_5 ) ( skv_4, skv_5 ) Instantiations of (forall ((A$$unsorted) (B $$unsorted)) (subset (set_difference A B) A) ) : ( skv_3, skv_4 ) ( skv_4, skv_3 ) Instantiations of (forall ((A$$unsorted) (B $$unsorted)) (subset A (set_union2 A B)) ) : ( skv_3, skv_4 ) ( skv_3, (set_difference skv_4 skv_3) ) Instantiations of (forall ((A$$unsorted) (B $$unsorted)) (or (not (in A B)) (not (in B A))) ) : ( skv_3, skv_6 ) ( skv_5, skv_6 ) ( (set_intersection2 skv_3 skv_5), skv_7 ) ( skv_6, skv_3 ) ( skv_6, skv_5 ) ( skv_7, (set_intersection2 skv_3 skv_5) ) Instantiations of (forall ((A$$unsorted) (B $$unsorted)) (or (not (proper_subset A B)) (not (proper_subset B A))) ) : ( skv_3, skv_4 ) ( skv_4, skv_3 ) Instantiations of (forall ((A$$unsorted) (B $$unsorted)) (= (set_union2 B A) (set_union2 A B)) ) : ( skv_3, skv_4 ) ( skv_3, (set_difference skv_4 skv_3) ) ( skv_4, skv_3 ) ( (set_difference skv_4 skv_3), skv_3 ) Instantiations of (forall ((A$$unsorted) (B $$unsorted)) (= (set_intersection2 B A) (set_intersection2 A B)) ) : ( skv_3, skv_4 ) ( skv_3, skv_5 ) ( skv_4, skv_3 ) ( skv_4, skv_5 ) ( skv_5, skv_3 ) ( skv_5, skv_4 ) Instantiations of (forall ((A$$unsorted) (B $$unsorted)) (= (subset A B) (forall ((C$$unsorted)) (or (not (in C A)) (in C B)) )) ) :
( skv_3, skv_4 )
( skv_4, skv_3 )

Instantiations of (forall ((A $$unsorted) (B$$unsorted)) (= (disjoint A B) (= empty_set (set_intersection2 A B))) ) :
( skv_3, skv_4 )
( skv_3, skv_5 )
( skv_4, skv_5 )
( skv_5, skv_3 )
( skv_5, skv_4 )

Instantiations of (forall ((A $$unsorted) (B$$unsorted)) (or (empty A) (not (empty (set_union2 A B)))) ) :
( skv_3, skv_4 )
( skv_3, (set_difference skv_4 skv_3) )

Instantiations of (forall ((A $$unsorted) (B$$unsorted)) (or (empty A) (not (empty (set_union2 B A)))) ) :
( skv_4, skv_3 )
( (set_difference skv_4 skv_3), skv_3 )

Instantiations of (forall ((A $$unsorted) (B$$unsorted)) (= (= empty_set (set_difference A B)) (subset A B)) ) :
( skv_3, skv_4 )
( skv_4, skv_3 )

Instantiations of (forall ((A $$unsorted) (B$$unsorted)) (or (not (disjoint A B)) (disjoint B A)) ) :
( skv_3, skv_5 )
( skv_4, skv_5 )
( skv_5, skv_3 )
( skv_5, skv_4 )

Instantiations of (forall ((A $$unsorted) (B$$unsorted)) (or (not (subset A B)) (= B (set_union2 A B))) ) :
( skv_3, skv_4 )
( skv_3, (set_difference skv_4 skv_3) )
( skv_4, skv_3 )

Instantiations of (forall ((A $$unsorted) (B$$unsorted) (C $$unsorted)) (or (not (and (subset A B) (subset A C))) (subset A (set_intersection2 B C))) ) : ( skv_4, skv_3, skv_4 ) Instantiations of (forall ((A$$unsorted) (B $$unsorted) (C$$unsorted)) (or (not (and (subset A B) (subset B C))) (subset A C)) ) :
( skv_3, skv_4, skv_3 )
( skv_4, skv_3, skv_4 )

Instantiations of (forall ((A $$unsorted) (B$$unsorted)) (or (not (subset A B)) (= A (set_intersection2 A B))) ) :
( skv_3, skv_4 )
( skv_3, skv_5 )
( skv_4, skv_3 )
( skv_4, skv_5 )

Instantiations of (forall ((A $$unsorted) (B$$unsorted)) (= (= empty_set (set_difference A B)) (subset A B)) ) :
( skv_3, skv_4 )
( skv_4, skv_3 )

Instantiations of (forall ((A $$unsorted) (B$$unsorted)) (= (set_union2 A B) (set_union2 A (set_difference B A))) ) :
( skv_3, skv_4 )
( skv_3, (set_difference skv_4 skv_3) )
( skv_4, skv_3 )

Instantiations of (forall ((A $$unsorted) (B$$unsorted)) (or (disjoint A B) (not (forall ((C $$unsorted)) (not (and (in C A) (in C B))) ))) ) : ( skv_3, skv_5 ) ( skv_4, skv_5 ) ( skv_5, skv_3 ) ( skv_5, skv_4 ) Instantiations of (forall ((A$$unsorted) (B $$unsorted) (BOUND_VARIABLE_723$$unsorted)) (or (not (and (in BOUND_VARIABLE_723 A) (in BOUND_VARIABLE_723 B))) (not (disjoint A B))) ) :
( skv_3, skv_3, skv_6 )
( skv_3, skv_5, skv_6 )
( skv_4, skv_5, skv_6 )
( skv_5, skv_3, skv_6 )
( skv_5, skv_5, skv_6 )
( (set_intersection2 skv_3 skv_5), (set_intersection2 skv_3 skv_5), skv_7 )

Instantiations of (forall ((A $$unsorted) (B$$unsorted)) (= (set_difference A B) (set_difference (set_union2 A B) B)) ) :
( skv_3, skv_4 )
( skv_3, (set_difference skv_4 skv_3) )
( skv_4, skv_3 )

Instantiations of (forall ((A $$unsorted) (B$$unsorted)) (or (not (subset A B)) (= B (set_union2 A (set_difference B A)))) ) :
( skv_3, skv_4 )
( skv_4, skv_3 )

Instantiations of (forall ((A $$unsorted) (B$$unsorted)) (= (set_intersection2 A B) (set_difference A (set_difference A B))) ) :
( skv_3, skv_4 )
( skv_3, skv_5 )
( skv_4, skv_3 )
( skv_4, skv_5 )

Instantiations of (forall ((A $$unsorted) (B$$unsorted)) (or (disjoint A B) (not (forall ((C $$unsorted)) (not (in C (set_intersection2 A B))) ))) ) : ( skv_3, skv_5 ) ( skv_4, skv_5 ) ( skv_5, skv_3 ) ( skv_5, skv_4 ) Instantiations of (forall ((A$$unsorted) (B $$unsorted) (BOUND_VARIABLE_760$$unsorted)) (or (not (in BOUND_VARIABLE_760 (set_intersection2 A B))) (not (disjoint A B))) ) :
( skv_3, skv_4, skv_6 )
( skv_3, skv_5, skv_7 )

Instantiations of (forall ((A $$unsorted) (B$$unsorted)) (or (not (subset A B)) (not (proper_subset B A))) ) :
( skv_3, skv_4 )
( skv_4, skv_3 )

Instantiations of (forall ((A $$unsorted)) (or (not (empty A)) (= empty_set A)) ) : ( empty_set ) ( skv_1 ) ( skv_2 ) Instantiations of (forall ((A$$unsorted) (B $$unsorted)) (or (not (in A B)) (not (empty B))) ) : ( skv_6, skv_3 ) ( skv_6, skv_5 ) ( skv_7, (set_intersection2 skv_3 skv_5) ) Instantiations of (forall ((A$$unsorted) (B $$unsorted)) (or (not (empty A)) (= A B) (not (empty B))) ) : ( empty_set, empty_set ) ( empty_set, skv_1 ) ( empty_set, skv_2 ) ( skv_1, empty_set ) ( skv_2, empty_set ) ( skv_2, skv_2 ) Instantiations of (forall ((A$$unsorted) (B $$unsorted) (C$$unsorted)) (or (not (and (subset A B) (subset C B))) (subset (set_union2 A C) B)) ) :
( skv_3, skv_3, (set_difference skv_4 skv_3) )

Instantiations of (forall ((C $$unsorted)) (or (not (in C skv_3)) (in C skv_4)) ) : ( skv_6 ) % SZS output end Proof for SEU140+2  ### Sample solution for NLP042+1 % SZS status CounterSatisfiable for NLP042+1 % SZS output start FiniteModel for NLP042+1 (define-fun woman ((x1$$unsorted) ($x2 $$unsorted)) Bool (ite (and (= @uc___unsorted_0 x1) (= @uc___unsorted_3 x2)) false (ite (and (= @uc___unsorted_0 x1) (= @uc___unsorted_2 x2)) false (not (and (= @uc___unsorted_0 x1) (= @uc___unsorted_1 x2)))))) (define-fun female ((x1$$unsorted) ($x2 $$unsorted)) Bool (ite (and (= @uc___unsorted_0 x1) (= @uc___unsorted_3 x2)) false (ite (and (= @uc___unsorted_0 x1) (= @uc___unsorted_2 x2)) false (not (and (= @uc___unsorted_0 x1) (= @uc___unsorted_1 x2)))))) (define-fun human_person ((x1$$unsorted) ($x2 $$unsorted)) Bool (ite (and (= @uc___unsorted_0 x1) (= @uc___unsorted_3 x2)) false (ite (and (= @uc___unsorted_0 x1) (= @uc___unsorted_1 x2)) false (not (and (= @uc___unsorted_0 x1) (= @uc___unsorted_2 x2)))))) (define-fun animate ((x1$$unsorted) ($x2 $$unsorted)) Bool (not (and (= @uc___unsorted_0 x1) (= @uc___unsorted_2 x2)))) (define-fun human ((x1$$unsorted) ($x2 $$unsorted)) Bool (not (and (= @uc___unsorted_0 x1) (= @uc___unsorted_1 x2)))) (define-fun organism ((x1$$unsorted) ($x2 $$unsorted)) Bool (ite (and (= @uc___unsorted_0 x1) (= @uc___unsorted_3 x2)) false (ite (and (= @uc___unsorted_0 x1) (= @uc___unsorted_2 x2)) false (not (and (= @uc___unsorted_0 x1) (= @uc___unsorted_1 x2)))))) (define-fun living ((x1$$unsorted) ($x2 $$unsorted)) Bool (not (and (= @uc___unsorted_0 x1) (= @uc___unsorted_2 x2)))) (define-fun impartial ((x1$$unsorted) ($x2 $$unsorted)) Bool true) (define-fun entity ((x1$$unsorted) ($x2 $$unsorted)) Bool (ite (and (= @uc___unsorted_0 x1) (= @uc___unsorted_3 x2)) false (not (and (= @uc___unsorted_0 x1) (= @uc___unsorted_1 x2))))) (define-fun mia_forename ((x1$$unsorted) ($x2 $$unsorted)) Bool (and (= @uc___unsorted_0 x1) (= @uc___unsorted_1 x2))) (define-fun forename ((x1$$unsorted) ($x2 $$unsorted)) Bool (and (= @uc___unsorted_0 x1) (= @uc___unsorted_1 x2))) (define-fun abstraction ((x1$$unsorted) ($x2 $$unsorted)) Bool (and (= @uc___unsorted_0 x1) (= @uc___unsorted_1 x2))) (define-fun unisex ((x1$$unsorted) ($x2 $$unsorted)) Bool (ite (and (= @uc___unsorted_0 x1) (= @uc___unsorted_3 x2)) true (ite (and (= @uc___unsorted_0 x1) (= @uc___unsorted_2 x2)) true (and (= @uc___unsorted_0 x1) (= @uc___unsorted_1 x2))))) (define-fun general ((x1$$unsorted) ($x2 $$unsorted)) Bool (and (= @uc___unsorted_0 x1) (= @uc___unsorted_1 x2))) (define-fun nonhuman ((x1$$unsorted) ($x2 $$unsorted)) Bool (and (= @uc___unsorted_0 x1) (= @uc___unsorted_1 x2))) (define-fun thing ((x1$$unsorted) ($x2 $$unsorted)) Bool true) (define-fun relation ((x1$$unsorted) ($x2 $$unsorted)) Bool (and (= @uc___unsorted_0 x1) (= @uc___unsorted_1 x2))) (define-fun relname ((x1$$unsorted) ($x2 $$unsorted)) Bool (and (= @uc___unsorted_0 x1) (= @uc___unsorted_1 x2))) (define-fun object ((x1$$unsorted) ($x2 $$unsorted)) Bool (and (= @uc___unsorted_0 x1) (= @uc___unsorted_2 x2))) (define-fun nonliving ((x1$$unsorted) ($x2 $$unsorted)) Bool (and (= @uc___unsorted_0 x1) (= @uc___unsorted_2 x2))) (define-fun existent ((x1$$unsorted) ($x2 $$unsorted)) Bool (not (and (= @uc___unsorted_0 x1) (= @uc___unsorted_3 x2)))) (define-fun specific ((x1$$unsorted) ($x2 $$unsorted)) Bool (not (and (= @uc___unsorted_0 x1) (= @uc___unsorted_1 x2)))) (define-fun substance_matter ((x1$$unsorted) ($x2 $$unsorted)) Bool (and (= @uc___unsorted_0 x1) (= @uc___unsorted_2 x2))) (define-fun food ((x1$$unsorted) ($x2 $$unsorted)) Bool (and (= @uc___unsorted_0 x1) (= @uc___unsorted_2 x2))) (define-fun beverage ((x1$$unsorted) ($x2 $$unsorted)) Bool (and (= @uc___unsorted_0 x1) (= @uc___unsorted_2 x2))) (define-fun shake_beverage ((x1$$unsorted) ($x2 $$unsorted)) Bool (and (= @uc___unsorted_0 x1) (= @uc___unsorted_2 x2))) (define-fun order ((x1$$unsorted) ($x2 $$unsorted)) Bool (and (= @uc___unsorted_0 x1) (= @uc___unsorted_3 x2))) (define-fun event ((x1$$unsorted) ($x2 $$unsorted)) Bool (and (= @uc___unsorted_0 x1) (= @uc___unsorted_3 x2))) (define-fun eventuality ((x1$$unsorted) ($x2 $$unsorted)) Bool (and (= @uc___unsorted_0 x1) (= @uc___unsorted_3 x2))) (define-fun nonexistent ((x1$$unsorted) ($x2 $$unsorted)) Bool (and (= @uc___unsorted_0 x1) (= @uc___unsorted_3 x2))) (define-fun singleton ((x1$$unsorted) ($x2 $$unsorted)) Bool true) (define-fun act ((x1$$unsorted) ($x2 $$unsorted)) Bool (and (= @uc___unsorted_0 x1) (= @uc___unsorted_3 x2))) (define-fun of ((x1$$unsorted) ($x2 $$unsorted) (x3$$unsorted)) Bool true) (define-fun nonreflexive (($x1 $$unsorted) (x2$$unsorted)) Bool (and (= @uc___unsorted_0 $x1) (= @uc___unsorted_3$x2)))
(define-fun agent (($x1 $$unsorted) (x2$$unsorted) ($x3 $$unsorted)) Bool (ite (and (= @uc___unsorted_0 x1) (= @uc___unsorted_3 x2) (= @uc___unsorted_2 x3)) false (ite (and (= @uc___unsorted_0 x1) (= @uc___unsorted_3 x2) (= @uc___unsorted_1 x3)) false (not (and (= @uc___unsorted_0 x1) (= @uc___unsorted_3 x2) (= @uc___unsorted_3 x3)))))) (define-fun patient ((x1$$unsorted) ($x2 $$unsorted) (x3$$unsorted)) Bool (not (and (= @uc___unsorted_0$x1) (= @uc___unsorted_3 $x2) (= @uc___unsorted_0$x3))))
(define-fun actual_world ((_ufmt_1 $$unsorted)) Bool true) (define-fun past ((_ufmt_1$$unsorted) (_ufmt_2 $$unsorted)) Bool true) ; cardinality of$$unsorted is 4
(declare-sort $$unsorted 0) ; rep: @uc___unsorted_0 ; rep: @uc___unsorted_1 ; rep: @uc___unsorted_2 ; rep: @uc___unsorted_3 % SZS output end FiniteModel for NLP042+1  ### Sample solution for SWV017+1 % SZS status Satisfiable for SWV017+1 % SZS output start FiniteModel for SWV017+1 (define-fun at ()$$unsorted @uc___unsorted_0)
(define-fun t () $$unsorted @uc___unsorted_0) (define-fun key ((x1$$unsorted) ($x2 $$unsorted))$$unsorted @uc___unsorted_0) (define-fun a_holds (($x1 $$unsorted)) Bool true) (define-fun a ()$$unsorted @uc___unsorted_0)
(define-fun party_of_protocol (($x1 $$unsorted)) Bool true) (define-fun b ()$$unsorted @uc___unsorted_0) (define-fun an_a_nonce () $$unsorted @uc___unsorted_0) (define-fun pair ((x1$$unsorted) ($x2 $$unsorted))$$unsorted @uc___unsorted_0)
(define-fun sent (($x1 $$unsorted) (x2$$unsorted) ($x3 $$unsorted))$$unsorted @uc___unsorted_0)
(define-fun message (($x1 $$unsorted)) Bool true) (define-fun a_stored ((x1$$unsorted)) Bool true) (define-fun quadruple (($x1 $$unsorted) (x2$$unsorted) ($x3 $$unsorted) (x4$$unsorted)) $$unsorted @uc___unsorted_0) (define-fun encrypt ((x1$$unsorted) ($x2 $$unsorted))$$unsorted @uc___unsorted_0)
(define-fun triple (($x1 $$unsorted) (x2$$unsorted) ($x3 $$unsorted))$$unsorted @uc___unsorted_0)
(define-fun bt () $$unsorted @uc___unsorted_0) (define-fun b_holds ((x1$$unsorted)) Bool true)
(define-fun fresh_to_b (($x1 $$unsorted)) Bool true) (define-fun generate_b_nonce ((x1$$unsorted)) $$unsorted @uc___unsorted_0) (define-fun generate_expiration_time ((x1$$unsorted)) $$unsorted @uc___unsorted_0) (define-fun b_stored ((x1$$unsorted)) Bool true) (define-fun a_key (($x1 $$unsorted)) Bool (= @uc___unsorted_1 x1)) (define-fun t_holds ((x1$$unsorted)) Bool true)
(define-fun a_nonce (($x1 $$unsorted)) Bool (not (= @uc___unsorted_1 x1))) (define-fun generate_key ((x1$$unsorted)) $$unsorted @uc___unsorted_1) (define-fun intruder_message ((x1$$unsorted)) Bool true) (define-fun intruder_holds (($x1 $$unsorted)) Bool true) (define-fun an_intruder_nonce ()$$unsorted @uc___unsorted_0)
(define-fun fresh_intruder_nonce (($x1 $$unsorted)) Bool true) (define-fun generate_intruder_nonce ((x1$$unsorted)) $$unsorted @uc___unsorted_0) ; cardinality of$$unsorted is 2 (declare-sort $$unsorted 0) ; rep: @uc___unsorted_0 ; rep: @uc___unsorted_1 % SZS output end FiniteModel for SWV017+1  ## E 1.9 Stephan Schulz DHBW Stuttgart, Germany ### Sample solution for SEU140+2 # No SInE strategy applied # Trying AutoSched0 for 151 seconds # AutoSched0-Mode selected heuristic G_E___107_B42_F1_PI_SE_Q4_CS_SP_PS_S0Y # and selection function SelectMaxLComplexAvoidPosPred. # # Presaturation interreduction done # Proof found! # SZS status Theorem # SZS output start CNFRefutation. fof(c_0_0, lemma, (![X1]:![X2]:(~((~(disjoint(X1,X2))&![X3]:~((in(X3,X1)&in(X3,X2)))))&~((?[X3]:(in(X3,X1)&in(X3,X2))&disjoint(X1,X2))))), file('/Users/schulz/EPROVER/TPTP_6.0.0_FLAT/SEU140+2.p', t3_xboole_0)). fof(c_0_1, conjecture, (![X1]:![X2]:![X3]:((subset(X1,X2)&disjoint(X2,X3))=>disjoint(X1,X3))), file('/Users/schulz/EPROVER/TPTP_6.0.0_FLAT/SEU140+2.p', t63_xboole_1)). fof(c_0_2, axiom, (![X1]:![X2]:![X3]:(X3=set_difference(X1,X2)<=>![X4]:(in(X4,X3)<=>(in(X4,X1)&~(in(X4,X2)))))), file('/Users/schulz/EPROVER/TPTP_6.0.0_FLAT/SEU140+2.p', d4_xboole_0)). fof(c_0_3, axiom, (![X1]:(X1=empty_set<=>![X2]:~(in(X2,X1)))), file('/Users/schulz/EPROVER/TPTP_6.0.0_FLAT/SEU140+2.p', d1_xboole_0)). fof(c_0_4, lemma, (![X1]:![X2]:(set_difference(X1,X2)=empty_set<=>subset(X1,X2))), file('/Users/schulz/EPROVER/TPTP_6.0.0_FLAT/SEU140+2.p', l32_xboole_1)). fof(c_0_5, lemma, (![X1]:![X2]:(~((~disjoint(X1,X2)&![X3]:~((in(X3,X1)&in(X3,X2)))))&~((?[X3]:(in(X3,X1)&in(X3,X2))&disjoint(X1,X2))))), inference(fof_simplification,[status(thm)],[c_0_0])). fof(c_0_6, negated_conjecture, (~(![X1]:![X2]:![X3]:((subset(X1,X2)&disjoint(X2,X3))=>disjoint(X1,X3)))), inference(assume_negation,[status(cth)],[c_0_1])). fof(c_0_7, plain, (![X1]:![X2]:![X3]:(X3=set_difference(X1,X2)<=>![X4]:(in(X4,X3)<=>(in(X4,X1)&~in(X4,X2))))), inference(fof_simplification,[status(thm)],[c_0_2])). fof(c_0_8, plain, (![X1]:(X1=empty_set<=>![X2]:~in(X2,X1))), inference(fof_simplification,[status(thm)],[c_0_3])). fof(c_0_9, lemma, (![X4]:![X5]:![X7]:![X8]:![X9]:(((in(esk9_2(X4,X5),X4)|disjoint(X4,X5))&(in(esk9_2(X4,X5),X5)|disjoint(X4,X5)))&((~in(X9,X7)|~in(X9,X8))|~disjoint(X7,X8)))), inference(distribute,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_5])])])])])])). fof(c_0_10, negated_conjecture, (((subset(esk11_0,esk12_0)&disjoint(esk12_0,esk13_0))&~disjoint(esk11_0,esk13_0))), inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_6])])])). fof(c_0_11, plain, (![X5]:![X6]:![X7]:![X8]:![X9]:![X10]:![X11]:![X12]:(((((in(X8,X5)|~in(X8,X7))|X7!=set_difference(X5,X6))&((~in(X8,X6)|~in(X8,X7))|X7!=set_difference(X5,X6)))&(((~in(X9,X5)|in(X9,X6))|in(X9,X7))|X7!=set_difference(X5,X6)))&(((~in(esk5_3(X10,X11,X12),X12)|(~in(esk5_3(X10,X11,X12),X10)|in(esk5_3(X10,X11,X12),X11)))|X12=set_difference(X10,X11))&(((in(esk5_3(X10,X11,X12),X10)|in(esk5_3(X10,X11,X12),X12))|X12=set_difference(X10,X11))&((~in(esk5_3(X10,X11,X12),X11)|in(esk5_3(X10,X11,X12),X12))|X12=set_difference(X10,X11)))))), inference(distribute,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_7])])])])])])). fof(c_0_12, lemma, (![X3]:![X4]:![X5]:![X6]:((set_difference(X3,X4)!=empty_set|subset(X3,X4))&(~subset(X5,X6)|set_difference(X5,X6)=empty_set))), inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_4])])])])). fof(c_0_13, plain, (![X3]:![X4]:![X5]:((X3!=empty_set|~in(X4,X3))&(in(esk1_1(X5),X5)|X5=empty_set))), inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_8])])])])])). cnf(c_0_14,lemma,(~disjoint(X1,X2)|~in(X3,X2)|~in(X3,X1)), inference(split_conjunct,[status(thm)],[c_0_9])). cnf(c_0_15,negated_conjecture,(disjoint(esk12_0,esk13_0)), inference(split_conjunct,[status(thm)],[c_0_10])). cnf(c_0_16,negated_conjecture,(~disjoint(esk11_0,esk13_0)), inference(split_conjunct,[status(thm)],[c_0_10])). cnf(c_0_17,lemma,(disjoint(X1,X2)|in(esk9_2(X1,X2),X2)), inference(split_conjunct,[status(thm)],[c_0_9])). cnf(c_0_18,plain,(in(X4,X1)|in(X4,X3)|X1!=set_difference(X2,X3)|~in(X4,X2)), inference(split_conjunct,[status(thm)],[c_0_11])). cnf(c_0_19,lemma,(set_difference(X1,X2)=empty_set|~subset(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_12])). cnf(c_0_20,negated_conjecture,(subset(esk11_0,esk12_0)), inference(split_conjunct,[status(thm)],[c_0_10])). cnf(c_0_21,plain,(~in(X1,X2)|X2!=empty_set), inference(split_conjunct,[status(thm)],[c_0_13])). cnf(c_0_22,negated_conjecture,(~in(X1,esk13_0)|~in(X1,esk12_0)), inference(spm,[status(thm)],[c_0_14, c_0_15])). cnf(c_0_23,negated_conjecture,(in(esk9_2(esk11_0,esk13_0),esk13_0)), inference(spm,[status(thm)],[c_0_16, c_0_17])). cnf(c_0_24,plain,(in(X1,set_difference(X2,X3))|in(X1,X3)|~in(X1,X2)), inference(er,[status(thm)],[c_0_18])). cnf(c_0_25,negated_conjecture,(set_difference(esk11_0,esk12_0)=empty_set), inference(spm,[status(thm)],[c_0_19, c_0_20])). cnf(c_0_26,plain,(~in(X1,empty_set)), inference(er,[status(thm)],[c_0_21])). cnf(c_0_27,lemma,(disjoint(X1,X2)|in(esk9_2(X1,X2),X1)), inference(split_conjunct,[status(thm)],[c_0_9])). cnf(c_0_28,negated_conjecture,(~in(esk9_2(esk11_0,esk13_0),esk12_0)), inference(spm,[status(thm)],[c_0_22, c_0_23])). cnf(c_0_29,negated_conjecture,(in(X1,esk12_0)|~in(X1,esk11_0)), inference(sr,[status(thm)],[inference(spm,[status(thm)],[c_0_24, c_0_25]), c_0_26])). cnf(c_0_30,negated_conjecture,(in(esk9_2(esk11_0,esk13_0),esk11_0)), inference(spm,[status(thm)],[c_0_16, c_0_27])). cnf(c_0_31,negated_conjecture,(false), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_28, c_0_29]), c_0_30])]), ['proof']). # SZS output end CNFRefutation.  ### Sample solution for NLP042+1 # No SInE strategy applied # Trying AutoSched0 for 151 seconds # AutoSched0-Mode selected heuristic H_____047_C18_F1_AE_R8_CS_SP_S2S # and selection function SelectNewComplexAHP. # # No proof found! # SZS status CounterSatisfiable # SZS output start Saturation. fof(c_0_0, conjecture, (~(?[X1]:(actual_world(X1)&?[X2]:?[X3]:?[X4]:?[X5]:((((((((((of(X1,X3,X2)&woman(X1,X2))&mia_forename(X1,X3))&forename(X1,X3))&shake_beverage(X1,X4))&event(X1,X5))&agent(X1,X5,X2))&patient(X1,X5,X4))&past(X1,X5))&nonreflexive(X1,X5))&order(X1,X5))))), file('/Users/schulz/EPROVER/TPTP_6.0.0_FLAT/NLP042+1.p', co1)). fof(c_0_1, axiom, (![X1]:![X2]:(shake_beverage(X1,X2)=>beverage(X1,X2))), file('/Users/schulz/EPROVER/TPTP_6.0.0_FLAT/NLP042+1.p', ax27)). fof(c_0_2, axiom, (![X1]:![X2]:(beverage(X1,X2)=>food(X1,X2))), file('/Users/schulz/EPROVER/TPTP_6.0.0_FLAT/NLP042+1.p', ax26)). fof(c_0_3, axiom, (![X1]:![X2]:(food(X1,X2)=>substance_matter(X1,X2))), file('/Users/schulz/EPROVER/TPTP_6.0.0_FLAT/NLP042+1.p', ax25)). fof(c_0_4, axiom, (![X1]:![X2]:(forename(X1,X2)=>relname(X1,X2))), file('/Users/schulz/EPROVER/TPTP_6.0.0_FLAT/NLP042+1.p', ax16)). fof(c_0_5, axiom, (![X1]:![X2]:(woman(X1,X2)=>human_person(X1,X2))), file('/Users/schulz/EPROVER/TPTP_6.0.0_FLAT/NLP042+1.p', ax8)). fof(c_0_6, axiom, (![X1]:![X2]:(substance_matter(X1,X2)=>object(X1,X2))), file('/Users/schulz/EPROVER/TPTP_6.0.0_FLAT/NLP042+1.p', ax24)). fof(c_0_7, axiom, (![X1]:![X2]:(relname(X1,X2)=>relation(X1,X2))), file('/Users/schulz/EPROVER/TPTP_6.0.0_FLAT/NLP042+1.p', ax15)). fof(c_0_8, axiom, (![X1]:![X2]:(human_person(X1,X2)=>organism(X1,X2))), file('/Users/schulz/EPROVER/TPTP_6.0.0_FLAT/NLP042+1.p', ax7)). fof(c_0_9, axiom, (![X1]:![X2]:(object(X1,X2)=>entity(X1,X2))), file('/Users/schulz/EPROVER/TPTP_6.0.0_FLAT/NLP042+1.p', ax23)). fof(c_0_10, axiom, (![X1]:![X2]:(relation(X1,X2)=>abstraction(X1,X2))), file('/Users/schulz/EPROVER/TPTP_6.0.0_FLAT/NLP042+1.p', ax14)). fof(c_0_11, axiom, (![X1]:![X2]:(event(X1,X2)=>eventuality(X1,X2))), file('/Users/schulz/EPROVER/TPTP_6.0.0_FLAT/NLP042+1.p', ax34)). fof(c_0_12, axiom, (![X1]:![X2]:(organism(X1,X2)=>entity(X1,X2))), file('/Users/schulz/EPROVER/TPTP_6.0.0_FLAT/NLP042+1.p', ax6)). fof(c_0_13, axiom, (![X1]:![X2]:(existent(X1,X2)=>~(nonexistent(X1,X2)))), file('/Users/schulz/EPROVER/TPTP_6.0.0_FLAT/NLP042+1.p', ax38)). fof(c_0_14, axiom, (![X1]:![X2]:(specific(X1,X2)=>~(general(X1,X2)))), file('/Users/schulz/EPROVER/TPTP_6.0.0_FLAT/NLP042+1.p', ax41)). fof(c_0_15, axiom, (![X1]:![X2]:(nonliving(X1,X2)=>~(living(X1,X2)))), file('/Users/schulz/EPROVER/TPTP_6.0.0_FLAT/NLP042+1.p', ax40)). fof(c_0_16, axiom, (![X1]:![X2]:(nonhuman(X1,X2)=>~(human(X1,X2)))), file('/Users/schulz/EPROVER/TPTP_6.0.0_FLAT/NLP042+1.p', ax39)). fof(c_0_17, axiom, (![X1]:![X2]:(animate(X1,X2)=>~(nonliving(X1,X2)))), file('/Users/schulz/EPROVER/TPTP_6.0.0_FLAT/NLP042+1.p', ax37)). fof(c_0_18, axiom, (![X1]:![X2]:(unisex(X1,X2)=>~(female(X1,X2)))), file('/Users/schulz/EPROVER/TPTP_6.0.0_FLAT/NLP042+1.p', ax42)). fof(c_0_19, axiom, (![X1]:![X2]:(entity(X1,X2)=>specific(X1,X2))), file('/Users/schulz/EPROVER/TPTP_6.0.0_FLAT/NLP042+1.p', ax21)). fof(c_0_20, axiom, (![X1]:![X2]:(object(X1,X2)=>nonliving(X1,X2))), file('/Users/schulz/EPROVER/TPTP_6.0.0_FLAT/NLP042+1.p', ax19)). fof(c_0_21, axiom, (![X1]:![X2]:(object(X1,X2)=>unisex(X1,X2))), file('/Users/schulz/EPROVER/TPTP_6.0.0_FLAT/NLP042+1.p', ax17)). fof(c_0_22, axiom, (![X1]:![X2]:(abstraction(X1,X2)=>nonhuman(X1,X2))), file('/Users/schulz/EPROVER/TPTP_6.0.0_FLAT/NLP042+1.p', ax12)). fof(c_0_23, axiom, (![X1]:![X2]:(abstraction(X1,X2)=>unisex(X1,X2))), file('/Users/schulz/EPROVER/TPTP_6.0.0_FLAT/NLP042+1.p', ax10)). fof(c_0_24, axiom, (![X1]:![X2]:(eventuality(X1,X2)=>nonexistent(X1,X2))), file('/Users/schulz/EPROVER/TPTP_6.0.0_FLAT/NLP042+1.p', ax30)). fof(c_0_25, axiom, (![X1]:![X2]:(eventuality(X1,X2)=>specific(X1,X2))), file('/Users/schulz/EPROVER/TPTP_6.0.0_FLAT/NLP042+1.p', ax31)). fof(c_0_26, axiom, (![X1]:![X2]:(eventuality(X1,X2)=>unisex(X1,X2))), file('/Users/schulz/EPROVER/TPTP_6.0.0_FLAT/NLP042+1.p', ax29)). fof(c_0_27, axiom, (![X1]:![X2]:![X3]:![X4]:(((nonreflexive(X1,X2)&agent(X1,X2,X3))&patient(X1,X2,X4))=>X3!=X4)), file('/Users/schulz/EPROVER/TPTP_6.0.0_FLAT/NLP042+1.p', ax44)). fof(c_0_28, axiom, (![X1]:![X2]:(entity(X1,X2)=>thing(X1,X2))), file('/Users/schulz/EPROVER/TPTP_6.0.0_FLAT/NLP042+1.p', ax22)). fof(c_0_29, axiom, (![X1]:![X2]:(abstraction(X1,X2)=>thing(X1,X2))), file('/Users/schulz/EPROVER/TPTP_6.0.0_FLAT/NLP042+1.p', ax13)). fof(c_0_30, axiom, (![X1]:![X2]:(eventuality(X1,X2)=>thing(X1,X2))), file('/Users/schulz/EPROVER/TPTP_6.0.0_FLAT/NLP042+1.p', ax33)). fof(c_0_31, axiom, (![X1]:![X2]:![X3]:(((entity(X1,X2)&forename(X1,X3))&of(X1,X3,X2))=>~(?[X4]:((forename(X1,X4)&X4!=X3)&of(X1,X4,X2))))), file('/Users/schulz/EPROVER/TPTP_6.0.0_FLAT/NLP042+1.p', ax43)). fof(c_0_32, axiom, (![X1]:![X2]:(order(X1,X2)=>act(X1,X2))), file('/Users/schulz/EPROVER/TPTP_6.0.0_FLAT/NLP042+1.p', ax36)). fof(c_0_33, axiom, (![X1]:![X2]:(thing(X1,X2)=>singleton(X1,X2))), file('/Users/schulz/EPROVER/TPTP_6.0.0_FLAT/NLP042+1.p', ax32)). fof(c_0_34, axiom, (![X1]:![X2]:(entity(X1,X2)=>existent(X1,X2))), file('/Users/schulz/EPROVER/TPTP_6.0.0_FLAT/NLP042+1.p', ax20)). fof(c_0_35, axiom, (![X1]:![X2]:(abstraction(X1,X2)=>general(X1,X2))), file('/Users/schulz/EPROVER/TPTP_6.0.0_FLAT/NLP042+1.p', ax11)). fof(c_0_36, axiom, (![X1]:![X2]:(object(X1,X2)=>impartial(X1,X2))), file('/Users/schulz/EPROVER/TPTP_6.0.0_FLAT/NLP042+1.p', ax18)). fof(c_0_37, axiom, (![X1]:![X2]:(organism(X1,X2)=>impartial(X1,X2))), file('/Users/schulz/EPROVER/TPTP_6.0.0_FLAT/NLP042+1.p', ax5)). fof(c_0_38, axiom, (![X1]:![X2]:(organism(X1,X2)=>living(X1,X2))), file('/Users/schulz/EPROVER/TPTP_6.0.0_FLAT/NLP042+1.p', ax4)). fof(c_0_39, axiom, (![X1]:![X2]:(human_person(X1,X2)=>human(X1,X2))), file('/Users/schulz/EPROVER/TPTP_6.0.0_FLAT/NLP042+1.p', ax3)). fof(c_0_40, axiom, (![X1]:![X2]:(human_person(X1,X2)=>animate(X1,X2))), file('/Users/schulz/EPROVER/TPTP_6.0.0_FLAT/NLP042+1.p', ax2)). fof(c_0_41, axiom, (![X1]:![X2]:(act(X1,X2)=>event(X1,X2))), file('/Users/schulz/EPROVER/TPTP_6.0.0_FLAT/NLP042+1.p', ax35)). fof(c_0_42, axiom, (![X1]:![X2]:(woman(X1,X2)=>female(X1,X2))), file('/Users/schulz/EPROVER/TPTP_6.0.0_FLAT/NLP042+1.p', ax1)). fof(c_0_43, axiom, (![X1]:![X2]:(order(X1,X2)=>event(X1,X2))), file('/Users/schulz/EPROVER/TPTP_6.0.0_FLAT/NLP042+1.p', ax28)). fof(c_0_44, axiom, (![X1]:![X2]:(mia_forename(X1,X2)=>forename(X1,X2))), file('/Users/schulz/EPROVER/TPTP_6.0.0_FLAT/NLP042+1.p', ax9)). fof(c_0_45, negated_conjecture, (~(~(?[X1]:(actual_world(X1)&?[X2]:?[X3]:?[X4]:?[X5]:((((((((((of(X1,X3,X2)&woman(X1,X2))&mia_forename(X1,X3))&forename(X1,X3))&shake_beverage(X1,X4))&event(X1,X5))&agent(X1,X5,X2))&patient(X1,X5,X4))&past(X1,X5))&nonreflexive(X1,X5))&order(X1,X5)))))), inference(assume_negation,[status(cth)],[c_0_0])). fof(c_0_46, plain, (![X3]:![X4]:(~shake_beverage(X3,X4)|beverage(X3,X4))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_1])])). fof(c_0_47, negated_conjecture, ((actual_world(esk1_0)&((((((((((of(esk1_0,esk3_0,esk2_0)&woman(esk1_0,esk2_0))&mia_forename(esk1_0,esk3_0))&forename(esk1_0,esk3_0))&shake_beverage(esk1_0,esk4_0))&event(esk1_0,esk5_0))&agent(esk1_0,esk5_0,esk2_0))&patient(esk1_0,esk5_0,esk4_0))&past(esk1_0,esk5_0))&nonreflexive(esk1_0,esk5_0))&order(esk1_0,esk5_0)))), inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_45])])])). fof(c_0_48, plain, (![X3]:![X4]:(~beverage(X3,X4)|food(X3,X4))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_2])])). cnf(c_0_49,plain,(beverage(X1,X2)|~shake_beverage(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_46])). cnf(c_0_50,negated_conjecture,(shake_beverage(esk1_0,esk4_0)), inference(split_conjunct,[status(thm)],[c_0_47])). fof(c_0_51, plain, (![X3]:![X4]:(~food(X3,X4)|substance_matter(X3,X4))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_3])])). cnf(c_0_52,plain,(food(X1,X2)|~beverage(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_48])). cnf(c_0_53,negated_conjecture,(beverage(esk1_0,esk4_0)), inference(spm,[status(thm)],[c_0_49, c_0_50]), ['final']). fof(c_0_54, plain, (![X3]:![X4]:(~forename(X3,X4)|relname(X3,X4))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_4])])). fof(c_0_55, plain, (![X3]:![X4]:(~woman(X3,X4)|human_person(X3,X4))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_5])])). fof(c_0_56, plain, (![X3]:![X4]:(~substance_matter(X3,X4)|object(X3,X4))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_6])])). cnf(c_0_57,plain,(substance_matter(X1,X2)|~food(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_51])). cnf(c_0_58,negated_conjecture,(food(esk1_0,esk4_0)), inference(spm,[status(thm)],[c_0_52, c_0_53]), ['final']). fof(c_0_59, plain, (![X3]:![X4]:(~relname(X3,X4)|relation(X3,X4))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_7])])). cnf(c_0_60,plain,(relname(X1,X2)|~forename(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_54])). cnf(c_0_61,negated_conjecture,(forename(esk1_0,esk3_0)), inference(split_conjunct,[status(thm)],[c_0_47])). fof(c_0_62, plain, (![X3]:![X4]:(~human_person(X3,X4)|organism(X3,X4))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_8])])). cnf(c_0_63,plain,(human_person(X1,X2)|~woman(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_55])). cnf(c_0_64,negated_conjecture,(woman(esk1_0,esk2_0)), inference(split_conjunct,[status(thm)],[c_0_47])). fof(c_0_65, plain, (![X3]:![X4]:(~object(X3,X4)|entity(X3,X4))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_9])])). cnf(c_0_66,plain,(object(X1,X2)|~substance_matter(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_56])). cnf(c_0_67,negated_conjecture,(substance_matter(esk1_0,esk4_0)), inference(spm,[status(thm)],[c_0_57, c_0_58]), ['final']). fof(c_0_68, plain, (![X3]:![X4]:(~relation(X3,X4)|abstraction(X3,X4))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_10])])). cnf(c_0_69,plain,(relation(X1,X2)|~relname(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_59])). cnf(c_0_70,negated_conjecture,(relname(esk1_0,esk3_0)), inference(spm,[status(thm)],[c_0_60, c_0_61]), ['final']). fof(c_0_71, plain, (![X3]:![X4]:(~event(X3,X4)|eventuality(X3,X4))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_11])])). fof(c_0_72, plain, (![X3]:![X4]:(~organism(X3,X4)|entity(X3,X4))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_12])])). cnf(c_0_73,plain,(organism(X1,X2)|~human_person(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_62])). cnf(c_0_74,negated_conjecture,(human_person(esk1_0,esk2_0)), inference(spm,[status(thm)],[c_0_63, c_0_64]), ['final']). fof(c_0_75, plain, (![X1]:![X2]:(existent(X1,X2)=>~nonexistent(X1,X2))), inference(fof_simplification,[status(thm)],[c_0_13])). fof(c_0_76, plain, (![X1]:![X2]:(specific(X1,X2)=>~general(X1,X2))), inference(fof_simplification,[status(thm)],[c_0_14])). fof(c_0_77, plain, (![X1]:![X2]:(nonliving(X1,X2)=>~living(X1,X2))), inference(fof_simplification,[status(thm)],[c_0_15])). fof(c_0_78, plain, (![X1]:![X2]:(nonhuman(X1,X2)=>~human(X1,X2))), inference(fof_simplification,[status(thm)],[c_0_16])). fof(c_0_79, plain, (![X1]:![X2]:(animate(X1,X2)=>~nonliving(X1,X2))), inference(fof_simplification,[status(thm)],[c_0_17])). fof(c_0_80, plain, (![X1]:![X2]:(unisex(X1,X2)=>~female(X1,X2))), inference(fof_simplification,[status(thm)],[c_0_18])). fof(c_0_81, plain, (![X3]:![X4]:(~entity(X3,X4)|specific(X3,X4))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_19])])). cnf(c_0_82,plain,(entity(X1,X2)|~object(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_65])). cnf(c_0_83,negated_conjecture,(object(esk1_0,esk4_0)), inference(spm,[status(thm)],[c_0_66, c_0_67]), ['final']). fof(c_0_84, plain, (![X3]:![X4]:(~object(X3,X4)|nonliving(X3,X4))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_20])])). fof(c_0_85, plain, (![X3]:![X4]:(~object(X3,X4)|unisex(X3,X4))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_21])])). fof(c_0_86, plain, (![X3]:![X4]:(~abstraction(X3,X4)|nonhuman(X3,X4))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_22])])). cnf(c_0_87,plain,(abstraction(X1,X2)|~relation(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_68])). cnf(c_0_88,negated_conjecture,(relation(esk1_0,esk3_0)), inference(spm,[status(thm)],[c_0_69, c_0_70]), ['final']). fof(c_0_89, plain, (![X3]:![X4]:(~abstraction(X3,X4)|unisex(X3,X4))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_23])])). fof(c_0_90, plain, (![X3]:![X4]:(~eventuality(X3,X4)|nonexistent(X3,X4))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_24])])). cnf(c_0_91,plain,(eventuality(X1,X2)|~event(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_71])). cnf(c_0_92,negated_conjecture,(event(esk1_0,esk5_0)), inference(split_conjunct,[status(thm)],[c_0_47])). fof(c_0_93, plain, (![X3]:![X4]:(~eventuality(X3,X4)|specific(X3,X4))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_25])])). cnf(c_0_94,plain,(entity(X1,X2)|~organism(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_72])). cnf(c_0_95,negated_conjecture,(organism(esk1_0,esk2_0)), inference(spm,[status(thm)],[c_0_73, c_0_74]), ['final']). fof(c_0_96, plain, (![X3]:![X4]:(~eventuality(X3,X4)|unisex(X3,X4))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_26])])). fof(c_0_97, plain, (![X5]:![X6]:![X7]:![X8]:(((~nonreflexive(X5,X6)|~agent(X5,X6,X7))|~patient(X5,X6,X8))|X7!=X8)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_27])])). fof(c_0_98, plain, (![X3]:![X4]:(~entity(X3,X4)|thing(X3,X4))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_28])])). fof(c_0_99, plain, (![X3]:![X4]:(~abstraction(X3,X4)|thing(X3,X4))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_29])])). fof(c_0_100, plain, (![X3]:![X4]:(~eventuality(X3,X4)|thing(X3,X4))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_30])])). fof(c_0_101, plain, (![X5]:![X6]:![X7]:![X8]:(((~entity(X5,X6)|~forename(X5,X7))|~of(X5,X7,X6))|((~forename(X5,X8)|X8=X7)|~of(X5,X8,X6)))), inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_31])])])). fof(c_0_102, plain, (![X3]:![X4]:(~order(X3,X4)|act(X3,X4))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_32])])). fof(c_0_103, plain, (![X3]:![X4]:(~thing(X3,X4)|singleton(X3,X4))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_33])])). fof(c_0_104, plain, (![X3]:![X4]:(~entity(X3,X4)|existent(X3,X4))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_34])])). fof(c_0_105, plain, (![X3]:![X4]:(~abstraction(X3,X4)|general(X3,X4))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_35])])). fof(c_0_106, plain, (![X3]:![X4]:(~object(X3,X4)|impartial(X3,X4))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_36])])). fof(c_0_107, plain, (![X3]:![X4]:(~organism(X3,X4)|impartial(X3,X4))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_37])])). fof(c_0_108, plain, (![X3]:![X4]:(~organism(X3,X4)|living(X3,X4))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_38])])). fof(c_0_109, plain, (![X3]:![X4]:(~human_person(X3,X4)|human(X3,X4))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_39])])). fof(c_0_110, plain, (![X3]:![X4]:(~human_person(X3,X4)|animate(X3,X4))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_40])])). fof(c_0_111, plain, (![X3]:![X4]:(~act(X3,X4)|event(X3,X4))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_41])])). fof(c_0_112, plain, (![X3]:![X4]:(~woman(X3,X4)|female(X3,X4))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_42])])). fof(c_0_113, plain, (![X3]:![X4]:(~order(X3,X4)|event(X3,X4))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_43])])). fof(c_0_114, plain, (![X3]:![X4]:(~mia_forename(X3,X4)|forename(X3,X4))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_44])])). fof(c_0_115, plain, (![X3]:![X4]:(~existent(X3,X4)|~nonexistent(X3,X4))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_75])])). fof(c_0_116, plain, (![X3]:![X4]:(~specific(X3,X4)|~general(X3,X4))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_76])])). fof(c_0_117, plain, (![X3]:![X4]:(~nonliving(X3,X4)|~living(X3,X4))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_77])])). fof(c_0_118, plain, (![X3]:![X4]:(~nonhuman(X3,X4)|~human(X3,X4))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_78])])). fof(c_0_119, plain, (![X3]:![X4]:(~animate(X3,X4)|~nonliving(X3,X4))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_79])])). fof(c_0_120, plain, (![X3]:![X4]:(~unisex(X3,X4)|~female(X3,X4))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_80])])). cnf(c_0_121,plain,(specific(X1,X2)|~entity(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_81])). cnf(c_0_122,negated_conjecture,(entity(esk1_0,esk4_0)), inference(spm,[status(thm)],[c_0_82, c_0_83]), ['final']). cnf(c_0_123,plain,(nonliving(X1,X2)|~object(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_84])). cnf(c_0_124,plain,(unisex(X1,X2)|~object(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_85])). cnf(c_0_125,plain,(nonhuman(X1,X2)|~abstraction(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_86])). cnf(c_0_126,negated_conjecture,(abstraction(esk1_0,esk3_0)), inference(spm,[status(thm)],[c_0_87, c_0_88]), ['final']). cnf(c_0_127,plain,(unisex(X1,X2)|~abstraction(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_89])). cnf(c_0_128,plain,(nonexistent(X1,X2)|~eventuality(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_90])). cnf(c_0_129,negated_conjecture,(eventuality(esk1_0,esk5_0)), inference(spm,[status(thm)],[c_0_91, c_0_92]), ['final']). cnf(c_0_130,plain,(specific(X1,X2)|~eventuality(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_93])). cnf(c_0_131,negated_conjecture,(entity(esk1_0,esk2_0)), inference(spm,[status(thm)],[c_0_94, c_0_95]), ['final']). cnf(c_0_132,plain,(unisex(X1,X2)|~eventuality(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_96])). cnf(c_0_133,plain,(X1!=X2|~patient(X3,X4,X2)|~agent(X3,X4,X1)|~nonreflexive(X3,X4)), inference(split_conjunct,[status(thm)],[c_0_97])). cnf(c_0_134,plain,(thing(X1,X2)|~entity(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_98])). cnf(c_0_135,plain,(thing(X1,X2)|~abstraction(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_99])). cnf(c_0_136,plain,(thing(X1,X2)|~eventuality(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_100])). cnf(c_0_137,plain,(X2=X4|~of(X1,X2,X3)|~forename(X1,X2)|~of(X1,X4,X3)|~forename(X1,X4)|~entity(X1,X3)), inference(split_conjunct,[status(thm)],[c_0_101])). cnf(c_0_138,negated_conjecture,(of(esk1_0,esk3_0,esk2_0)), inference(split_conjunct,[status(thm)],[c_0_47])). cnf(c_0_139,plain,(act(X1,X2)|~order(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_102])). cnf(c_0_140,plain,(singleton(X1,X2)|~thing(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_103])). cnf(c_0_141,plain,(existent(X1,X2)|~entity(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_104])). cnf(c_0_142,plain,(general(X1,X2)|~abstraction(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_105])). cnf(c_0_143,plain,(impartial(X1,X2)|~object(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_106])). cnf(c_0_144,plain,(impartial(X1,X2)|~organism(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_107])). cnf(c_0_145,plain,(living(X1,X2)|~organism(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_108])). cnf(c_0_146,plain,(human(X1,X2)|~human_person(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_109])). cnf(c_0_147,plain,(animate(X1,X2)|~human_person(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_110])). cnf(c_0_148,plain,(event(X1,X2)|~act(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_111])). cnf(c_0_149,plain,(female(X1,X2)|~woman(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_112])). cnf(c_0_150,plain,(event(X1,X2)|~order(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_113])). cnf(c_0_151,plain,(forename(X1,X2)|~mia_forename(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_114])). cnf(c_0_152,plain,(~nonexistent(X1,X2)|~existent(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_115])). cnf(c_0_153,plain,(~general(X1,X2)|~specific(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_116])). cnf(c_0_154,plain,(~living(X1,X2)|~nonliving(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_117])). cnf(c_0_155,plain,(~human(X1,X2)|~nonhuman(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_118])). cnf(c_0_156,plain,(~nonliving(X1,X2)|~animate(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_119])). cnf(c_0_157,plain,(~female(X1,X2)|~unisex(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_120])). cnf(c_0_158,negated_conjecture,(specific(esk1_0,esk4_0)), inference(spm,[status(thm)],[c_0_121, c_0_122]), ['final']). cnf(c_0_159,negated_conjecture,(nonliving(esk1_0,esk4_0)), inference(spm,[status(thm)],[c_0_123, c_0_83]), ['final']). cnf(c_0_160,negated_conjecture,(unisex(esk1_0,esk4_0)), inference(spm,[status(thm)],[c_0_124, c_0_83]), ['final']). cnf(c_0_161,negated_conjecture,(nonhuman(esk1_0,esk3_0)), inference(spm,[status(thm)],[c_0_125, c_0_126]), ['final']). cnf(c_0_162,negated_conjecture,(unisex(esk1_0,esk3_0)), inference(spm,[status(thm)],[c_0_127, c_0_126]), ['final']). cnf(c_0_163,negated_conjecture,(nonexistent(esk1_0,esk5_0)), inference(spm,[status(thm)],[c_0_128, c_0_129]), ['final']). cnf(c_0_164,negated_conjecture,(specific(esk1_0,esk5_0)), inference(spm,[status(thm)],[c_0_130, c_0_129]), ['final']). cnf(c_0_165,negated_conjecture,(specific(esk1_0,esk2_0)), inference(spm,[status(thm)],[c_0_121, c_0_131]), ['final']). cnf(c_0_166,negated_conjecture,(unisex(esk1_0,esk5_0)), inference(spm,[status(thm)],[c_0_132, c_0_129]), ['final']). cnf(c_0_167,plain,(~patient(X1,X2,X3)|~agent(X1,X2,X3)|~nonreflexive(X1,X2)), inference(er,[status(thm)],[c_0_133]), ['final']). cnf(c_0_168,negated_conjecture,(patient(esk1_0,esk5_0,esk4_0)), inference(split_conjunct,[status(thm)],[c_0_47])). cnf(c_0_169,negated_conjecture,(nonreflexive(esk1_0,esk5_0)), inference(split_conjunct,[status(thm)],[c_0_47])). cnf(c_0_170,negated_conjecture,(thing(esk1_0,esk4_0)), inference(spm,[status(thm)],[c_0_134, c_0_122]), ['final']). cnf(c_0_171,negated_conjecture,(thing(esk1_0,esk3_0)), inference(spm,[status(thm)],[c_0_135, c_0_126]), ['final']). cnf(c_0_172,negated_conjecture,(thing(esk1_0,esk5_0)), inference(spm,[status(thm)],[c_0_136, c_0_129]), ['final']). cnf(c_0_173,negated_conjecture,(order(esk1_0,esk5_0)), inference(split_conjunct,[status(thm)],[c_0_47])). cnf(c_0_174,negated_conjecture,(thing(esk1_0,esk2_0)), inference(spm,[status(thm)],[c_0_134, c_0_131]), ['final']). cnf(c_0_175,negated_conjecture,(agent(esk1_0,esk5_0,esk2_0)), inference(split_conjunct,[status(thm)],[c_0_47])). cnf(c_0_176,negated_conjecture,(past(esk1_0,esk5_0)), inference(split_conjunct,[status(thm)],[c_0_47])). cnf(c_0_177,negated_conjecture,(mia_forename(esk1_0,esk3_0)), inference(split_conjunct,[status(thm)],[c_0_47])). cnf(c_0_178,negated_conjecture,(actual_world(esk1_0)), inference(split_conjunct,[status(thm)],[c_0_47])). cnf(c_0_179,negated_conjecture,(X1=esk3_0|~of(esk1_0,X1,esk2_0)|~forename(esk1_0,X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_137, c_0_138]), c_0_61]), c_0_131])]), ['final']). cnf(c_0_180,plain,(X1=X2|~of(X3,X2,X4)|~of(X3,X1,X4)|~forename(X3,X2)|~forename(X3,X1)|~entity(X3,X4)), c_0_137, ['final']). cnf(c_0_181,plain,(act(X1,X2)|~order(X1,X2)), c_0_139, ['final']). cnf(c_0_182,plain,(singleton(X1,X2)|~thing(X1,X2)), c_0_140, ['final']). cnf(c_0_183,plain,(nonexistent(X1,X2)|~eventuality(X1,X2)), c_0_128, ['final']). cnf(c_0_184,plain,(beverage(X1,X2)|~shake_beverage(X1,X2)), c_0_49, ['final']). cnf(c_0_185,plain,(specific(X1,X2)|~eventuality(X1,X2)), c_0_130, ['final']). cnf(c_0_186,plain,(specific(X1,X2)|~entity(X1,X2)), c_0_121, ['final']). cnf(c_0_187,plain,(existent(X1,X2)|~entity(X1,X2)), c_0_141, ['final']). cnf(c_0_188,plain,(nonliving(X1,X2)|~object(X1,X2)), c_0_123, ['final']). cnf(c_0_189,plain,(relname(X1,X2)|~forename(X1,X2)), c_0_60, ['final']). cnf(c_0_190,plain,(thing(X1,X2)|~eventuality(X1,X2)), c_0_136, ['final']). cnf(c_0_191,plain,(thing(X1,X2)|~abstraction(X1,X2)), c_0_135, ['final']). cnf(c_0_192,plain,(thing(X1,X2)|~entity(X1,X2)), c_0_134, ['final']). cnf(c_0_193,plain,(nonhuman(X1,X2)|~abstraction(X1,X2)), c_0_125, ['final']). cnf(c_0_194,plain,(general(X1,X2)|~abstraction(X1,X2)), c_0_142, ['final']). cnf(c_0_195,plain,(unisex(X1,X2)|~eventuality(X1,X2)), c_0_132, ['final']). cnf(c_0_196,plain,(unisex(X1,X2)|~object(X1,X2)), c_0_124, ['final']). cnf(c_0_197,plain,(unisex(X1,X2)|~abstraction(X1,X2)), c_0_127, ['final']). cnf(c_0_198,plain,(impartial(X1,X2)|~object(X1,X2)), c_0_143, ['final']). cnf(c_0_199,plain,(impartial(X1,X2)|~organism(X1,X2)), c_0_144, ['final']). cnf(c_0_200,plain,(living(X1,X2)|~organism(X1,X2)), c_0_145, ['final']). cnf(c_0_201,plain,(organism(X1,X2)|~human_person(X1,X2)), c_0_73, ['final']). cnf(c_0_202,plain,(human(X1,X2)|~human_person(X1,X2)), c_0_146, ['final']). cnf(c_0_203,plain,(animate(X1,X2)|~human_person(X1,X2)), c_0_147, ['final']). cnf(c_0_204,plain,(eventuality(X1,X2)|~event(X1,X2)), c_0_91, ['final']). cnf(c_0_205,plain,(event(X1,X2)|~act(X1,X2)), c_0_148, ['final']). cnf(c_0_206,plain,(female(X1,X2)|~woman(X1,X2)), c_0_149, ['final']). cnf(c_0_207,plain,(event(X1,X2)|~order(X1,X2)), c_0_150, ['final']). cnf(c_0_208,plain,(food(X1,X2)|~beverage(X1,X2)), c_0_52, ['final']). cnf(c_0_209,plain,(substance_matter(X1,X2)|~food(X1,X2)), c_0_57, ['final']). cnf(c_0_210,plain,(object(X1,X2)|~substance_matter(X1,X2)), c_0_66, ['final']). cnf(c_0_211,plain,(relation(X1,X2)|~relname(X1,X2)), c_0_69, ['final']). cnf(c_0_212,plain,(abstraction(X1,X2)|~relation(X1,X2)), c_0_87, ['final']). cnf(c_0_213,plain,(forename(X1,X2)|~mia_forename(X1,X2)), c_0_151, ['final']). cnf(c_0_214,plain,(entity(X1,X2)|~object(X1,X2)), c_0_82, ['final']). cnf(c_0_215,plain,(entity(X1,X2)|~organism(X1,X2)), c_0_94, ['final']). cnf(c_0_216,plain,(human_person(X1,X2)|~woman(X1,X2)), c_0_63, ['final']). cnf(c_0_217,plain,(~nonexistent(X1,X2)|~existent(X1,X2)), c_0_152, ['final']). cnf(c_0_218,plain,(~specific(X1,X2)|~general(X1,X2)), c_0_153, ['final']). cnf(c_0_219,plain,(~nonliving(X1,X2)|~living(X1,X2)), c_0_154, ['final']). cnf(c_0_220,plain,(~nonhuman(X1,X2)|~human(X1,X2)), c_0_155, ['final']). cnf(c_0_221,plain,(~nonliving(X1,X2)|~animate(X1,X2)), c_0_156, ['final']). cnf(c_0_222,plain,(~unisex(X1,X2)|~female(X1,X2)), c_0_157, ['final']). cnf(c_0_223,negated_conjecture,(~general(esk1_0,esk4_0)), inference(spm,[status(thm)],[c_0_153, c_0_158]), ['final']). cnf(c_0_224,negated_conjecture,(~living(esk1_0,esk4_0)), inference(spm,[status(thm)],[c_0_154, c_0_159]), ['final']). cnf(c_0_225,negated_conjecture,(~animate(esk1_0,esk4_0)), inference(spm,[status(thm)],[c_0_156, c_0_159]), ['final']). cnf(c_0_226,negated_conjecture,(~female(esk1_0,esk4_0)), inference(spm,[status(thm)],[c_0_157, c_0_160]), ['final']). cnf(c_0_227,negated_conjecture,(~human(esk1_0,esk3_0)), inference(spm,[status(thm)],[c_0_155, c_0_161]), ['final']). cnf(c_0_228,negated_conjecture,(~female(esk1_0,esk3_0)), inference(spm,[status(thm)],[c_0_157, c_0_162]), ['final']). cnf(c_0_229,negated_conjecture,(~existent(esk1_0,esk5_0)), inference(spm,[status(thm)],[c_0_152, c_0_163]), ['final']). cnf(c_0_230,negated_conjecture,(~general(esk1_0,esk5_0)), inference(spm,[status(thm)],[c_0_153, c_0_164]), ['final']). cnf(c_0_231,negated_conjecture,(~general(esk1_0,esk2_0)), inference(spm,[status(thm)],[c_0_153, c_0_165]), ['final']). cnf(c_0_232,negated_conjecture,(~female(esk1_0,esk5_0)), inference(spm,[status(thm)],[c_0_157, c_0_166]), ['final']). cnf(c_0_233,negated_conjecture,(~agent(esk1_0,esk5_0,esk4_0)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_167, c_0_168]), c_0_169])]), ['final']). cnf(c_0_234,negated_conjecture,(singleton(esk1_0,esk4_0)), inference(spm,[status(thm)],[c_0_140, c_0_170]), ['final']). cnf(c_0_235,negated_conjecture,(existent(esk1_0,esk4_0)), inference(spm,[status(thm)],[c_0_141, c_0_122]), ['final']). cnf(c_0_236,negated_conjecture,(impartial(esk1_0,esk4_0)), inference(spm,[status(thm)],[c_0_143, c_0_83]), ['final']). cnf(c_0_237,negated_conjecture,(singleton(esk1_0,esk3_0)), inference(spm,[status(thm)],[c_0_140, c_0_171]), ['final']). cnf(c_0_238,negated_conjecture,(general(esk1_0,esk3_0)), inference(spm,[status(thm)],[c_0_142, c_0_126]), ['final']). cnf(c_0_239,negated_conjecture,(singleton(esk1_0,esk5_0)), inference(spm,[status(thm)],[c_0_140, c_0_172]), ['final']). cnf(c_0_240,negated_conjecture,(act(esk1_0,esk5_0)), inference(spm,[status(thm)],[c_0_139, c_0_173]), ['final']). cnf(c_0_241,negated_conjecture,(singleton(esk1_0,esk2_0)), inference(spm,[status(thm)],[c_0_140, c_0_174]), ['final']). cnf(c_0_242,negated_conjecture,(existent(esk1_0,esk2_0)), inference(spm,[status(thm)],[c_0_141, c_0_131]), ['final']). cnf(c_0_243,negated_conjecture,(impartial(esk1_0,esk2_0)), inference(spm,[status(thm)],[c_0_144, c_0_95]), ['final']). cnf(c_0_244,negated_conjecture,(living(esk1_0,esk2_0)), inference(spm,[status(thm)],[c_0_145, c_0_95]), ['final']). cnf(c_0_245,negated_conjecture,(human(esk1_0,esk2_0)), inference(spm,[status(thm)],[c_0_146, c_0_74]), ['final']). cnf(c_0_246,negated_conjecture,(animate(esk1_0,esk2_0)), inference(spm,[status(thm)],[c_0_147, c_0_74]), ['final']). cnf(c_0_247,negated_conjecture,(female(esk1_0,esk2_0)), inference(spm,[status(thm)],[c_0_149, c_0_64]), ['final']). cnf(c_0_248,negated_conjecture,(patient(esk1_0,esk5_0,esk4_0)), c_0_168, ['final']). cnf(c_0_249,negated_conjecture,(agent(esk1_0,esk5_0,esk2_0)), c_0_175, ['final']). cnf(c_0_250,negated_conjecture,(of(esk1_0,esk3_0,esk2_0)), c_0_138, ['final']). cnf(c_0_251,negated_conjecture,(past(esk1_0,esk5_0)), c_0_176, ['final']). cnf(c_0_252,negated_conjecture,(nonreflexive(esk1_0,esk5_0)), c_0_169, ['final']). cnf(c_0_253,negated_conjecture,(event(esk1_0,esk5_0)), c_0_92, ['final']). cnf(c_0_254,negated_conjecture,(order(esk1_0,esk5_0)), c_0_173, ['final']). cnf(c_0_255,negated_conjecture,(shake_beverage(esk1_0,esk4_0)), c_0_50, ['final']). cnf(c_0_256,negated_conjecture,(forename(esk1_0,esk3_0)), c_0_61, ['final']). cnf(c_0_257,negated_conjecture,(mia_forename(esk1_0,esk3_0)), c_0_177, ['final']). cnf(c_0_258,negated_conjecture,(woman(esk1_0,esk2_0)), c_0_64, ['final']). cnf(c_0_259,negated_conjecture,(actual_world(esk1_0)), c_0_178, ['final']). # SZS output end Saturation.  ### Sample solution for SWV017+1 # No SInE strategy applied # Trying AutoSched0 for 151 seconds # AutoSched0-Mode selected heuristic H_____047_C18_F1_PI_AE_R8_CS_SP_S2S # and selection function SelectNewComplexAHP. # # No proof found! # SZS status Satisfiable # SZS output start Saturation. fof(c_0_0, axiom, (![X1]:![X2]:![X3]:![X4]:![X5]:![X6]:![X7]:((((message(sent(X1,t,triple(X1,X2,encrypt(triple(X3,X4,X5),X6))))&t_holds(key(X6,X1)))&t_holds(key(X7,X3)))&a_nonce(X4))=>message(sent(t,X3,triple(encrypt(quadruple(X1,X4,generate_key(X4),X5),X7),encrypt(triple(X3,generate_key(X4),X5),X6),X2))))), file('/Users/schulz/EPROVER/TPTP_6.0.0_FLAT/SWV017+1.p', server_t_generates_key)). fof(c_0_1, axiom, (![X1]:![X2]:((message(sent(X1,b,pair(X1,X2)))&fresh_to_b(X2))=>(message(sent(b,t,triple(b,generate_b_nonce(X2),encrypt(triple(X1,X2,generate_expiration_time(X2)),bt))))&b_stored(pair(X1,X2))))), file('/Users/schulz/EPROVER/TPTP_6.0.0_FLAT/SWV017+1.p', b_creates_freash_nonces_in_time)). fof(c_0_2, axiom, (t_holds(key(bt,b))), file('/Users/schulz/EPROVER/TPTP_6.0.0_FLAT/SWV017+1.p', t_holds_key_bt_for_b)). fof(c_0_3, axiom, (![X1]:![X2]:![X3]:(message(sent(X1,X2,X3))=>intruder_message(X3))), file('/Users/schulz/EPROVER/TPTP_6.0.0_FLAT/SWV017+1.p', intruder_can_record)). fof(c_0_4, axiom, (message(sent(a,b,pair(a,an_a_nonce)))), file('/Users/schulz/EPROVER/TPTP_6.0.0_FLAT/SWV017+1.p', a_sent_message_i_to_b)). fof(c_0_5, axiom, (fresh_to_b(an_a_nonce)), file('/Users/schulz/EPROVER/TPTP_6.0.0_FLAT/SWV017+1.p', nonce_a_is_fresh_to_b)). fof(c_0_6, axiom, (![X1]:![X2]:![X3]:![X4]:![X5]:![X6]:((message(sent(t,a,triple(encrypt(quadruple(X5,X6,X3,X2),at),X4,X1)))&a_stored(pair(X5,X6)))=>(message(sent(a,X5,pair(X4,encrypt(X1,X3))))&a_holds(key(X3,X5))))), file('/Users/schulz/EPROVER/TPTP_6.0.0_FLAT/SWV017+1.p', a_forwards_secure)). fof(c_0_7, axiom, (t_holds(key(at,a))), file('/Users/schulz/EPROVER/TPTP_6.0.0_FLAT/SWV017+1.p', t_holds_key_at_for_a)). fof(c_0_8, axiom, (![X1]:![X2]:![X3]:(((intruder_message(X1)&party_of_protocol(X2))&party_of_protocol(X3))=>message(sent(X2,X3,X1)))), file('/Users/schulz/EPROVER/TPTP_6.0.0_FLAT/SWV017+1.p', intruder_message_sent)). fof(c_0_9, axiom, (![X1]:![X2]:![X3]:(intruder_message(triple(X1,X2,X3))=>((intruder_message(X1)&intruder_message(X2))&intruder_message(X3)))), file('/Users/schulz/EPROVER/TPTP_6.0.0_FLAT/SWV017+1.p', intruder_decomposes_triples)). fof(c_0_10, axiom, (a_stored(pair(b,an_a_nonce))), file('/Users/schulz/EPROVER/TPTP_6.0.0_FLAT/SWV017+1.p', a_stored_message_i)). fof(c_0_11, axiom, (a_nonce(an_a_nonce)), file('/Users/schulz/EPROVER/TPTP_6.0.0_FLAT/SWV017+1.p', an_a_nonce_is_a_nonce)). fof(c_0_12, axiom, (party_of_protocol(b)), file('/Users/schulz/EPROVER/TPTP_6.0.0_FLAT/SWV017+1.p', b_is_party_of_protocol)). fof(c_0_13, axiom, (![X1]:![X2]:((intruder_message(X1)&intruder_message(X2))=>intruder_message(pair(X1,X2)))), file('/Users/schulz/EPROVER/TPTP_6.0.0_FLAT/SWV017+1.p', intruder_composes_pairs)). fof(c_0_14, axiom, (party_of_protocol(t)), file('/Users/schulz/EPROVER/TPTP_6.0.0_FLAT/SWV017+1.p', t_is_party_of_protocol)). fof(c_0_15, axiom, (![X1]:![X2]:![X3]:(((intruder_message(X1)&intruder_message(X2))&intruder_message(X3))=>intruder_message(triple(X1,X2,X3)))), file('/Users/schulz/EPROVER/TPTP_6.0.0_FLAT/SWV017+1.p', intruder_composes_triples)). fof(c_0_16, axiom, (party_of_protocol(a)), file('/Users/schulz/EPROVER/TPTP_6.0.0_FLAT/SWV017+1.p', a_is_party_of_protocol)). fof(c_0_17, axiom, (![X2]:![X4]:![X5]:(((message(sent(X4,b,pair(encrypt(triple(X4,X2,generate_expiration_time(X5)),bt),encrypt(generate_b_nonce(X5),X2))))&a_key(X2))&b_stored(pair(X4,X5)))=>b_holds(key(X2,X4)))), file('/Users/schulz/EPROVER/TPTP_6.0.0_FLAT/SWV017+1.p', b_accepts_secure_session_key)). fof(c_0_18, axiom, (![X1]:![X2]:(intruder_message(pair(X1,X2))=>(intruder_message(X1)&intruder_message(X2)))), file('/Users/schulz/EPROVER/TPTP_6.0.0_FLAT/SWV017+1.p', intruder_decomposes_pairs)). fof(c_0_19, axiom, (![X1]:![X2]:![X3]:(((intruder_message(X1)&intruder_holds(key(X2,X3)))&party_of_protocol(X3))=>intruder_message(encrypt(X1,X2)))), file('/Users/schulz/EPROVER/TPTP_6.0.0_FLAT/SWV017+1.p', intruder_key_encrypts)). fof(c_0_20, axiom, (![X2]:![X3]:((intruder_message(X2)&party_of_protocol(X3))=>intruder_holds(key(X2,X3)))), file('/Users/schulz/EPROVER/TPTP_6.0.0_FLAT/SWV017+1.p', intruder_holds_key)). fof(c_0_21, axiom, (![X1]:a_key(generate_key(X1))), file('/Users/schulz/EPROVER/TPTP_6.0.0_FLAT/SWV017+1.p', generated_keys_are_keys)). fof(c_0_22, axiom, (![X1]:~(a_nonce(generate_key(X1)))), file('/Users/schulz/EPROVER/TPTP_6.0.0_FLAT/SWV017+1.p', generated_keys_are_not_nonces)). fof(c_0_23, axiom, (![X1]:(fresh_intruder_nonce(X1)=>(fresh_to_b(X1)&intruder_message(X1)))), file('/Users/schulz/EPROVER/TPTP_6.0.0_FLAT/SWV017+1.p', fresh_intruder_nonces_are_fresh_to_b)). fof(c_0_24, axiom, (![X1]:(fresh_intruder_nonce(X1)=>fresh_intruder_nonce(generate_intruder_nonce(X1)))), file('/Users/schulz/EPROVER/TPTP_6.0.0_FLAT/SWV017+1.p', can_generate_more_fresh_intruder_nonces)). fof(c_0_25, axiom, (![X1]:![X2]:![X3]:(((intruder_message(encrypt(X1,X2))&intruder_holds(key(X2,X3)))&party_of_protocol(X3))=>intruder_message(X2))), file('/Users/schulz/EPROVER/TPTP_6.0.0_FLAT/SWV017+1.p', intruder_interception)). fof(c_0_26, axiom, (![X1]:![X2]:![X3]:![X4]:(intruder_message(quadruple(X1,X2,X3,X4))=>(((intruder_message(X1)&intruder_message(X2))&intruder_message(X3))&intruder_message(X4)))), file('/Users/schulz/EPROVER/TPTP_6.0.0_FLAT/SWV017+1.p', intruder_decomposes_quadruples)). fof(c_0_27, axiom, (![X1]:![X2]:![X3]:![X4]:((((intruder_message(X1)&intruder_message(X2))&intruder_message(X3))&intruder_message(X4))=>intruder_message(quadruple(X1,X2,X3,X4)))), file('/Users/schulz/EPROVER/TPTP_6.0.0_FLAT/SWV017+1.p', intruder_composes_quadruples)). fof(c_0_28, axiom, (![X1]:~((a_key(X1)&a_nonce(X1)))), file('/Users/schulz/EPROVER/TPTP_6.0.0_FLAT/SWV017+1.p', nothing_is_a_nonce_and_a_key)). fof(c_0_29, axiom, (![X1]:(a_nonce(generate_expiration_time(X1))&a_nonce(generate_b_nonce(X1)))), file('/Users/schulz/EPROVER/TPTP_6.0.0_FLAT/SWV017+1.p', generated_times_and_nonces_are_nonces)). fof(c_0_30, axiom, (fresh_intruder_nonce(an_intruder_nonce)), file('/Users/schulz/EPROVER/TPTP_6.0.0_FLAT/SWV017+1.p', an_intruder_nonce_is_a_fresh_intruder_nonce)). fof(c_0_31, axiom, (b_holds(key(bt,t))), file('/Users/schulz/EPROVER/TPTP_6.0.0_FLAT/SWV017+1.p', b_hold_key_bt_for_t)). fof(c_0_32, axiom, (a_holds(key(at,t))), file('/Users/schulz/EPROVER/TPTP_6.0.0_FLAT/SWV017+1.p', a_holds_key_at_for_t)). fof(c_0_33, plain, (![X8]:![X9]:![X10]:![X11]:![X12]:![X13]:![X14]:((((~message(sent(X8,t,triple(X8,X9,encrypt(triple(X10,X11,X12),X13))))|~t_holds(key(X13,X8)))|~t_holds(key(X14,X10)))|~a_nonce(X11))|message(sent(t,X10,triple(encrypt(quadruple(X8,X11,generate_key(X11),X12),X14),encrypt(triple(X10,generate_key(X11),X12),X13),X9))))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_0])])). fof(c_0_34, plain, (![X3]:![X4]:((message(sent(b,t,triple(b,generate_b_nonce(X4),encrypt(triple(X3,X4,generate_expiration_time(X4)),bt))))|(~message(sent(X3,b,pair(X3,X4)))|~fresh_to_b(X4)))&(b_stored(pair(X3,X4))|(~message(sent(X3,b,pair(X3,X4)))|~fresh_to_b(X4))))), inference(distribute,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_1])])])). cnf(c_0_35,plain,(message(sent(t,X1,triple(encrypt(quadruple(X2,X3,generate_key(X3),X4),X5),encrypt(triple(X1,generate_key(X3),X4),X6),X7)))|~a_nonce(X3)|~t_holds(key(X5,X1))|~t_holds(key(X6,X2))|~message(sent(X2,t,triple(X2,X7,encrypt(triple(X1,X3,X4),X6))))), inference(split_conjunct,[status(thm)],[c_0_33])). cnf(c_0_36,plain,(t_holds(key(bt,b))), inference(split_conjunct,[status(thm)],[c_0_2])). fof(c_0_37, plain, (![X4]:![X5]:![X6]:(~message(sent(X4,X5,X6))|intruder_message(X6))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_3])])). cnf(c_0_38,plain,(message(sent(b,t,triple(b,generate_b_nonce(X1),encrypt(triple(X2,X1,generate_expiration_time(X1)),bt))))|~fresh_to_b(X1)|~message(sent(X2,b,pair(X2,X1)))), inference(split_conjunct,[status(thm)],[c_0_34])). cnf(c_0_39,plain,(message(sent(a,b,pair(a,an_a_nonce)))), inference(split_conjunct,[status(thm)],[c_0_4])). cnf(c_0_40,plain,(fresh_to_b(an_a_nonce)), inference(split_conjunct,[status(thm)],[c_0_5])). fof(c_0_41, plain, (![X7]:![X8]:![X9]:![X10]:![X11]:![X12]:((message(sent(a,X11,pair(X10,encrypt(X7,X9))))|(~message(sent(t,a,triple(encrypt(quadruple(X11,X12,X9,X8),at),X10,X7)))|~a_stored(pair(X11,X12))))&(a_holds(key(X9,X11))|(~message(sent(t,a,triple(encrypt(quadruple(X11,X12,X9,X8),at),X10,X7)))|~a_stored(pair(X11,X12)))))), inference(distribute,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_6])])])])])). cnf(c_0_42,plain,(message(sent(t,X1,triple(encrypt(quadruple(b,X2,generate_key(X2),X3),X4),encrypt(triple(X1,generate_key(X2),X3),bt),X5)))|~a_nonce(X2)|~t_holds(key(X4,X1))|~message(sent(b,t,triple(b,X5,encrypt(triple(X1,X2,X3),bt))))), inference(spm,[status(thm)],[c_0_35, c_0_36]), ['final']). cnf(c_0_43,plain,(t_holds(key(at,a))), inference(split_conjunct,[status(thm)],[c_0_7])). fof(c_0_44, plain, (![X4]:![X5]:![X6]:(((~intruder_message(X4)|~party_of_protocol(X5))|~party_of_protocol(X6))|message(sent(X5,X6,X4)))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_8])])). fof(c_0_45, plain, (![X4]:![X5]:![X6]:(((intruder_message(X4)|~intruder_message(triple(X4,X5,X6)))&(intruder_message(X5)|~intruder_message(triple(X4,X5,X6))))&(intruder_message(X6)|~intruder_message(triple(X4,X5,X6))))), inference(distribute,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_9])])])). cnf(c_0_46,plain,(intruder_message(X1)|~message(sent(X2,X3,X1))), inference(split_conjunct,[status(thm)],[c_0_37])). cnf(c_0_47,plain,(message(sent(b,t,triple(b,generate_b_nonce(an_a_nonce),encrypt(triple(a,an_a_nonce,generate_expiration_time(an_a_nonce)),bt))))), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_38, c_0_39]), c_0_40])]), ['final']). cnf(c_0_48,plain,(message(sent(a,X1,pair(X5,encrypt(X6,X3))))|~a_stored(pair(X1,X2))|~message(sent(t,a,triple(encrypt(quadruple(X1,X2,X3,X4),at),X5,X6)))), inference(split_conjunct,[status(thm)],[c_0_41])). cnf(c_0_49,plain,(a_stored(pair(b,an_a_nonce))), inference(split_conjunct,[status(thm)],[c_0_10])). cnf(c_0_50,plain,(message(sent(t,a,triple(encrypt(quadruple(b,X1,generate_key(X1),X2),at),encrypt(triple(a,generate_key(X1),X2),bt),X3)))|~a_nonce(X1)|~message(sent(b,t,triple(b,X3,encrypt(triple(a,X1,X2),bt))))), inference(spm,[status(thm)],[c_0_42, c_0_43]), ['final']). cnf(c_0_51,plain,(a_nonce(an_a_nonce)), inference(split_conjunct,[status(thm)],[c_0_11])). cnf(c_0_52,plain,(b_stored(pair(X2,X1))|~fresh_to_b(X1)|~message(sent(X2,b,pair(X2,X1)))), inference(split_conjunct,[status(thm)],[c_0_34])). cnf(c_0_53,plain,(message(sent(X1,X2,X3))|~party_of_protocol(X2)|~party_of_protocol(X1)|~intruder_message(X3)), inference(split_conjunct,[status(thm)],[c_0_44])). cnf(c_0_54,plain,(party_of_protocol(b)), inference(split_conjunct,[status(thm)],[c_0_12])). fof(c_0_55, plain, (![X3]:![X4]:((~intruder_message(X3)|~intruder_message(X4))|intruder_message(pair(X3,X4)))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_13])])). cnf(c_0_56,plain,(party_of_protocol(t)), inference(split_conjunct,[status(thm)],[c_0_14])). fof(c_0_57, plain, (![X4]:![X5]:![X6]:(((~intruder_message(X4)|~intruder_message(X5))|~intruder_message(X6))|intruder_message(triple(X4,X5,X6)))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_15])])). cnf(c_0_58,plain,(intruder_message(X1)|~intruder_message(triple(X1,X2,X3))), inference(split_conjunct,[status(thm)],[c_0_45])). cnf(c_0_59,plain,(intruder_message(triple(b,generate_b_nonce(an_a_nonce),encrypt(triple(a,an_a_nonce,generate_expiration_time(an_a_nonce)),bt)))), inference(spm,[status(thm)],[c_0_46, c_0_47]), ['final']). cnf(c_0_60,plain,(message(sent(a,b,pair(X1,encrypt(X2,X3))))|~message(sent(t,a,triple(encrypt(quadruple(b,an_a_nonce,X3,X4),at),X1,X2)))), inference(spm,[status(thm)],[c_0_48, c_0_49]), ['final']). cnf(c_0_61,plain,(party_of_protocol(a)), inference(split_conjunct,[status(thm)],[c_0_16])). cnf(c_0_62,plain,(message(sent(t,a,triple(encrypt(quadruple(b,an_a_nonce,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),at),encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt),generate_b_nonce(an_a_nonce))))), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_50, c_0_47]), c_0_51])]), ['final']). fof(c_0_63, plain, (![X6]:![X7]:![X8]:(((~message(sent(X7,b,pair(encrypt(triple(X7,X6,generate_expiration_time(X8)),bt),encrypt(generate_b_nonce(X8),X6))))|~a_key(X6))|~b_stored(pair(X7,X8)))|b_holds(key(X6,X7)))), inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_17])])])])). cnf(c_0_64,plain,(b_stored(pair(X1,X2))|~intruder_message(pair(X1,X2))|~fresh_to_b(X2)|~party_of_protocol(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_52, c_0_53]), c_0_54])]), ['final']). cnf(c_0_65,plain,(intruder_message(pair(X1,X2))|~intruder_message(X2)|~intruder_message(X1)), inference(split_conjunct,[status(thm)],[c_0_55])). fof(c_0_66, plain, (![X3]:![X4]:((intruder_message(X3)|~intruder_message(pair(X3,X4)))&(intruder_message(X4)|~intruder_message(pair(X3,X4))))), inference(distribute,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_18])])])). cnf(c_0_67,plain,(message(sent(t,a,triple(encrypt(quadruple(b,X1,generate_key(X1),X2),at),encrypt(triple(a,generate_key(X1),X2),bt),X3)))|~intruder_message(triple(b,X3,encrypt(triple(a,X1,X2),bt)))|~a_nonce(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_50, c_0_53]), c_0_56]), c_0_54])]), ['final']). cnf(c_0_68,plain,(intruder_message(triple(X1,X2,X3))|~intruder_message(X3)|~intruder_message(X2)|~intruder_message(X1)), inference(split_conjunct,[status(thm)],[c_0_57])). cnf(c_0_69,plain,(intruder_message(b)), inference(spm,[status(thm)],[c_0_58, c_0_59]), ['final']). cnf(c_0_70,plain,(intruder_message(X3)|~intruder_message(triple(X1,X2,X3))), inference(split_conjunct,[status(thm)],[c_0_45])). cnf(c_0_71,plain,(message(sent(b,t,triple(b,generate_b_nonce(X1),encrypt(triple(X2,X1,generate_expiration_time(X1)),bt))))|~intruder_message(pair(X2,X1))|~fresh_to_b(X1)|~party_of_protocol(X2)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_38, c_0_53]), c_0_54])]), ['final']). cnf(c_0_72,plain,(message(sent(a,b,pair(X1,encrypt(X2,X3))))|~intruder_message(triple(encrypt(quadruple(b,an_a_nonce,X3,X4),at),X1,X2))), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_60, c_0_53]), c_0_61]), c_0_56])]), ['final']). cnf(c_0_73,plain,(intruder_message(triple(encrypt(quadruple(b,an_a_nonce,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),at),encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt),generate_b_nonce(an_a_nonce)))), inference(spm,[status(thm)],[c_0_46, c_0_62]), ['final']). cnf(c_0_74,plain,(b_holds(key(X1,X2))|~b_stored(pair(X2,X3))|~a_key(X1)|~message(sent(X2,b,pair(encrypt(triple(X2,X1,generate_expiration_time(X3)),bt),encrypt(generate_b_nonce(X3),X1))))), inference(split_conjunct,[status(thm)],[c_0_63])). cnf(c_0_75,plain,(b_stored(pair(X1,X2))|~intruder_message(X2)|~intruder_message(X1)|~fresh_to_b(X2)|~party_of_protocol(X1)), inference(spm,[status(thm)],[c_0_64, c_0_65]), ['final']). fof(c_0_76, plain, (![X4]:![X5]:![X6]:(((~intruder_message(X4)|~intruder_holds(key(X5,X6)))|~party_of_protocol(X6))|intruder_message(encrypt(X4,X5)))), inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_19])])])])). fof(c_0_77, plain, (![X4]:![X5]:((~intruder_message(X4)|~party_of_protocol(X5))|intruder_holds(key(X4,X5)))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_20])])). cnf(c_0_78,plain,(intruder_message(X1)|~intruder_message(pair(X1,X2))), inference(split_conjunct,[status(thm)],[c_0_66])). cnf(c_0_79,plain,(intruder_message(pair(a,an_a_nonce))), inference(spm,[status(thm)],[c_0_46, c_0_39]), ['final']). cnf(c_0_80,plain,(b_stored(pair(a,an_a_nonce))), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_52, c_0_39]), c_0_40])]), ['final']). cnf(c_0_81,plain,(message(sent(t,a,triple(encrypt(quadruple(b,X1,generate_key(X1),X2),at),encrypt(triple(a,generate_key(X1),X2),bt),X3)))|~intruder_message(encrypt(triple(a,X1,X2),bt))|~intruder_message(X3)|~a_nonce(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_67, c_0_68]), c_0_69])]), ['final']). cnf(c_0_82,plain,(intruder_message(encrypt(triple(a,an_a_nonce,generate_expiration_time(an_a_nonce)),bt))), inference(spm,[status(thm)],[c_0_70, c_0_59]), ['final']). cnf(c_0_83,plain,(message(sent(t,X1,triple(encrypt(quadruple(a,X2,generate_key(X2),X3),X4),encrypt(triple(X1,generate_key(X2),X3),at),X5)))|~a_nonce(X2)|~t_holds(key(X4,X1))|~message(sent(a,t,triple(a,X5,encrypt(triple(X1,X2,X3),at))))), inference(spm,[status(thm)],[c_0_35, c_0_43]), ['final']). cnf(c_0_84,plain,(message(sent(b,t,triple(b,generate_b_nonce(X1),encrypt(triple(X2,X1,generate_expiration_time(X1)),bt))))|~intruder_message(X1)|~intruder_message(X2)|~fresh_to_b(X1)|~party_of_protocol(X2)), inference(spm,[status(thm)],[c_0_71, c_0_65]), ['final']). cnf(c_0_85,plain,(message(sent(a,b,pair(X1,encrypt(X2,X3))))|~intruder_message(encrypt(quadruple(b,an_a_nonce,X3,X4),at))|~intruder_message(X2)|~intruder_message(X1)), inference(spm,[status(thm)],[c_0_72, c_0_68]), ['final']). cnf(c_0_86,plain,(intruder_message(encrypt(quadruple(b,an_a_nonce,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),at))), inference(spm,[status(thm)],[c_0_58, c_0_73]), ['final']). cnf(c_0_87,plain,(b_holds(key(X1,X2))|~intruder_message(X3)|~intruder_message(X2)|~a_key(X1)|~fresh_to_b(X3)|~message(sent(X2,b,pair(encrypt(triple(X2,X1,generate_expiration_time(X3)),bt),encrypt(generate_b_nonce(X3),X1))))|~party_of_protocol(X2)), inference(spm,[status(thm)],[c_0_74, c_0_75]), ['final']). cnf(c_0_88,plain,(intruder_message(encrypt(X1,X2))|~party_of_protocol(X3)|~intruder_holds(key(X2,X3))|~intruder_message(X1)), inference(split_conjunct,[status(thm)],[c_0_76])). cnf(c_0_89,plain,(intruder_holds(key(X1,X2))|~party_of_protocol(X2)|~intruder_message(X1)), inference(split_conjunct,[status(thm)],[c_0_77])). cnf(c_0_90,plain,(intruder_message(a)), inference(spm,[status(thm)],[c_0_78, c_0_79]), ['final']). cnf(c_0_91,plain,(message(sent(a,b,pair(encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt),encrypt(generate_b_nonce(an_a_nonce),generate_key(an_a_nonce)))))), inference(spm,[status(thm)],[c_0_60, c_0_62]), ['final']). cnf(c_0_92,plain,(message(sent(t,b,triple(encrypt(quadruple(b,X1,generate_key(X1),X2),bt),encrypt(triple(b,generate_key(X1),X2),bt),X3)))|~a_nonce(X1)|~message(sent(b,t,triple(b,X3,encrypt(triple(b,X1,X2),bt))))), inference(spm,[status(thm)],[c_0_42, c_0_36]), ['final']). cnf(c_0_93,plain,(b_holds(key(X1,a))|~a_key(X1)|~message(sent(a,b,pair(encrypt(triple(a,X1,generate_expiration_time(an_a_nonce)),bt),encrypt(generate_b_nonce(an_a_nonce),X1))))), inference(spm,[status(thm)],[c_0_74, c_0_80]), ['final']). cnf(c_0_94,plain,(a_holds(key(X3,X1))|~a_stored(pair(X1,X2))|~message(sent(t,a,triple(encrypt(quadruple(X1,X2,X3,X4),at),X5,X6)))), inference(split_conjunct,[status(thm)],[c_0_41])). cnf(c_0_95,plain,(message(sent(t,a,triple(encrypt(quadruple(b,an_a_nonce,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),at),encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt),X1)))|~intruder_message(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_81, c_0_82]), c_0_51])]), ['final']). cnf(c_0_96,plain,(message(sent(t,a,triple(encrypt(quadruple(a,X1,generate_key(X1),X2),at),encrypt(triple(a,generate_key(X1),X2),at),X3)))|~a_nonce(X1)|~message(sent(a,t,triple(a,X3,encrypt(triple(a,X1,X2),at))))), inference(spm,[status(thm)],[c_0_83, c_0_43]), ['final']). cnf(c_0_97,plain,(intruder_message(triple(b,generate_b_nonce(X1),encrypt(triple(X2,X1,generate_expiration_time(X1)),bt)))|~intruder_message(X1)|~intruder_message(X2)|~fresh_to_b(X1)|~party_of_protocol(X2)), inference(spm,[status(thm)],[c_0_46, c_0_84]), ['final']). cnf(c_0_98,plain,(message(sent(a,b,pair(X1,encrypt(X2,generate_key(an_a_nonce)))))|~intruder_message(X2)|~intruder_message(X1)), inference(spm,[status(thm)],[c_0_85, c_0_86]), ['final']). cnf(c_0_99,plain,(message(sent(t,b,triple(encrypt(quadruple(a,X1,generate_key(X1),X2),bt),encrypt(triple(b,generate_key(X1),X2),at),X3)))|~a_nonce(X1)|~message(sent(a,t,triple(a,X3,encrypt(triple(b,X1,X2),at))))), inference(spm,[status(thm)],[c_0_83, c_0_36]), ['final']). cnf(c_0_100,plain,(b_holds(key(X1,X2))|~intruder_message(pair(encrypt(triple(X2,X1,generate_expiration_time(X3)),bt),encrypt(generate_b_nonce(X3),X1)))|~intruder_message(X3)|~intruder_message(X2)|~a_key(X1)|~fresh_to_b(X3)|~party_of_protocol(X2)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_87, c_0_53]), c_0_54])]), ['final']). cnf(c_0_101,plain,(intruder_message(encrypt(X1,X2))|~intruder_message(X1)|~intruder_message(X2)|~party_of_protocol(X3)), inference(spm,[status(thm)],[c_0_88, c_0_89])). cnf(c_0_102,plain,(intruder_message(X2)|~intruder_message(triple(X1,X2,X3))), inference(split_conjunct,[status(thm)],[c_0_45])). cnf(c_0_103,plain,(message(sent(t,a,triple(encrypt(quadruple(b,X1,generate_key(X1),generate_expiration_time(X1)),at),encrypt(triple(a,generate_key(X1),generate_expiration_time(X1)),bt),generate_b_nonce(X1))))|~intruder_message(X1)|~a_nonce(X1)|~fresh_to_b(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_50, c_0_84]), c_0_90]), c_0_61])]), ['final']). fof(c_0_104, plain, (![X2]:a_key(generate_key(X2))), inference(variable_rename,[status(thm)],[c_0_21])). cnf(c_0_105,plain,(intruder_message(X2)|~intruder_message(pair(X1,X2))), inference(split_conjunct,[status(thm)],[c_0_66])). cnf(c_0_106,plain,(intruder_message(pair(encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt),encrypt(generate_b_nonce(an_a_nonce),generate_key(an_a_nonce))))), inference(spm,[status(thm)],[c_0_46, c_0_91]), ['final']). cnf(c_0_107,plain,(message(sent(t,b,triple(encrypt(quadruple(b,X1,generate_key(X1),X2),bt),encrypt(triple(b,generate_key(X1),X2),bt),X3)))|~intruder_message(triple(b,X3,encrypt(triple(b,X1,X2),bt)))|~a_nonce(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_92, c_0_53]), c_0_56]), c_0_54])]), ['final']). cnf(c_0_108,plain,(message(sent(t,b,triple(encrypt(quadruple(b,X1,generate_key(X1),generate_expiration_time(X1)),bt),encrypt(triple(b,generate_key(X1),generate_expiration_time(X1)),bt),generate_b_nonce(X1))))|~intruder_message(X1)|~a_nonce(X1)|~fresh_to_b(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_92, c_0_84]), c_0_69]), c_0_54])]), ['final']). cnf(c_0_109,plain,(b_holds(key(X1,a))|~intruder_message(pair(encrypt(triple(a,X1,generate_expiration_time(an_a_nonce)),bt),encrypt(generate_b_nonce(an_a_nonce),X1)))|~a_key(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_93, c_0_53]), c_0_54]), c_0_61])]), ['final']). cnf(c_0_110,plain,(a_holds(key(X1,b))|~message(sent(t,a,triple(encrypt(quadruple(b,an_a_nonce,X1,X2),at),X3,X4)))), inference(spm,[status(thm)],[c_0_94, c_0_49]), ['final']). fof(c_0_111, plain, (![X1]:~a_nonce(generate_key(X1))), inference(fof_simplification,[status(thm)],[c_0_22])). fof(c_0_112, plain, (![X2]:((fresh_to_b(X2)|~fresh_intruder_nonce(X2))&(intruder_message(X2)|~fresh_intruder_nonce(X2)))), inference(distribute,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_23])])])). cnf(c_0_113,plain,(message(sent(a,b,pair(encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt),encrypt(X1,generate_key(an_a_nonce)))))|~intruder_message(X1)), inference(spm,[status(thm)],[c_0_60, c_0_95]), ['final']). cnf(c_0_114,plain,(message(sent(t,a,triple(encrypt(quadruple(a,X1,generate_key(X1),X2),at),encrypt(triple(a,generate_key(X1),X2),at),X3)))|~intruder_message(triple(a,X3,encrypt(triple(a,X1,X2),at)))|~a_nonce(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_96, c_0_53]), c_0_56]), c_0_61])]), ['final']). cnf(c_0_115,plain,(intruder_message(encrypt(triple(X1,X2,generate_expiration_time(X2)),bt))|~intruder_message(X2)|~intruder_message(X1)|~fresh_to_b(X2)|~party_of_protocol(X1)), inference(spm,[status(thm)],[c_0_70, c_0_97]), ['final']). cnf(c_0_116,plain,(intruder_message(pair(X1,encrypt(X2,generate_key(an_a_nonce))))|~intruder_message(X2)|~intruder_message(X1)), inference(spm,[status(thm)],[c_0_46, c_0_98]), ['final']). cnf(c_0_117,plain,(message(sent(t,b,triple(encrypt(quadruple(a,X1,generate_key(X1),X2),bt),encrypt(triple(b,generate_key(X1),X2),at),X3)))|~intruder_message(triple(a,X3,encrypt(triple(b,X1,X2),at)))|~a_nonce(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_99, c_0_53]), c_0_56]), c_0_61])]), ['final']). cnf(c_0_118,plain,(b_holds(key(X1,X2))|~intruder_message(encrypt(triple(X2,X1,generate_expiration_time(X3)),bt))|~intruder_message(encrypt(generate_b_nonce(X3),X1))|~intruder_message(X3)|~intruder_message(X2)|~a_key(X1)|~fresh_to_b(X3)|~party_of_protocol(X2)), inference(spm,[status(thm)],[c_0_100, c_0_65]), ['final']). cnf(c_0_119,plain,(intruder_message(encrypt(X1,X2))|~intruder_message(X1)|~intruder_message(X2)), inference(spm,[status(thm)],[c_0_101, c_0_54]), ['final']). cnf(c_0_120,plain,(intruder_message(generate_b_nonce(X1))|~intruder_message(X1)|~intruder_message(X2)|~fresh_to_b(X1)|~party_of_protocol(X2)), inference(spm,[status(thm)],[c_0_102, c_0_97]), ['final']). cnf(c_0_121,plain,(intruder_message(triple(encrypt(quadruple(b,X1,generate_key(X1),generate_expiration_time(X1)),at),encrypt(triple(a,generate_key(X1),generate_expiration_time(X1)),bt),generate_b_nonce(X1)))|~intruder_message(X1)|~a_nonce(X1)|~fresh_to_b(X1)), inference(spm,[status(thm)],[c_0_46, c_0_103]), ['final']). cnf(c_0_122,plain,(a_key(generate_key(X1))), inference(split_conjunct,[status(thm)],[c_0_104])). cnf(c_0_123,plain,(intruder_message(encrypt(generate_b_nonce(an_a_nonce),generate_key(an_a_nonce)))), inference(spm,[status(thm)],[c_0_105, c_0_106]), ['final']). cnf(c_0_124,plain,(intruder_message(an_a_nonce)), inference(spm,[status(thm)],[c_0_105, c_0_79]), ['final']). cnf(c_0_125,plain,(message(sent(t,b,triple(encrypt(quadruple(b,X1,generate_key(X1),X2),bt),encrypt(triple(b,generate_key(X1),X2),bt),X3)))|~intruder_message(encrypt(triple(b,X1,X2),bt))|~intruder_message(X3)|~a_nonce(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_107, c_0_68]), c_0_69])]), ['final']). cnf(c_0_126,plain,(intruder_message(triple(encrypt(quadruple(b,X1,generate_key(X1),generate_expiration_time(X1)),bt),encrypt(triple(b,generate_key(X1),generate_expiration_time(X1)),bt),generate_b_nonce(X1)))|~intruder_message(X1)|~a_nonce(X1)|~fresh_to_b(X1)), inference(spm,[status(thm)],[c_0_46, c_0_108]), ['final']). cnf(c_0_127,plain,(b_holds(key(X1,a))|~intruder_message(encrypt(triple(a,X1,generate_expiration_time(an_a_nonce)),bt))|~intruder_message(encrypt(generate_b_nonce(an_a_nonce),X1))|~a_key(X1)), inference(spm,[status(thm)],[c_0_109, c_0_65]), ['final']). cnf(c_0_128,plain,(intruder_message(generate_b_nonce(an_a_nonce))), inference(spm,[status(thm)],[c_0_102, c_0_59]), ['final']). cnf(c_0_129,plain,(a_holds(key(X1,b))|~intruder_message(triple(encrypt(quadruple(b,an_a_nonce,X1,X2),at),X3,X4))), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_110, c_0_53]), c_0_61]), c_0_56])]), ['final']). fof(c_0_130, plain, (![X2]:(~fresh_intruder_nonce(X2)|fresh_intruder_nonce(generate_intruder_nonce(X2)))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_24])])). fof(c_0_131, plain, (![X4]:![X5]:![X6]:(((~intruder_message(encrypt(X4,X5))|~intruder_holds(key(X5,X6)))|~party_of_protocol(X6))|intruder_message(X5))), inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_25])])])])). fof(c_0_132, plain, (![X5]:![X6]:![X7]:![X8]:((((intruder_message(X5)|~intruder_message(quadruple(X5,X6,X7,X8)))&(intruder_message(X6)|~intruder_message(quadruple(X5,X6,X7,X8))))&(intruder_message(X7)|~intruder_message(quadruple(X5,X6,X7,X8))))&(intruder_message(X8)|~intruder_message(quadruple(X5,X6,X7,X8))))), inference(distribute,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_26])])])). fof(c_0_133, plain, (![X5]:![X6]:![X7]:![X8]:((((~intruder_message(X5)|~intruder_message(X6))|~intruder_message(X7))|~intruder_message(X8))|intruder_message(quadruple(X5,X6,X7,X8)))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_27])])). fof(c_0_134, plain, (![X2]:(~a_key(X2)|~a_nonce(X2))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_28])])). fof(c_0_135, plain, (![X2]:~a_nonce(generate_key(X2))), inference(variable_rename,[status(thm)],[c_0_111])). fof(c_0_136, plain, (![X2]:![X3]:(a_nonce(generate_expiration_time(X2))&a_nonce(generate_b_nonce(X3)))), inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(shift_quantors,[status(thm)],[c_0_29])])])). cnf(c_0_137,plain,(message(sent(b,t,triple(b,generate_b_nonce(encrypt(generate_b_nonce(an_a_nonce),generate_key(an_a_nonce))),encrypt(triple(encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt),encrypt(generate_b_nonce(an_a_nonce),generate_key(an_a_nonce)),generate_expiration_time(encrypt(generate_b_nonce(an_a_nonce),generate_key(an_a_nonce)))),bt))))|~fresh_to_b(encrypt(generate_b_nonce(an_a_nonce),generate_key(an_a_nonce)))|~party_of_protocol(encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt))), inference(spm,[status(thm)],[c_0_71, c_0_106]), ['final']). cnf(c_0_138,plain,(fresh_to_b(X1)|~fresh_intruder_nonce(X1)), inference(split_conjunct,[status(thm)],[c_0_112])). cnf(c_0_139,plain,(intruder_message(pair(encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt),encrypt(X1,generate_key(an_a_nonce))))|~intruder_message(X1)), inference(spm,[status(thm)],[c_0_46, c_0_113]), ['final']). cnf(c_0_140,plain,(message(sent(t,a,triple(encrypt(quadruple(a,X1,generate_key(X1),X2),at),encrypt(triple(a,generate_key(X1),X2),at),X3)))|~intruder_message(encrypt(triple(a,X1,X2),at))|~intruder_message(X3)|~a_nonce(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_114, c_0_68]), c_0_90])]), ['final']). cnf(c_0_141,plain,(message(sent(t,a,triple(encrypt(quadruple(b,X1,generate_key(X1),generate_expiration_time(X1)),at),encrypt(triple(a,generate_key(X1),generate_expiration_time(X1)),bt),X2)))|~intruder_message(X2)|~intruder_message(X1)|~a_nonce(X1)|~fresh_to_b(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_81, c_0_115]), c_0_90]), c_0_61])]), ['final']). cnf(c_0_142,plain,(message(sent(b,t,triple(b,generate_b_nonce(encrypt(X1,generate_key(an_a_nonce))),encrypt(triple(X2,encrypt(X1,generate_key(an_a_nonce)),generate_expiration_time(encrypt(X1,generate_key(an_a_nonce)))),bt))))|~intruder_message(X1)|~intruder_message(X2)|~fresh_to_b(encrypt(X1,generate_key(an_a_nonce)))|~party_of_protocol(X2)), inference(spm,[status(thm)],[c_0_71, c_0_116]), ['final']). cnf(c_0_143,plain,(message(sent(t,b,triple(encrypt(quadruple(a,X1,generate_key(X1),X2),bt),encrypt(triple(b,generate_key(X1),X2),at),X3)))|~intruder_message(encrypt(triple(b,X1,X2),at))|~intruder_message(X3)|~a_nonce(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_117, c_0_68]), c_0_90])]), ['final']). cnf(c_0_144,plain,(b_holds(key(X1,X2))|~intruder_message(encrypt(triple(X2,X1,generate_expiration_time(X3)),bt))|~intruder_message(X3)|~intruder_message(X2)|~intruder_message(X1)|~a_key(X1)|~fresh_to_b(X3)|~party_of_protocol(X2)), inference(csr,[status(thm)],[inference(spm,[status(thm)],[c_0_118, c_0_119]), c_0_120]), ['final']). cnf(c_0_145,plain,(intruder_message(encrypt(triple(a,generate_key(X1),generate_expiration_time(X1)),bt))|~intruder_message(X1)|~a_nonce(X1)|~fresh_to_b(X1)), inference(spm,[status(thm)],[c_0_102, c_0_121]), ['final']). cnf(c_0_146,plain,(b_stored(pair(encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt),encrypt(generate_b_nonce(an_a_nonce),generate_key(an_a_nonce))))|~fresh_to_b(encrypt(generate_b_nonce(an_a_nonce),generate_key(an_a_nonce)))|~party_of_protocol(encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt))), inference(spm,[status(thm)],[c_0_64, c_0_106]), ['final']). cnf(c_0_147,plain,(message(sent(b,t,triple(b,generate_b_nonce(encrypt(X1,generate_key(an_a_nonce))),encrypt(triple(a,encrypt(X1,generate_key(an_a_nonce)),generate_expiration_time(encrypt(X1,generate_key(an_a_nonce)))),bt))))|~intruder_message(X1)|~fresh_to_b(encrypt(X1,generate_key(an_a_nonce)))), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_38, c_0_98]), c_0_90])]), ['final']). cnf(c_0_148,plain,(b_holds(key(generate_key(an_a_nonce),X1))|~intruder_message(encrypt(triple(X1,generate_key(an_a_nonce),generate_expiration_time(X2)),bt))|~intruder_message(X2)|~intruder_message(X1)|~fresh_to_b(X2)|~party_of_protocol(X1)), inference(csr,[status(thm)],[inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_100, c_0_116]), c_0_122])]), c_0_120]), ['final']). cnf(c_0_149,plain,(intruder_message(encrypt(X1,generate_key(an_a_nonce)))|~intruder_message(X1)|~intruder_message(X2)), inference(spm,[status(thm)],[c_0_105, c_0_116])). cnf(c_0_150,plain,(b_stored(pair(X1,encrypt(X2,generate_key(an_a_nonce))))|~intruder_message(X2)|~intruder_message(X1)|~fresh_to_b(encrypt(X2,generate_key(an_a_nonce)))|~party_of_protocol(X1)), inference(spm,[status(thm)],[c_0_64, c_0_116]), ['final']). cnf(c_0_151,plain,(b_stored(pair(a,encrypt(X1,generate_key(an_a_nonce))))|~intruder_message(X1)|~fresh_to_b(encrypt(X1,generate_key(an_a_nonce)))), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_52, c_0_98]), c_0_90])]), ['final']). cnf(c_0_152,plain,(b_holds(key(generate_key(an_a_nonce),X1))|~intruder_message(encrypt(triple(X1,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt))|~intruder_message(X1)|~party_of_protocol(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_118, c_0_123]), c_0_124]), c_0_122]), c_0_40])]), ['final']). cnf(c_0_153,plain,(message(sent(t,b,triple(encrypt(quadruple(b,X1,generate_key(X1),generate_expiration_time(X1)),bt),encrypt(triple(b,generate_key(X1),generate_expiration_time(X1)),bt),X2)))|~intruder_message(X2)|~intruder_message(X1)|~a_nonce(X1)|~fresh_to_b(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_125, c_0_115]), c_0_69]), c_0_54])]), ['final']). cnf(c_0_154,plain,(intruder_message(encrypt(triple(b,generate_key(X1),generate_expiration_time(X1)),bt))|~intruder_message(X1)|~a_nonce(X1)|~fresh_to_b(X1)), inference(spm,[status(thm)],[c_0_102, c_0_126]), ['final']). cnf(c_0_155,plain,(b_holds(key(X1,a))|~intruder_message(encrypt(triple(a,X1,generate_expiration_time(an_a_nonce)),bt))|~intruder_message(X1)|~a_key(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_127, c_0_119]), c_0_128])]), ['final']). cnf(c_0_156,plain,(a_holds(key(X1,b))|~intruder_message(encrypt(quadruple(b,an_a_nonce,X1,X2),at))|~intruder_message(X3)|~intruder_message(X4)), inference(spm,[status(thm)],[c_0_129, c_0_68]), ['final']). cnf(c_0_157,plain,(intruder_message(X1)|~fresh_intruder_nonce(X1)), inference(split_conjunct,[status(thm)],[c_0_112])). cnf(c_0_158,plain,(fresh_intruder_nonce(generate_intruder_nonce(X1))|~fresh_intruder_nonce(X1)), inference(split_conjunct,[status(thm)],[c_0_130])). cnf(c_0_159,plain,(intruder_message(X1)|~party_of_protocol(X2)|~intruder_holds(key(X1,X2))|~intruder_message(encrypt(X3,X1))), inference(split_conjunct,[status(thm)],[c_0_131])). cnf(c_0_160,plain,(intruder_message(X1)|~intruder_message(quadruple(X1,X2,X3,X4))), inference(split_conjunct,[status(thm)],[c_0_132])). cnf(c_0_161,plain,(intruder_message(X2)|~intruder_message(quadruple(X1,X2,X3,X4))), inference(split_conjunct,[status(thm)],[c_0_132])). cnf(c_0_162,plain,(intruder_message(quadruple(X1,X2,X3,X4))|~intruder_message(X4)|~intruder_message(X3)|~intruder_message(X2)|~intruder_message(X1)), inference(split_conjunct,[status(thm)],[c_0_133])). cnf(c_0_163,plain,(intruder_message(X3)|~intruder_message(quadruple(X1,X2,X3,X4))), inference(split_conjunct,[status(thm)],[c_0_132])). cnf(c_0_164,plain,(intruder_message(X4)|~intruder_message(quadruple(X1,X2,X3,X4))), inference(split_conjunct,[status(thm)],[c_0_132])). cnf(c_0_165,plain,(~a_nonce(X1)|~a_key(X1)), inference(split_conjunct,[status(thm)],[c_0_134])). cnf(c_0_166,plain,(~a_nonce(generate_key(X1))), inference(split_conjunct,[status(thm)],[c_0_135])). cnf(c_0_167,plain,(fresh_intruder_nonce(an_intruder_nonce)), inference(split_conjunct,[status(thm)],[c_0_30])). cnf(c_0_168,plain,(b_holds(key(bt,t))), inference(split_conjunct,[status(thm)],[c_0_31])). cnf(c_0_169,plain,(a_holds(key(at,t))), inference(split_conjunct,[status(thm)],[c_0_32])). cnf(c_0_170,plain,(a_nonce(generate_expiration_time(X1))), inference(split_conjunct,[status(thm)],[c_0_136])). cnf(c_0_171,plain,(a_nonce(generate_b_nonce(X1))), inference(split_conjunct,[status(thm)],[c_0_136])). cnf(c_0_172,plain,(message(sent(b,t,triple(b,generate_b_nonce(encrypt(generate_b_nonce(an_a_nonce),generate_key(an_a_nonce))),encrypt(triple(encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt),encrypt(generate_b_nonce(an_a_nonce),generate_key(an_a_nonce)),generate_expiration_time(encrypt(generate_b_nonce(an_a_nonce),generate_key(an_a_nonce)))),bt))))|~fresh_intruder_nonce(encrypt(generate_b_nonce(an_a_nonce),generate_key(an_a_nonce)))|~party_of_protocol(encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt))), inference(spm,[status(thm)],[c_0_137, c_0_138]), ['final']). cnf(c_0_173,plain,(message(sent(b,t,triple(b,generate_b_nonce(encrypt(X1,generate_key(an_a_nonce))),encrypt(triple(encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt),encrypt(X1,generate_key(an_a_nonce)),generate_expiration_time(encrypt(X1,generate_key(an_a_nonce)))),bt))))|~intruder_message(X1)|~fresh_to_b(encrypt(X1,generate_key(an_a_nonce)))|~party_of_protocol(encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt))), inference(spm,[status(thm)],[c_0_71, c_0_139]), ['final']). cnf(c_0_174,plain,(message(sent(t,a,triple(encrypt(quadruple(a,X1,generate_key(X1),X2),at),encrypt(triple(a,generate_key(X1),X2),at),X3)))|~intruder_message(triple(a,X1,X2))|~intruder_message(at)|~intruder_message(X3)|~a_nonce(X1)), inference(spm,[status(thm)],[c_0_140, c_0_119]), ['final']). cnf(c_0_175,plain,(intruder_message(triple(encrypt(quadruple(b,X1,generate_key(X1),generate_expiration_time(X1)),at),encrypt(triple(a,generate_key(X1),generate_expiration_time(X1)),bt),X2))|~intruder_message(X2)|~intruder_message(X1)|~a_nonce(X1)|~fresh_to_b(X1)), inference(spm,[status(thm)],[c_0_46, c_0_141]), ['final']). cnf(c_0_176,plain,(b_stored(pair(encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt),encrypt(X1,generate_key(an_a_nonce))))|~intruder_message(X1)|~fresh_to_b(encrypt(X1,generate_key(an_a_nonce)))|~party_of_protocol(encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt))), inference(spm,[status(thm)],[c_0_64, c_0_139]), ['final']). cnf(c_0_177,plain,(message(sent(b,t,triple(b,generate_b_nonce(encrypt(X1,generate_key(an_a_nonce))),encrypt(triple(X2,encrypt(X1,generate_key(an_a_nonce)),generate_expiration_time(encrypt(X1,generate_key(an_a_nonce)))),bt))))|~fresh_intruder_nonce(encrypt(X1,generate_key(an_a_nonce)))|~intruder_message(X1)|~intruder_message(X2)|~party_of_protocol(X2)), inference(spm,[status(thm)],[c_0_142, c_0_138]), ['final']). cnf(c_0_178,plain,(intruder_message(triple(encrypt(quadruple(b,an_a_nonce,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),at),encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt),X1))|~intruder_message(X1)), inference(spm,[status(thm)],[c_0_46, c_0_95]), ['final']). cnf(c_0_179,plain,(message(sent(t,b,triple(encrypt(quadruple(a,X1,generate_key(X1),X2),bt),encrypt(triple(b,generate_key(X1),X2),at),X3)))|~intruder_message(triple(b,X1,X2))|~intruder_message(at)|~intruder_message(X3)|~a_nonce(X1)), inference(spm,[status(thm)],[c_0_143, c_0_119]), ['final']). cnf(c_0_180,plain,(message(sent(t,a,triple(encrypt(quadruple(b,X1,generate_key(X1),X2),at),encrypt(triple(a,generate_key(X1),X2),bt),X3)))|~intruder_message(triple(a,X1,X2))|~intruder_message(bt)|~intruder_message(X3)|~a_nonce(X1)), inference(spm,[status(thm)],[c_0_81, c_0_119]), ['final']). cnf(c_0_181,plain,(b_holds(key(generate_key(X1),a))|~intruder_message(generate_key(X1))|~intruder_message(X1)|~a_nonce(X1)|~fresh_to_b(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_144, c_0_145]), c_0_90]), c_0_122]), c_0_61])]), ['final']). cnf(c_0_182,plain,(intruder_message(encrypt(quadruple(b,X1,generate_key(X1),generate_expiration_time(X1)),at))|~intruder_message(X1)|~a_nonce(X1)|~fresh_to_b(X1)), inference(spm,[status(thm)],[c_0_58, c_0_121]), ['final']). cnf(c_0_183,plain,(b_stored(pair(encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt),encrypt(generate_b_nonce(an_a_nonce),generate_key(an_a_nonce))))|~fresh_intruder_nonce(encrypt(generate_b_nonce(an_a_nonce),generate_key(an_a_nonce)))|~party_of_protocol(encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt))), inference(spm,[status(thm)],[c_0_146, c_0_138]), ['final']). cnf(c_0_184,plain,(message(sent(t,b,triple(encrypt(quadruple(b,X1,generate_key(X1),X2),bt),encrypt(triple(b,generate_key(X1),X2),bt),X3)))|~intruder_message(triple(b,X1,X2))|~intruder_message(bt)|~intruder_message(X3)|~a_nonce(X1)), inference(spm,[status(thm)],[c_0_125, c_0_119]), ['final']). cnf(c_0_185,plain,(message(sent(b,t,triple(b,generate_b_nonce(encrypt(X1,generate_key(an_a_nonce))),encrypt(triple(a,encrypt(X1,generate_key(an_a_nonce)),generate_expiration_time(encrypt(X1,generate_key(an_a_nonce)))),bt))))|~fresh_intruder_nonce(encrypt(X1,generate_key(an_a_nonce)))|~intruder_message(X1)), inference(spm,[status(thm)],[c_0_147, c_0_138]), ['final']). cnf(c_0_186,plain,(b_holds(key(generate_key(an_a_nonce),X1))|~intruder_message(triple(X1,generate_key(an_a_nonce),generate_expiration_time(X2)))|~intruder_message(bt)|~intruder_message(X2)|~fresh_to_b(X2)|~party_of_protocol(X1)), inference(csr,[status(thm)],[inference(spm,[status(thm)],[c_0_148, c_0_119]), c_0_58]), ['final']). cnf(c_0_187,plain,(b_holds(key(generate_key(an_a_nonce),X1))|~intruder_message(generate_key(an_a_nonce))|~intruder_message(X1)|~fresh_to_b(generate_key(an_a_nonce))|~party_of_protocol(X1)), inference(spm,[status(thm)],[c_0_148, c_0_115]), ['final']). cnf(c_0_188,plain,(intruder_message(encrypt(X1,generate_key(an_a_nonce)))|~intruder_message(X1)), inference(spm,[status(thm)],[c_0_149, c_0_73]), ['final']). cnf(c_0_189,plain,(b_stored(pair(X1,encrypt(X2,generate_key(an_a_nonce))))|~fresh_intruder_nonce(encrypt(X2,generate_key(an_a_nonce)))|~intruder_message(X2)|~intruder_message(X1)|~party_of_protocol(X1)), inference(spm,[status(thm)],[c_0_150, c_0_138]), ['final']). cnf(c_0_190,plain,(b_stored(pair(a,encrypt(X1,generate_key(an_a_nonce))))|~fresh_intruder_nonce(encrypt(X1,generate_key(an_a_nonce)))|~intruder_message(X1)), inference(spm,[status(thm)],[c_0_151, c_0_138]), ['final']). cnf(c_0_191,plain,(b_holds(key(generate_key(an_a_nonce),X1))|~intruder_message(triple(X1,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)))|~intruder_message(bt)|~party_of_protocol(X1)), inference(csr,[status(thm)],[inference(spm,[status(thm)],[c_0_152, c_0_119]), c_0_58]), ['final']). cnf(c_0_192,plain,(intruder_message(triple(encrypt(quadruple(b,X1,generate_key(X1),generate_expiration_time(X1)),bt),encrypt(triple(b,generate_key(X1),generate_expiration_time(X1)),bt),X2))|~intruder_message(X2)|~intruder_message(X1)|~a_nonce(X1)|~fresh_to_b(X1)), inference(spm,[status(thm)],[c_0_46, c_0_153]), ['final']). cnf(c_0_193,plain,(b_holds(key(X1,X2))|~intruder_message(X1)|~intruder_message(X2)|~a_key(X1)|~fresh_to_b(X1)|~party_of_protocol(X2)), inference(spm,[status(thm)],[c_0_144, c_0_115]), ['final']). cnf(c_0_194,plain,(b_holds(key(X1,X2))|~intruder_message(triple(X2,X1,generate_expiration_time(X3)))|~intruder_message(bt)|~intruder_message(X3)|~a_key(X1)|~fresh_to_b(X3)|~party_of_protocol(X2)), inference(csr,[status(thm)],[inference(csr,[status(thm)],[inference(spm,[status(thm)],[c_0_144, c_0_119]), c_0_102]), c_0_58]), ['final']). cnf(c_0_195,plain,(b_holds(key(generate_key(X1),b))|~intruder_message(generate_key(X1))|~intruder_message(X1)|~a_nonce(X1)|~fresh_to_b(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_144, c_0_154]), c_0_69]), c_0_122]), c_0_54])]), ['final']). cnf(c_0_196,plain,(intruder_message(encrypt(quadruple(b,X1,generate_key(X1),generate_expiration_time(X1)),bt))|~intruder_message(X1)|~a_nonce(X1)|~fresh_to_b(X1)), inference(spm,[status(thm)],[c_0_58, c_0_126]), ['final']). cnf(c_0_197,plain,(intruder_message(generate_b_nonce(X1))|~intruder_message(X1)|~a_nonce(X1)|~fresh_to_b(X1)), inference(spm,[status(thm)],[c_0_70, c_0_126]), ['final']). cnf(c_0_198,plain,(message(sent(a,b,pair(X1,encrypt(X2,X3))))|~intruder_message(quadruple(b,an_a_nonce,X3,X4))|~intruder_message(at)|~intruder_message(X2)|~intruder_message(X1)), inference(spm,[status(thm)],[c_0_85, c_0_119]), ['final']). cnf(c_0_199,plain,(b_holds(key(X1,a))|~intruder_message(triple(a,X1,generate_expiration_time(an_a_nonce)))|~intruder_message(bt)|~a_key(X1)), inference(csr,[status(thm)],[inference(spm,[status(thm)],[c_0_155, c_0_119]), c_0_102]), ['final']). cnf(c_0_200,plain,(b_holds(key(an_a_nonce,a))|~a_key(an_a_nonce)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_155, c_0_82]), c_0_124])]), ['final']). cnf(c_0_201,plain,(a_holds(key(X1,b))|~intruder_message(quadruple(b,an_a_nonce,X1,X2))|~intruder_message(at)|~intruder_message(X3)|~intruder_message(X4)), inference(spm,[status(thm)],[c_0_156, c_0_119]), ['final']). cnf(c_0_202,plain,(intruder_message(generate_intruder_nonce(X1))|~fresh_intruder_nonce(X1)), inference(spm,[status(thm)],[c_0_157, c_0_158]), ['final']). cnf(c_0_203,plain,(message(sent(t,X1,triple(encrypt(quadruple(X2,X3,generate_key(X3),X4),X5),encrypt(triple(X1,generate_key(X3),X4),X6),X7)))|~a_nonce(X3)|~t_holds(key(X6,X2))|~t_holds(key(X5,X1))|~message(sent(X2,t,triple(X2,X7,encrypt(triple(X1,X3,X4),X6))))), c_0_35, ['final']). cnf(c_0_204,plain,(message(sent(b,t,triple(b,generate_b_nonce(X1),encrypt(triple(X2,X1,generate_expiration_time(X1)),bt))))|~fresh_to_b(X1)|~message(sent(X2,b,pair(X2,X1)))), c_0_38, ['final']). cnf(c_0_205,plain,(message(sent(a,X1,pair(X2,encrypt(X3,X4))))|~a_stored(pair(X1,X5))|~message(sent(t,a,triple(encrypt(quadruple(X1,X5,X4,X6),at),X2,X3)))), c_0_48, ['final']). cnf(c_0_206,plain,(b_holds(key(X1,X2))|~a_key(X1)|~b_stored(pair(X2,X3))|~message(sent(X2,b,pair(encrypt(triple(X2,X1,generate_expiration_time(X3)),bt),encrypt(generate_b_nonce(X3),X1))))), c_0_74, ['final']). cnf(c_0_207,plain,(a_holds(key(X1,X2))|~a_stored(pair(X2,X3))|~message(sent(t,a,triple(encrypt(quadruple(X2,X3,X1,X4),at),X5,X6)))), c_0_94, ['final']). cnf(c_0_208,plain,(b_stored(pair(X1,X2))|~fresh_to_b(X2)|~message(sent(X1,b,pair(X1,X2)))), c_0_52, ['final']). cnf(c_0_209,plain,(intruder_message(X1)|~intruder_holds(key(X1,X2))|~intruder_message(encrypt(X3,X1))|~party_of_protocol(X2)), c_0_159, ['final']). cnf(c_0_210,plain,(intruder_message(encrypt(X1,X2))|~intruder_holds(key(X2,X3))|~intruder_message(X1)|~party_of_protocol(X3)), c_0_88, ['final']). cnf(c_0_211,plain,(intruder_message(X1)|~intruder_message(quadruple(X1,X2,X3,X4))), c_0_160, ['final']). cnf(c_0_212,plain,(intruder_message(X1)|~intruder_message(quadruple(X2,X1,X3,X4))), c_0_161, ['final']). cnf(c_0_213,plain,(intruder_message(quadruple(X1,X2,X3,X4))|~intruder_message(X4)|~intruder_message(X3)|~intruder_message(X2)|~intruder_message(X1)), c_0_162, ['final']). cnf(c_0_214,plain,(intruder_message(triple(X1,X2,X3))|~intruder_message(X3)|~intruder_message(X2)|~intruder_message(X1)), c_0_68, ['final']). cnf(c_0_215,plain,(message(sent(X1,X2,X3))|~intruder_message(X3)|~party_of_protocol(X2)|~party_of_protocol(X1)), c_0_53, ['final']). cnf(c_0_216,plain,(intruder_holds(key(X1,X2))|~intruder_message(X1)|~party_of_protocol(X2)), c_0_89, ['final']). cnf(c_0_217,plain,(intruder_message(pair(X1,X2))|~intruder_message(X2)|~intruder_message(X1)), c_0_65, ['final']). cnf(c_0_218,plain,(fresh_intruder_nonce(generate_intruder_nonce(X1))|~fresh_intruder_nonce(X1)), c_0_158, ['final']). cnf(c_0_219,plain,(intruder_message(X1)|~intruder_message(quadruple(X2,X3,X1,X4))), c_0_163, ['final']). cnf(c_0_220,plain,(intruder_message(X1)|~intruder_message(quadruple(X2,X3,X4,X1))), c_0_164, ['final']). cnf(c_0_221,plain,(intruder_message(X1)|~intruder_message(triple(X1,X2,X3))), c_0_58, ['final']). cnf(c_0_222,plain,(intruder_message(X1)|~message(sent(X2,X3,X1))), c_0_46, ['final']). cnf(c_0_223,plain,(intruder_message(X1)|~intruder_message(triple(X2,X1,X3))), c_0_102, ['final']). cnf(c_0_224,plain,(intruder_message(X1)|~intruder_message(triple(X2,X3,X1))), c_0_70, ['final']). cnf(c_0_225,plain,(intruder_message(X1)|~intruder_message(pair(X1,X2))), c_0_78, ['final']). cnf(c_0_226,plain,(intruder_message(X1)|~intruder_message(pair(X2,X1))), c_0_105, ['final']). cnf(c_0_227,plain,(fresh_to_b(X1)|~fresh_intruder_nonce(X1)), c_0_138, ['final']). cnf(c_0_228,plain,(intruder_message(X1)|~fresh_intruder_nonce(X1)), c_0_157, ['final']). cnf(c_0_229,plain,(~a_nonce(X1)|~a_key(X1)), c_0_165, ['final']). cnf(c_0_230,plain,(~a_nonce(generate_key(X1))), c_0_166, ['final']). cnf(c_0_231,plain,(b_holds(key(generate_key(an_a_nonce),b))), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_152, c_0_154]), c_0_69]), c_0_54]), c_0_124]), c_0_51]), c_0_40])]), ['final']). cnf(c_0_232,plain,(intruder_message(encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt))), inference(spm,[status(thm)],[c_0_78, c_0_106]), ['final']). cnf(c_0_233,plain,(b_holds(key(generate_key(an_a_nonce),a))), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_87, c_0_91]), c_0_124]), c_0_90]), c_0_122]), c_0_40]), c_0_61])]), ['final']). cnf(c_0_234,plain,(a_holds(key(generate_key(an_a_nonce),b))), inference(spm,[status(thm)],[c_0_110, c_0_62]), ['final']). cnf(c_0_235,plain,(intruder_message(an_intruder_nonce)), inference(spm,[status(thm)],[c_0_157, c_0_167]), ['final']). cnf(c_0_236,plain,(message(sent(a,b,pair(a,an_a_nonce)))), c_0_39, ['final']). cnf(c_0_237,plain,(t_holds(key(bt,b))), c_0_36, ['final']). cnf(c_0_238,plain,(t_holds(key(at,a))), c_0_43, ['final']). cnf(c_0_239,plain,(b_holds(key(bt,t))), c_0_168, ['final']). cnf(c_0_240,plain,(a_stored(pair(b,an_a_nonce))), c_0_49, ['final']). cnf(c_0_241,plain,(a_holds(key(at,t))), c_0_169, ['final']). cnf(c_0_242,plain,(a_nonce(generate_expiration_time(X1))), c_0_170, ['final']). cnf(c_0_243,plain,(a_nonce(generate_b_nonce(X1))), c_0_171, ['final']). cnf(c_0_244,plain,(a_key(generate_key(X1))), c_0_122, ['final']). cnf(c_0_245,plain,(fresh_intruder_nonce(an_intruder_nonce)), c_0_167, ['final']). cnf(c_0_246,plain,(a_nonce(an_a_nonce)), c_0_51, ['final']). cnf(c_0_247,plain,(fresh_to_b(an_a_nonce)), c_0_40, ['final']). cnf(c_0_248,plain,(party_of_protocol(b)), c_0_54, ['final']). cnf(c_0_249,plain,(party_of_protocol(a)), c_0_61, ['final']). cnf(c_0_250,plain,(party_of_protocol(t)), c_0_56, ['final']). # SZS output end Saturation.  ## E.T. 0.1 Josef Urban1, Cezary Kaliszyk2, Stephan Schulz3, Jiri Vyskocil4 1Radboud University Nijmegen, The Netherlands, 2University of Innsbruck, Austria, 3DHBW Stuttgart, Germany, 4Czech Technical University, Czech Republic ### Sample solution for SEU140+2 # No SInE strategy applied # Trying AutoSched4 for 1 seconds # AutoSched4-Mode selected heuristic G_E___042_C18_F1_PI_AE_Q4_CS_SP_PS_S4S # and selection function SelectNewComplexAHPNS. # # Presaturation interreduction done # Proof found! # SZS status Theorem # SZS output start CNFRefutation. fof(c_0_0, lemma, (![X1]:![X2]:(~((~(disjoint(X1,X2))&![X3]:~((in(X3,X1)&in(X3,X2)))))&~((?[X3]:(in(X3,X1)&in(X3,X2))&disjoint(X1,X2))))), file('/tmp/SystemOnTPTP11427/SEU140+2.tptp', t3_xboole_0)). fof(c_0_1, conjecture, (![X1]:![X2]:![X3]:((subset(X1,X2)&disjoint(X2,X3))=>disjoint(X1,X3))), file('/tmp/SystemOnTPTP11427/SEU140+2.tptp', t63_xboole_1)). fof(c_0_2, axiom, (![X1]:![X2]:(subset(X1,X2)<=>![X3]:(in(X3,X1)=>in(X3,X2)))), file('/tmp/SystemOnTPTP11427/SEU140+2.tptp', d3_tarski)). fof(c_0_3, axiom, (![X1]:![X2]:(disjoint(X1,X2)=>disjoint(X2,X1))), file('/tmp/SystemOnTPTP11427/SEU140+2.tptp', symmetry_r1_xboole_0)). fof(c_0_4, lemma, (![X1]:![X2]:(~((~disjoint(X1,X2)&![X3]:~((in(X3,X1)&in(X3,X2)))))&~((?[X3]:(in(X3,X1)&in(X3,X2))&disjoint(X1,X2))))), inference(fof_simplification,[status(thm)],[c_0_0])). fof(c_0_5, negated_conjecture, (~(![X1]:![X2]:![X3]:((subset(X1,X2)&disjoint(X2,X3))=>disjoint(X1,X3)))), inference(assume_negation,[status(cth)],[c_0_1])). fof(c_0_6, axiom, (![X1]:![X2]:(subset(X1,X2)<=>![X3]:(in(X3,X1)=>in(X3,X2)))), c_0_2). fof(c_0_7, lemma, (![X4]:![X5]:![X7]:![X8]:![X9]:(((in(esk9_2(X4,X5),X4)|disjoint(X4,X5))&(in(esk9_2(X4,X5),X5)|disjoint(X4,X5)))&((~in(X9,X7)|~in(X9,X8))|~disjoint(X7,X8)))), inference(distribute,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_4])])])])])])). fof(c_0_8, negated_conjecture, (((subset(esk11_0,esk12_0)&disjoint(esk12_0,esk13_0))&~disjoint(esk11_0,esk13_0))), inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_5])])])). fof(c_0_9, plain, (![X4]:![X5]:![X6]:![X7]:![X8]:((~subset(X4,X5)|(~in(X6,X4)|in(X6,X5)))&((in(esk3_2(X7,X8),X7)|subset(X7,X8))&(~in(esk3_2(X7,X8),X8)|subset(X7,X8))))), inference(distribute,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_6])])])])])])). cnf(c_0_10,lemma,(~disjoint(X1,X2)|~in(X3,X2)|~in(X3,X1)), inference(split_conjunct,[status(thm)],[c_0_7])). cnf(c_0_11,negated_conjecture,(disjoint(esk12_0,esk13_0)), inference(split_conjunct,[status(thm)],[c_0_8])). cnf(c_0_12,plain,(in(X1,X2)|~in(X1,X3)|~subset(X3,X2)), inference(split_conjunct,[status(thm)],[c_0_9])). cnf(c_0_13,negated_conjecture,(subset(esk11_0,esk12_0)), inference(split_conjunct,[status(thm)],[c_0_8])). fof(c_0_14, axiom, (![X1]:![X2]:(disjoint(X1,X2)=>disjoint(X2,X1))), c_0_3). cnf(c_0_15,lemma,(~in(X3,X2)|~in(X3,X1)|~disjoint(X1,X2)), c_0_10). cnf(c_0_16,negated_conjecture,(disjoint(esk12_0,esk13_0)), c_0_11). cnf(c_0_17,lemma,(disjoint(X1,X2)|in(esk9_2(X1,X2),X1)), inference(split_conjunct,[status(thm)],[c_0_7])). cnf(c_0_18,plain,(in(X1,X2)|~in(X1,X3)|~subset(X3,X2)), c_0_12). cnf(c_0_19,negated_conjecture,(subset(esk11_0,esk12_0)), c_0_13). cnf(c_0_20,lemma,(disjoint(X1,X2)|in(esk9_2(X1,X2),X2)), inference(split_conjunct,[status(thm)],[c_0_7])). fof(c_0_21, plain, (![X3]:![X4]:(~disjoint(X3,X4)|disjoint(X4,X3))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_14])])). cnf(c_0_22,lemma,(~disjoint(X1,X2)|~in(X3,X2)|~in(X3,X1)), c_0_15). cnf(c_0_23,negated_conjecture,(disjoint(esk12_0,esk13_0)), c_0_16). cnf(c_0_24,lemma,(disjoint(X1,X2)|in(esk9_2(X1,X2),X1)), c_0_17). cnf(c_0_25,plain,(in(X1,X2)|~subset(X3,X2)|~in(X1,X3)), c_0_18). cnf(c_0_26,negated_conjecture,(subset(esk11_0,esk12_0)), c_0_19). cnf(c_0_27,lemma,(disjoint(X1,X2)|in(esk9_2(X1,X2),X2)), c_0_20). cnf(c_0_28,plain,(disjoint(X1,X2)|~disjoint(X2,X1)), inference(split_conjunct,[status(thm)],[c_0_21])). cnf(c_0_29,lemma,(~disjoint(X1,X2)|~in(X3,X2)|~in(X3,X1)), c_0_22). cnf(c_0_30,negated_conjecture,(disjoint(esk12_0,esk13_0)), c_0_23). cnf(c_0_31,lemma,(disjoint(X1,X2)|in(esk9_2(X1,X2),X1)), c_0_24). cnf(c_0_32,plain,(in(X1,X2)|~subset(X3,X2)|~in(X1,X3)), c_0_25). cnf(c_0_33,negated_conjecture,(subset(esk11_0,esk12_0)), c_0_26). cnf(c_0_34,lemma,(disjoint(X1,X2)|in(esk9_2(X1,X2),X2)), c_0_27). cnf(c_0_35,negated_conjecture,(~disjoint(esk11_0,esk13_0)), inference(split_conjunct,[status(thm)],[c_0_8])). cnf(c_0_36,plain,(disjoint(X1,X2)|~disjoint(X2,X1)), c_0_28). cnf(c_0_37,negated_conjecture,(~in(X1,esk13_0)|~in(X1,esk12_0)), inference(spm,[status(thm)],[c_0_29, c_0_30, theory(equality)])). cnf(c_0_38,lemma,(disjoint(X1,X2)|in(esk9_2(X1,X2),X1)), c_0_31). cnf(c_0_39,negated_conjecture,(in(X1,esk12_0)|~in(X1,esk11_0)), inference(spm,[status(thm)],[c_0_32, c_0_33, theory(equality)])). cnf(c_0_40,lemma,(disjoint(X1,X2)|in(esk9_2(X1,X2),X2)), c_0_34). cnf(c_0_41,negated_conjecture,(~disjoint(esk11_0,esk13_0)), c_0_35). cnf(c_0_42,plain,(disjoint(X1,X2)|~disjoint(X2,X1)), c_0_36). cnf(c_0_43,lemma,(disjoint(esk13_0,X1)|~in(esk9_2(esk13_0,X1),esk12_0)), inference(spm,[status(thm)],[c_0_37, c_0_38, theory(equality)])). cnf(c_0_44,lemma,(disjoint(X1,esk11_0)|in(esk9_2(X1,esk11_0),esk12_0)), inference(spm,[status(thm)],[c_0_39, c_0_40, theory(equality)])). cnf(c_0_45,negated_conjecture,(~disjoint(esk11_0,esk13_0)), c_0_41). cnf(c_0_46,plain,(disjoint(X1,X2)|~disjoint(X2,X1)), c_0_42). cnf(c_0_47,lemma,(disjoint(esk13_0,esk11_0)), inference(spm,[status(thm)],[c_0_43, c_0_44, theory(equality)])). cnf(c_0_48,negated_conjecture,(~disjoint(esk11_0,esk13_0)), c_0_45). cnf(c_0_49,lemma,(false), inference(sr,[status(thm)],[inference(spm,[status(thm)],[c_0_46, c_0_47, theory(equality)]), c_0_48, theory(equality)]), ['proof']). # SZS output end CNFRefutation.  ## leanCoP 2.2 Jens Otten University of Potsdam, Germany ### Sample solution for SEU140+2 % SZS status Theorem for SEU140+2.p % SZS output start Proof for SEU140+2.p %----------------------------------------------------- fof(t63_xboole_1,conjecture,! [_63308,_63311,_63314] : (subset(_63308,_63311) & disjoint(_63311,_63314) => disjoint(_63308,_63314)),file('SEU140+2.p',t63_xboole_1)). fof(d3_tarski,axiom,! [_63543,_63546] : (subset(_63543,_63546) <=> ! [_63564] : (in(_63564,_63543) => in(_63564,_63546))),file('SEU140+2.p',d3_tarski)). fof(t3_xboole_0,lemma,! [_63793,_63796] : (~ (~ disjoint(_63793,_63796) & ! [_63818] : ~ (in(_63818,_63793) & in(_63818,_63796))) & ~ (? [_63818] : (in(_63818,_63793) & in(_63818,_63796)) & disjoint(_63793,_63796))),file('SEU140+2.p',t3_xboole_0)). cnf(1,plain,[-(subset(11^[],12^[]))],clausify(t63_xboole_1)). cnf(2,plain,[-(disjoint(12^[],13^[]))],clausify(t63_xboole_1)). cnf(3,plain,[disjoint(11^[],13^[])],clausify(t63_xboole_1)). cnf(4,plain,[subset(_29177,_29233),in(_29347,_29177),-(in(_29347,_29233))],clausify(d3_tarski)). cnf(5,plain,[-(disjoint(_40265,_40352)),-(in(9^[_40352,_40265],_40265))],clausify(t3_xboole_0)). cnf(6,plain,[-(disjoint(_40265,_40352)),-(in(9^[_40352,_40265],_40352))],clausify(t3_xboole_0)). cnf(7,plain,[disjoint(_40265,_40352),in(_40769,_40265),in(_40769,_40352)],clausify(t3_xboole_0)). cnf('1',plain,[disjoint(12^[],13^[]),in(9^[13^[],11^[]],12^[]),in(9^[13^[],11^[]],13^[])],start(7,bind([[_40265,_40769,_40352],[12^[],9^[13^[],11^[]],13^[]]]))). cnf('1.1',plain,[-(disjoint(12^[],13^[]))],extension(2)). cnf('1.2',plain,[-(in(9^[13^[],11^[]],12^[])),subset(11^[],12^[]),in(9^[13^[],11^[]],11^[])],extension(4,bind([[_29233,_29347,_29177],[12^[],9^[13^[],11^[]],11^[]]]))). cnf('1.2.1',plain,[-(subset(11^[],12^[]))],extension(1)). cnf('1.2.2',plain,[-(in(9^[13^[],11^[]],11^[])),-(disjoint(11^[],13^[]))],extension(5,bind([[_40265,_40352],[11^[],13^[]]]))). cnf('1.2.2.1',plain,[disjoint(11^[],13^[])],extension(3)). cnf('1.3',plain,[-(in(9^[13^[],11^[]],13^[])),-(disjoint(11^[],13^[]))],extension(6,bind([[_40265,_40352],[11^[],13^[]]]))). cnf('1.3.1',plain,[disjoint(11^[],13^[])],extension(3)). %----------------------------------------------------- % SZS output end Proof for SEU140+2.p  ## Muscadet 4.4 Dominique Pastre University Paris Descartes, France ### Sample solution for SEU140+2 SZS status Theorem for SEU140+2.p SZS output start proof for SEU140+2.p * * * * * * * * * * * * * * * * * * * * * * * * in the following, N is the number of a (sub)theorem E is the current step or the step when a hypothesis or conclusion has been added or modified hyp(N,H,E) means that H is an hypothesis of (sub)theorem N concl(N,C,E) means that C is the conclusion of (sub)theorem N obj_ct(N,C) means that C is a created object or a given constant addhyp(N,H,E) means add H as a new hypothesis for N newconcl(N,C,E) means that the new conclusion of N is C (C replaces the precedent conclusion) a subtheorem N-i or N+i is a subtheorem of the (sub)theorem N N is proved if all N-i have been proved (&-node) or if one N+i have been proved (|-node) the initial theorem is numbered 0 * * * theorem to be proved ![A,B,C]: (subset(A,B)&disjoint(B,C)=>disjoint(A,C)) * * * proof : * * * * * * theoreme 0 * * * * * * *** newconcl(0,![A,B,C]: (subset(A,B)&disjoint(B,C)=>disjoint(A,C)),1) *** explanation : initial theorem ------------------------------------------------------- action ini create object(s) z3 z2 z1 *** newconcl(0,subset(z1,z2)&disjoint(z2,z3)=>disjoint(z1,z3),2) *** because concl((0,![A,B,C]: (subset(A,B)&disjoint(B,C)=>disjoint(A,C))),1) *** explanation : the universal variable(s) of the conclusion is(are) instantiated ------------------------------------------------------- rule ! *** addhyp(0,subset(z1,z2),3) *** addhyp(0,disjoint(z2,z3),3) *** newconcl(0,disjoint(z1,z3),3) *** because concl(0,subset(z1,z2)&disjoint(z2,z3)=>disjoint(z1,z3),2) *** explanation : to prove H=>C, assume H and prove C ------------------------------------------------------- rule => *** addhyp(0,set_intersection2(z2,z3)::empty_set,4) *** because hyp(0,disjoint(z2,z3),3) *** explanation : rule if hyp(A,disjoint(B,C),_)then addhyp(A,set_intersection2(B,C)::empty_set,_) built from the definition of disjoint (fof axiom:d7_xboole_0 ) ------------------------------------------------------- rule disjoint *** addhyp(0,set_difference(z1,z2)::empty_set,21) *** because hyp(0,subset(z1,z2),3),obj_ct(0,z1),obj_ct(0,z2) *** explanation : rule if (hyp(A,subset(B,C),_),obj_ct(A,B),obj_ct(A,C))then addhyp(A,set_difference(B,C)::empty_set,_) built from the axiom lemma:l32_xboole_1 ------------------------------------------------------- rule lemma:l32_xboole_1_1 *** newconcl(0,set_intersection2(z1,z3)::empty_set,109) *** because concl(0,disjoint(z1,z3),3) *** explanation : the conclusion disjoint(z1,z3) is replaced by its definition(fof axiom:d7_xboole_0 ) ------------------------------------------------------- rule def_concl_pred *** newconcl(0,seul(set_intersection2(z1,z3)::A,A=empty_set),110) *** because concl(0,set_intersection2(z1,z3)::empty_set,109) *** explanation : FX::Y is rewriten only(FX::Z, Z=Y) ------------------------------------------------------- rule concl2pts *** addhyp(0,set_intersection2(z1,z3)::z4,111),newconcl(0,z4=empty_set,111) *** because concl(0,seul(set_intersection2(z1,z3)::A,A=empty_set),110) *** explanation : creation of object z4 and of its definition ------------------------------------------------------- rule concl_only *** addhyp(0,set_intersection2(z3,z1)::z4,113) *** because hyp(0,set_intersection2(z1,z3)::z4,111),obj_ct(0,z1),obj_ct(0,z3) *** explanation : rule if (hyp(A,set_intersection2(B,C)::D,_),obj_ct(A,B),obj_ct(A,C))then addhyp(A,set_intersection2(C,B)::D,_) built from the axiom axiom:commutativity_k3_xboole_0 ------------------------------------------------------- rule axiom:commutativity_k3_xboole_0_1 *** newconcl(0,![A]: ~in(A,z4),114) *** because concl(0,z4=empty_set,111) *** explanation : sufficient condition (rule : axiom:d1_xboole_0_1 (fof axiom:d1_xboole_0 ) ------------------------------------------------------- rule axiom:d1_xboole_0_1_cs create object(s) z5 *** newconcl(0,~in(z5,z4),115) *** because concl((0,![A]: ~in(A,z4)),114) *** explanation : the universal variable(s) of the conclusion is(are) instantiated ------------------------------------------------------- rule ! *** addhyp(0,in(z5,z4),116),newconcl(0,false,116) *** because concl(0,~in(z5,z4),115) *** explanation : assume in(z5,z4) and search for a contradiction ------------------------------------------------------- rule concl_not *** addhyp(0,in(z5,z1),118) *** because hyp(0,set_intersection2(z1,z3)::z4,111),hyp(0,in(z5,z4),116),obj_ct(0,z5) *** explanation : rule if (hyp(A,set_intersection2(D,_)::B,_),hyp(A,in(C,B),_),obj_ct(A,C))then addhyp(A,in(C,D),_) built from the definition of set_intersection2 (fof axiom:d3_xboole_0 ) ------------------------------------------------------- rule set_intersection2_ *** addhyp(0,in(z5,z2),119) *** because hyp(0,subset(z1,z2),3),hyp(0,in(z5,z1),118),obj_ct(0,z5) *** explanation : rule if (hyp(A,subset(B,D),_),hyp(A,in(C,B),_),obj_ct(A,C))then addhyp(A,in(C,D),_) built from the definition of subset (fof axiom:d3_tarski ) ------------------------------------------------------- rule subset *** addhyp(0,in(z5,z3),120) *** because hyp(0,set_intersection2(z3,z1)::z4,113),hyp(0,in(z5,z4),116),obj_ct(0,z5) *** explanation : rule if (hyp(A,set_intersection2(D,_)::B,_),hyp(A,in(C,B),_),obj_ct(A,C))then addhyp(A,in(C,D),_) built from the definition of set_intersection2 (fof axiom:d3_xboole_0 ) ------------------------------------------------------- rule set_intersection2_ *** addhyp(0,in(z5,empty_set),121) *** because hyp(0,set_intersection2(z2,z3)::empty_set,4),hyp(0,in(z5,z2),119),hyp(0,in(z5,z3),120),obj_ct(0,z5) *** explanation : rule if (hyp(A,set_intersection2(B,D)::E,_),hyp(A,in(C,B),_),hyp(A,in(C,D),_),obj_ct(A,C))then addhyp(A,in(C,E),_) built from the definition of set_intersection2 (fof axiom:d3_xboole_0 ) ------------------------------------------------------- rule set_intersection2_2 *** addhyp(0,false,122) *** because hyp(0,set_difference(z1,z2)::empty_set,21),hyp(0,in(z5,empty_set),121),hyp(0,in(z5,z2),119),obj_ct(0,z5) *** explanation : rule if (hyp(A,set_difference(_,D)::B,_),hyp(A,in(C,B),_),hyp(A,in(C,D),_),obj_ct(A,C))then addhyp(A,false,_) built from the definition of set_difference (fof axiom:d4_xboole_0 ) ------------------------------------------------------- rule set_difference1 *** newconcl(0,true,123) *** because hyp(0,false,122),concl(0,false,116) *** explanation : the conclusion false to be proved is a hypothesis ------------------------------------------------------- rule stop_hyp_concl then the initial theorem is proved * * * * * * * * * * * * * * * * * * * * * * * * SZS output end proof for SEU140+2.p  ## iProver 1.0 Konstantin Korovin, Christoph Sticksel University of Manchester, United Kingdom ### Sample solution for NLP042+1 % SZS output start Saturation fof(f236,plain,( ( ! [Xxs0,X1] : (~general(X0,X1) | ~specific(X0,X1)) )), inference(cnf_transformation,[],[f194])). fof(f194,plain,( ! [X0,X1] : (~specific(X0,X1) | ~general(X0,X1))), inference(ennf_transformation,[],[f51])). fof(f51,plain,( ! [X0,X1] : (specific(X0,X1) => ~general(X0,X1))), inference(flattening,[],[f41])). fof(f41,axiom,( ! [X0,X1] : (specific(X0,X1) => ~general(X0,X1))), file('/Users/korovin/TPTP-v5.4.0/Problems/NLP/NLP042+1.p',unknown)). fof(f219,plain,( ( ! [X0,X1] : (specific(X0,X1) | ~entity(X0,X1)) )), inference(cnf_transformation,[],[f177])). fof(f177,plain,( ! [X0,X1] : (~entity(X0,X1) | specific(X0,X1))), inference(ennf_transformation,[],[f21])). fof(f21,axiom,( ! [X0,X1] : (entity(X0,X1) => specific(X0,X1))), file('/Users/korovin/TPTP-v5.4.0/Problems/NLP/NLP042+1.p',unknown)). fof(f211,plain,( ( ! [X0,X1] : (general(X0,X1) | ~abstraction(X0,X1)) )), inference(cnf_transformation,[],[f169])). fof(f169,plain,( ! [X0,X1] : (~abstraction(X0,X1) | general(X0,X1))), inference(ennf_transformation,[],[f11])). fof(f11,axiom,( ! [X0,X1] : (abstraction(X0,X1) => general(X0,X1))), file('/Users/korovin/TPTP-v5.4.0/Problems/NLP/NLP042+1.p',unknown)). fof(f213,plain,( ( ! [X0,X1] : (abstraction(X0,X1) | ~relation(X0,X1)) )), inference(cnf_transformation,[],[f171])). fof(f171,plain,( ! [X0,X1] : (~relation(X0,X1) | abstraction(X0,X1))), inference(ennf_transformation,[],[f14])). fof(f14,axiom,( ! [X0,X1] : (relation(X0,X1) => abstraction(X0,X1))), file('/Users/korovin/TPTP-v5.4.0/Problems/NLP/NLP042+1.p',unknown)). fof(f214,plain,( ( ! [X0,X1] : (relation(X0,X1) | ~relname(X0,X1)) )), inference(cnf_transformation,[],[f172])). fof(f172,plain,( ! [X0,X1] : (~relname(X0,X1) | relation(X0,X1))), inference(ennf_transformation,[],[f15])). fof(f15,axiom,( ! [X0,X1] : (relname(X0,X1) => relation(X0,X1))), file('/Users/korovin/TPTP-v5.4.0/Problems/NLP/NLP042+1.p',unknown)). fof(f215,plain,( ( ! [X0,X1] : (relname(X0,X1) | ~forename(X0,X1)) )), inference(cnf_transformation,[],[f173])). fof(f173,plain,( ! [X0,X1] : (~forename(X0,X1) | relname(X0,X1))), inference(ennf_transformation,[],[f16])). fof(f16,axiom,( ! [X0,X1] : (forename(X0,X1) => relname(X0,X1))), file('/Users/korovin/TPTP-v5.4.0/Problems/NLP/NLP042+1.p',unknown)). fof(f243,plain,( forename(sK5,sK7)), inference(cnf_transformation,[],[f201])). fof(f201,plain,( of(sK5,sK7,sK6) & woman(sK5,sK6) & mia_forename(sK5,sK7) & forename(sK5,sK7) & shake_beverage(sK5,sK8) & event(sK5,sK9) & agent(sK5,sK9,sK6) & patient(sK5,sK9,sK8) & nonreflexive(sK5,sK9) & order(sK5,sK9)), inference(skolemisation,[status(esa)],[f153])). fof(f153,plain,( ? [X0,X1,X2,X3,X4] : (of(X0,X2,X1) & woman(X0,X1) & mia_forename(X0,X2) & forename(X0,X2) & shake_beverage(X0,X3) & event(X0,X4) & agent(X0,X4,X1) & patient(X0,X4,X3) & nonreflexive(X0,X4) & order(X0,X4))), inference(pure_predicate_removal,[],[f152])). fof(f152,plain,( ? [X0] : (actual_world(X0) & ? [X1,X2,X3,X4] : (of(X0,X2,X1) & woman(X0,X1) & mia_forename(X0,X2) & forename(X0,X2) & shake_beverage(X0,X3) & event(X0,X4) & agent(X0,X4,X1) & patient(X0,X4,X3) & nonreflexive(X0,X4) & order(X0,X4)))), inference(pure_predicate_removal,[],[f53])). fof(f53,plain,( ? [X0] : (actual_world(X0) & ? [X1,X2,X3,X4] : (of(X0,X2,X1) & woman(X0,X1) & mia_forename(X0,X2) & forename(X0,X2) & shake_beverage(X0,X3) & event(X0,X4) & agent(X0,X4,X1) & patient(X0,X4,X3) & past(X0,X4) & nonreflexive(X0,X4) & order(X0,X4)))), inference(flattening,[],[f46])). fof(f46,negated_conjecture,( ~~? [X0] : (actual_world(X0) & ? [X1,X2,X3,X4] : (of(X0,X2,X1) & woman(X0,X1) & mia_forename(X0,X2) & forename(X0,X2) & shake_beverage(X0,X3) & event(X0,X4) & agent(X0,X4,X1) & patient(X0,X4,X3) & past(X0,X4) & nonreflexive(X0,X4) & order(X0,X4)))), inference(negated_conjecture,[],[f45])). fof(f45,conjecture,( ~? [X0] : (actual_world(X0) & ? [X1,X2,X3,X4] : (of(X0,X2,X1) & woman(X0,X1) & mia_forename(X0,X2) & forename(X0,X2) & shake_beverage(X0,X3) & event(X0,X4) & agent(X0,X4,X1) & patient(X0,X4,X3) & past(X0,X4) & nonreflexive(X0,X4) & order(X0,X4)))), file('/Users/korovin/TPTP-v5.4.0/Problems/NLP/NLP042+1.p',unknown)). fof(f206,plain,( ( ! [X0,X1] : (entity(X0,X1) | ~organism(X0,X1)) )), inference(cnf_transformation,[],[f164])). fof(f164,plain,( ! [X0,X1] : (~organism(X0,X1) | entity(X0,X1))), inference(ennf_transformation,[],[f6])). fof(f6,axiom,( ! [X0,X1] : (organism(X0,X1) => entity(X0,X1))), file('/Users/korovin/TPTP-v5.4.0/Problems/NLP/NLP042+1.p',unknown)). fof(f235,plain,( ( ! [X0,X1] : (~living(X0,X1) | ~nonliving(X0,X1)) )), inference(cnf_transformation,[],[f193])). fof(f193,plain,( ! [X0,X1] : (~nonliving(X0,X1) | ~living(X0,X1))), inference(ennf_transformation,[],[f50])). fof(f50,plain,( ! [X0,X1] : (nonliving(X0,X1) => ~living(X0,X1))), inference(flattening,[],[f40])). fof(f40,axiom,( ! [X0,X1] : (nonliving(X0,X1) => ~living(X0,X1))), file('/Users/korovin/TPTP-v5.4.0/Problems/NLP/NLP042+1.p',unknown)). fof(f217,plain,( ( ! [X0,X1] : (nonliving(X0,X1) | ~object(X0,X1)) )), inference(cnf_transformation,[],[f175])). fof(f175,plain,( ! [X0,X1] : (~object(X0,X1) | nonliving(X0,X1))), inference(ennf_transformation,[],[f19])). fof(f19,axiom,( ! [X0,X1] : (object(X0,X1) => nonliving(X0,X1))), file('/Users/korovin/TPTP-v5.4.0/Problems/NLP/NLP042+1.p',unknown)). fof(f221,plain,( ( ! [X0,X1] : (object(X0,X1) | ~substance_matter(X0,X1)) )), inference(cnf_transformation,[],[f179])). fof(f179,plain,( ! [X0,X1] : (~substance_matter(X0,X1) | object(X0,X1))), inference(ennf_transformation,[],[f24])). fof(f24,axiom,( ! [X0,X1] : (substance_matter(X0,X1) => object(X0,X1))), file('/Users/korovin/TPTP-v5.4.0/Problems/NLP/NLP042+1.p',unknown)). fof(f222,plain,( ( ! [X0,X1] : (substance_matter(X0,X1) | ~food(X0,X1)) )), inference(cnf_transformation,[],[f180])). fof(f180,plain,( ! [X0,X1] : (~food(X0,X1) | substance_matter(X0,X1))), inference(ennf_transformation,[],[f25])). fof(f25,axiom,( ! [X0,X1] : (food(X0,X1) => substance_matter(X0,X1))), file('/Users/korovin/TPTP-v5.4.0/Problems/NLP/NLP042+1.p',unknown)). fof(f223,plain,( ( ! [X0,X1] : (food(X0,X1) | ~beverage(X0,X1)) )), inference(cnf_transformation,[],[f181])). fof(f181,plain,( ! [X0,X1] : (~beverage(X0,X1) | food(X0,X1))), inference(ennf_transformation,[],[f26])). fof(f26,axiom,( ! [X0,X1] : (beverage(X0,X1) => food(X0,X1))), file('/Users/korovin/TPTP-v5.4.0/Problems/NLP/NLP042+1.p',unknown)). fof(f224,plain,( ( ! [X0,X1] : (beverage(X0,X1) | ~shake_beverage(X0,X1)) )), inference(cnf_transformation,[],[f182])). fof(f182,plain,( ! [X0,X1] : (~shake_beverage(X0,X1) | beverage(X0,X1))), inference(ennf_transformation,[],[f27])). fof(f27,axiom,( ! [X0,X1] : (shake_beverage(X0,X1) => beverage(X0,X1))), file('/Users/korovin/TPTP-v5.4.0/Problems/NLP/NLP042+1.p',unknown)). fof(f244,plain,( shake_beverage(sK5,sK8)), inference(cnf_transformation,[],[f201])). fof(f205,plain,( ( ! [X0,X1] : (living(X0,X1) | ~organism(X0,X1)) )), inference(cnf_transformation,[],[f163])). fof(f163,plain,( ! [X0,X1] : (~organism(X0,X1) | living(X0,X1))), inference(ennf_transformation,[],[f4])). fof(f4,axiom,( ! [X0,X1] : (organism(X0,X1) => living(X0,X1))), file('/Users/korovin/TPTP-v5.4.0/Problems/NLP/NLP042+1.p',unknown)). fof(f207,plain,( ( ! [X0,X1] : (organism(X0,X1) | ~human_person(X0,X1)) )), inference(cnf_transformation,[],[f165])). fof(f165,plain,( ! [X0,X1] : (~human_person(X0,X1) | organism(X0,X1))), inference(ennf_transformation,[],[f7])). fof(f7,axiom,( ! [X0,X1] : (human_person(X0,X1) => organism(X0,X1))), file('/Users/korovin/TPTP-v5.4.0/Problems/NLP/NLP042+1.p',unknown)). fof(f234,plain,( ( ! [X0,X1] : (~human(X0,X1) | ~nonhuman(X0,X1)) )), inference(cnf_transformation,[],[f192])). fof(f192,plain,( ! [X0,X1] : (~nonhuman(X0,X1) | ~human(X0,X1))), inference(ennf_transformation,[],[f49])). fof(f49,plain,( ! [X0,X1] : (nonhuman(X0,X1) => ~human(X0,X1))), inference(flattening,[],[f39])). fof(f39,axiom,( ! [X0,X1] : (nonhuman(X0,X1) => ~human(X0,X1))), file('/Users/korovin/TPTP-v5.4.0/Problems/NLP/NLP042+1.p',unknown)). fof(f212,plain,( ( ! [X0,X1] : (nonhuman(X0,X1) | ~abstraction(X0,X1)) )), inference(cnf_transformation,[],[f170])). fof(f170,plain,( ! [X0,X1] : (~abstraction(X0,X1) | nonhuman(X0,X1))), inference(ennf_transformation,[],[f12])). fof(f12,axiom,( ! [X0,X1] : (abstraction(X0,X1) => nonhuman(X0,X1))), file('/Users/korovin/TPTP-v5.4.0/Problems/NLP/NLP042+1.p',unknown)). fof(f204,plain,( ( ! [X0,X1] : (human(X0,X1) | ~human_person(X0,X1)) )), inference(cnf_transformation,[],[f162])). fof(f162,plain,( ! [X0,X1] : (~human_person(X0,X1) | human(X0,X1))), inference(ennf_transformation,[],[f3])). fof(f3,axiom,( ! [X0,X1] : (human_person(X0,X1) => human(X0,X1))), file('/Users/korovin/TPTP-v5.4.0/Problems/NLP/NLP042+1.p',unknown)). fof(f208,plain,( ( ! [X0,X1] : (human_person(X0,X1) | ~woman(X0,X1)) )), inference(cnf_transformation,[],[f166])). fof(f166,plain,( ! [X0,X1] : (~woman(X0,X1) | human_person(X0,X1))), inference(ennf_transformation,[],[f8])). fof(f8,axiom,( ! [X0,X1] : (woman(X0,X1) => human_person(X0,X1))), file('/Users/korovin/TPTP-v5.4.0/Problems/NLP/NLP042+1.p',unknown)). fof(f233,plain,( ( ! [X0,X1] : (~nonexistent(X0,X1) | ~existent(X0,X1)) )), inference(cnf_transformation,[],[f191])). fof(f191,plain,( ! [X0,X1] : (~existent(X0,X1) | ~nonexistent(X0,X1))), inference(ennf_transformation,[],[f48])). fof(f48,plain,( ! [X0,X1] : (existent(X0,X1) => ~nonexistent(X0,X1))), inference(flattening,[],[f38])). fof(f38,axiom,( ! [X0,X1] : (existent(X0,X1) => ~nonexistent(X0,X1))), file('/Users/korovin/TPTP-v5.4.0/Problems/NLP/NLP042+1.p',unknown)). fof(f227,plain,( ( ! [X0,X1] : (nonexistent(X0,X1) | ~eventuality(X0,X1)) )), inference(cnf_transformation,[],[f185])). fof(f185,plain,( ! [X0,X1] : (~eventuality(X0,X1) | nonexistent(X0,X1))), inference(ennf_transformation,[],[f30])). fof(f30,axiom,( ! [X0,X1] : (eventuality(X0,X1) => nonexistent(X0,X1))), file('/Users/korovin/TPTP-v5.4.0/Problems/NLP/NLP042+1.p',unknown)). fof(f229,plain,( ( ! [X0,X1] : (eventuality(X0,X1) | ~event(X0,X1)) )), inference(cnf_transformation,[],[f187])). fof(f187,plain,( ! [X0,X1] : (~event(X0,X1) | eventuality(X0,X1))), inference(ennf_transformation,[],[f34])). fof(f34,axiom,( ! [X0,X1] : (event(X0,X1) => eventuality(X0,X1))), file('/Users/korovin/TPTP-v5.4.0/Problems/NLP/NLP042+1.p',unknown)). fof(f245,plain,( event(sK5,sK9)), inference(cnf_transformation,[],[f201])). fof(f218,plain,( ( ! [X0,X1] : (existent(X0,X1) | ~entity(X0,X1)) )), inference(cnf_transformation,[],[f176])). fof(f176,plain,( ! [X0,X1] : (~entity(X0,X1) | existent(X0,X1))), inference(ennf_transformation,[],[f20])). fof(f20,axiom,( ! [X0,X1] : (entity(X0,X1) => existent(X0,X1))), file('/Users/korovin/TPTP-v5.4.0/Problems/NLP/NLP042+1.p',unknown)). fof(f232,plain,( ( ! [X0,X1] : (~nonliving(X0,X1) | ~animate(X0,X1)) )), inference(cnf_transformation,[],[f190])). fof(f190,plain,( ! [X0,X1] : (~animate(X0,X1) | ~nonliving(X0,X1))), inference(ennf_transformation,[],[f47])). fof(f47,plain,( ! [X0,X1] : (animate(X0,X1) => ~nonliving(X0,X1))), inference(flattening,[],[f37])). fof(f37,axiom,( ! [X0,X1] : (animate(X0,X1) => ~nonliving(X0,X1))), file('/Users/korovin/TPTP-v5.4.0/Problems/NLP/NLP042+1.p',unknown)). fof(f203,plain,( ( ! [X0,X1] : (animate(X0,X1) | ~human_person(X0,X1)) )), inference(cnf_transformation,[],[f161])). fof(f161,plain,( ! [X0,X1] : (~human_person(X0,X1) | animate(X0,X1))), inference(ennf_transformation,[],[f2])). fof(f2,axiom,( ! [X0,X1] : (human_person(X0,X1) => animate(X0,X1))), file('/Users/korovin/TPTP-v5.4.0/Problems/NLP/NLP042+1.p',unknown)). fof(f228,plain,( ( ! [X0,X1] : (specific(X0,X1) | ~eventuality(X0,X1)) )), inference(cnf_transformation,[],[f186])). fof(f186,plain,( ! [X0,X1] : (~eventuality(X0,X1) | specific(X0,X1))), inference(ennf_transformation,[],[f31])). fof(f31,axiom,( ! [X0,X1] : (eventuality(X0,X1) => specific(X0,X1))), file('/Users/korovin/TPTP-v5.4.0/Problems/NLP/NLP042+1.p',unknown)). fof(f237,plain,( ( ! [X0,X1] : (~female(X0,X1) | ~unisex(X0,X1)) )), inference(cnf_transformation,[],[f195])). fof(f195,plain,( ! [X0,X1] : (~unisex(X0,X1) | ~female(X0,X1))), inference(ennf_transformation,[],[f52])). fof(f52,plain,( ! [X0,X1] : (unisex(X0,X1) => ~female(X0,X1))), inference(flattening,[],[f42])). fof(f42,axiom,( ! [X0,X1] : (unisex(X0,X1) => ~female(X0,X1))), file('/Users/korovin/TPTP-v5.4.0/Problems/NLP/NLP042+1.p',unknown)). fof(f210,plain,( ( ! [X0,X1] : (unisex(X0,X1) | ~abstraction(X0,X1)) )), inference(cnf_transformation,[],[f168])). fof(f168,plain,( ! [X0,X1] : (~abstraction(X0,X1) | unisex(X0,X1))), inference(ennf_transformation,[],[f10])). fof(f10,axiom,( ! [X0,X1] : (abstraction(X0,X1) => unisex(X0,X1))), file('/Users/korovin/TPTP-v5.4.0/Problems/NLP/NLP042+1.p',unknown)). fof(f226,plain,( ( ! [X0,X1] : (unisex(X0,X1) | ~eventuality(X0,X1)) )), inference(cnf_transformation,[],[f184])). fof(f184,plain,( ! [X0,X1] : (~eventuality(X0,X1) | unisex(X0,X1))), inference(ennf_transformation,[],[f29])). fof(f29,axiom,( ! [X0,X1] : (eventuality(X0,X1) => unisex(X0,X1))), file('/Users/korovin/TPTP-v5.4.0/Problems/NLP/NLP042+1.p',unknown)). fof(f216,plain,( ( ! [X0,X1] : (unisex(X0,X1) | ~object(X0,X1)) )), inference(cnf_transformation,[],[f174])). fof(f174,plain,( ! [X0,X1] : (~object(X0,X1) | unisex(X0,X1))), inference(ennf_transformation,[],[f17])). fof(f17,axiom,( ! [X0,X1] : (object(X0,X1) => unisex(X0,X1))), file('/Users/korovin/TPTP-v5.4.0/Problems/NLP/NLP042+1.p',unknown)). fof(f238,plain,( ( ! [X2,X0,X3,X1] : (~of(X0,X3,X1) | X2 = X3 | ~forename(X0,X3) | ~of(X0,X2,X1) | ~forename(X0,X2) | ~entity(X0,X1)) )), inference(cnf_transformation,[],[f197])). fof(f197,plain,( ! [X0,X1,X2] : (~entity(X0,X1) | ~forename(X0,X2) | ~of(X0,X2,X1) | ! [X3] : (~forename(X0,X3) | X2 = X3 | ~of(X0,X3,X1)))), inference(flattening,[],[f196])). fof(f196,plain,( ! [X0,X1,X2] : ((~entity(X0,X1) | ~forename(X0,X2) | ~of(X0,X2,X1)) | ! [X3] : (~forename(X0,X3) | X2 = X3 | ~of(X0,X3,X1)))), inference(ennf_transformation,[],[f43])). fof(f43,axiom,( ! [X0,X1,X2] : ((entity(X0,X1) & forename(X0,X2) & of(X0,X2,X1)) => ~? [X3] : (forename(X0,X3) & X2 != X3 & of(X0,X3,X1)))), file('/Users/korovin/TPTP-v5.4.0/Problems/NLP/NLP042+1.p',unknown)). fof(f240,plain,( of(sK5,sK7,sK6)), inference(cnf_transformation,[],[f201])). fof(f220,plain,( ( ! [X0,X1] : (entity(X0,X1) | ~object(X0,X1)) )), inference(cnf_transformation,[],[f178])). fof(f178,plain,( ! [X0,X1] : (~object(X0,X1) | entity(X0,X1))), inference(ennf_transformation,[],[f23])). fof(f23,axiom,( ! [X0,X1] : (object(X0,X1) => entity(X0,X1))), file('/Users/korovin/TPTP-v5.4.0/Problems/NLP/NLP042+1.p',unknown)). fof(f239,plain,( ( ! [X2,X0,X1] : (~nonreflexive(X0,X1) | ~agent(X0,X1,X2) | ~patient(X0,X1,X2)) )), inference(cnf_transformation,[],[f200])). fof(f200,plain,( ! [X0,X1,X2] : (~patient(X0,X1,X2) | ~agent(X0,X1,X2) | ~nonreflexive(X0,X1))), inference(equality_propagation,[],[f199])). fof(f199,plain,( ! [X0,X1,X2,X3] : (~nonreflexive(X0,X1) | ~agent(X0,X1,X2) | ~patient(X0,X1,X3) | X2 != X3)), inference(flattening,[],[f198])). fof(f198,plain,( ! [X0,X1,X2,X3] : ((~nonreflexive(X0,X1) | ~agent(X0,X1,X2) | ~patient(X0,X1,X3)) | X2 != X3)), inference(ennf_transformation,[],[f44])). fof(f44,axiom,( ! [X0,X1,X2,X3] : ((nonreflexive(X0,X1) & agent(X0,X1,X2) & patient(X0,X1,X3)) => X2 != X3)), file('/Users/korovin/TPTP-v5.4.0/Problems/NLP/NLP042+1.p',unknown)). fof(f247,plain,( patient(sK5,sK9,sK8)), inference(cnf_transformation,[],[f201])). fof(f248,plain,( nonreflexive(sK5,sK9)), inference(cnf_transformation,[],[f201])). fof(f202,plain,( ( ! [X0,X1] : (female(X0,X1) | ~woman(X0,X1)) )), inference(cnf_transformation,[],[f160])). fof(f160,plain,( ! [X0,X1] : (~woman(X0,X1) | female(X0,X1))), inference(ennf_transformation,[],[f1])). fof(f1,axiom,( ! [X0,X1] : (woman(X0,X1) => female(X0,X1))), file('/Users/korovin/TPTP-v5.4.0/Problems/NLP/NLP042+1.p',unknown)). fof(f241,plain,( woman(sK5,sK6)), inference(cnf_transformation,[],[f201])). fof(f242,plain,( mia_forename(sK5,sK7)), inference(cnf_transformation,[],[f201])). fof(f246,plain,( agent(sK5,sK9,sK6)), inference(cnf_transformation,[],[f201])). fof(f249,plain,( order(sK5,sK9)), inference(cnf_transformation,[],[f201])). fof(f231,plain,( ( ! [X0,X1] : (act(X0,X1) | ~order(X0,X1)) )), inference(cnf_transformation,[],[f189])). fof(f189,plain,( ! [X0,X1] : (~order(X0,X1) | act(X0,X1))), inference(ennf_transformation,[],[f36])). fof(f36,axiom,( ! [X0,X1] : (order(X0,X1) => act(X0,X1))), file('/Users/korovin/TPTP-v5.4.0/Problems/NLP/NLP042+1.p',unknown)). fof(f230,plain,( ( ! [X0,X1] : (event(X0,X1) | ~act(X0,X1)) )), inference(cnf_transformation,[],[f188])). fof(f188,plain,( ! [X0,X1] : (~act(X0,X1) | event(X0,X1))), inference(ennf_transformation,[],[f35])). fof(f35,axiom,( ! [X0,X1] : (act(X0,X1) => event(X0,X1))), file('/Users/korovin/TPTP-v5.4.0/Problems/NLP/NLP042+1.p',unknown)). fof(f225,plain,( ( ! [X0,X1] : (event(X0,X1) | ~order(X0,X1)) )), inference(cnf_transformation,[],[f183])). fof(f183,plain,( ! [X0,X1] : (~order(X0,X1) | event(X0,X1))), inference(ennf_transformation,[],[f28])). fof(f28,axiom,( ! [X0,X1] : (order(X0,X1) => event(X0,X1))), file('/Users/korovin/TPTP-v5.4.0/Problems/NLP/NLP042+1.p',unknown)). fof(f209,plain,( ( ! [X0,X1] : (forename(X0,X1) | ~mia_forename(X0,X1)) )), inference(cnf_transformation,[],[f167])). fof(f167,plain,( ! [X0,X1] : (~mia_forename(X0,X1) | forename(X0,X1))), inference(ennf_transformation,[],[f9])). fof(f9,axiom,( ! [X0,X1] : (mia_forename(X0,X1) => forename(X0,X1))), file('/Users/korovin/TPTP-v5.4.0/Problems/NLP/NLP042+1.p',unknown)). cnf(c_573,plain, ( specific(X0_i,X1_i) | ~ specific(X2_i,X3_i) | X0_i != X2_i | X1_i != X3_i ), theory(equality) ). cnf(c_500,plain,( X0_i = X0_i ),theory(equality) ). cnf(c_1761,plain, ( specific(X0_i,X1_i) | ~ specific(X2_i,X1_i) | X0_i != X2_i ), inference(resolution,[status(thm)],[c_573,c_500]) ). cnf(c_564,plain, ( organism(X0_i,X1_i) | ~ organism(X2_i,X3_i) | X0_i != X2_i | X1_i != X3_i ), theory(equality) ). cnf(c_1748,plain, ( organism(X0_i,X1_i) | ~ organism(X2_i,X1_i) | X0_i != X2_i ), inference(resolution,[status(thm)],[c_564,c_500]) ). cnf(c_562,plain, ( human_person(X0_i,X1_i) | ~ human_person(X2_i,X3_i) | X0_i != X2_i | X1_i != X3_i ), theory(equality) ). cnf(c_1736,plain, ( human_person(X0_i,X1_i) | ~ human_person(X2_i,X1_i) | X0_i != X2_i ), inference(resolution,[status(thm)],[c_562,c_500]) ). cnf(c_557,plain, ( general(X0_i,X1_i) | ~ general(X2_i,X3_i) | X0_i != X2_i | X1_i != X3_i ), theory(equality) ). cnf(c_1724,plain, ( general(X0_i,X1_i) | ~ general(X2_i,X1_i) | X0_i != X2_i ), inference(resolution,[status(thm)],[c_557,c_500]) ). cnf(c_555,plain, ( abstraction(X0_i,X1_i) | ~ abstraction(X2_i,X3_i) | X0_i != X2_i | X1_i != X3_i ), theory(equality) ). cnf(c_1703,plain, ( abstraction(X0_i,X1_i) | ~ abstraction(X2_i,X1_i) | X0_i != X2_i ), inference(resolution,[status(thm)],[c_555,c_500]) ). cnf(c_553,plain, ( relation(X0_i,X1_i) | ~ relation(X2_i,X3_i) | X0_i != X2_i | X1_i != X3_i ), theory(equality) ). cnf(c_1682,plain, ( relation(X0_i,X1_i) | ~ relation(X2_i,X1_i) | X0_i != X2_i ), inference(resolution,[status(thm)],[c_553,c_500]) ). cnf(c_551,plain, ( relname(X0_i,X1_i) | ~ relname(X2_i,X3_i) | X0_i != X2_i | X1_i != X3_i ), theory(equality) ). cnf(c_1661,plain, ( relname(X0_i,X1_i) | ~ relname(X2_i,X1_i) | X0_i != X2_i ), inference(resolution,[status(thm)],[c_551,c_500]) ). cnf(c_548,plain, ( unisex(X0_i,X1_i) | ~ unisex(X2_i,X3_i) | X0_i != X2_i | X1_i != X3_i ), theory(equality) ). cnf(c_1638,plain, ( unisex(X0_i,X1_i) | ~ unisex(X2_i,X1_i) | X0_i != X2_i ), inference(resolution,[status(thm)],[c_548,c_500]) ). cnf(c_546,plain, ( female(X0_i,X1_i) | ~ female(X2_i,X3_i) | X0_i != X2_i | X1_i != X3_i ), theory(equality) ). cnf(c_1569,plain, ( female(X0_i,X1_i) | ~ female(X2_i,X1_i) | X0_i != X2_i ), inference(resolution,[status(thm)],[c_546,c_500]) ). cnf(c_543,plain, ( nonhuman(X0_i,X1_i) | ~ nonhuman(X2_i,X3_i) | X0_i != X2_i | X1_i != X3_i ), theory(equality) ). cnf(c_1557,plain, ( nonhuman(X0_i,X1_i) | ~ nonhuman(X2_i,X1_i) | X0_i != X2_i ), inference(resolution,[status(thm)],[c_543,c_500]) ). cnf(c_541,plain, ( human(X0_i,X1_i) | ~ human(X2_i,X3_i) | X0_i != X2_i | X1_i != X3_i ), theory(equality) ). cnf(c_1545,plain, ( human(X0_i,X1_i) | ~ human(X2_i,X1_i) | X0_i != X2_i ), inference(resolution,[status(thm)],[c_541,c_500]) ). cnf(c_538,plain, ( entity(X0_i,X1_i) | ~ entity(X2_i,X3_i) | X0_i != X2_i | X1_i != X3_i ), theory(equality) ). cnf(c_1533,plain, ( entity(X0_i,X1_i) | ~ entity(X2_i,X1_i) | X0_i != X2_i ), inference(resolution,[status(thm)],[c_538,c_500]) ). cnf(c_536,plain, ( eventuality(X0_i,X1_i) | ~ eventuality(X2_i,X3_i) | X0_i != X2_i | X1_i != X3_i ), theory(equality) ). cnf(c_1520,plain, ( eventuality(X0_i,X1_i) | ~ eventuality(X2_i,X1_i) | X0_i != X2_i ), inference(resolution,[status(thm)],[c_536,c_500]) ). cnf(c_528,plain, ( act(X0_i,X1_i) | ~ act(X2_i,X3_i) | X0_i != X2_i | X1_i != X3_i ), theory(equality) ). cnf(c_1508,plain, ( act(X0_i,X1_i) | ~ act(X2_i,X1_i) | X0_i != X2_i ), inference(resolution,[status(thm)],[c_528,c_500]) ). cnf(c_34,plain, ( ~ general(X0_i,X1_i) | ~ specific(X0_i,X1_i) ), inference(cnf_transformation,[],[f236]) ). cnf(c_574,plain, ( ~ general(X0_i,X1_i) | ~ specific(X0_i,X1_i) ), inference(subtyping,[status(esa)],[c_34]) ). cnf(c_17,plain, ( ~ entity(X0_i,X1_i) | specific(X0_i,X1_i) ), inference(cnf_transformation,[],[f219]) ). cnf(c_558,plain, ( ~ entity(X0_i,X1_i) | specific(X0_i,X1_i) ), inference(subtyping,[status(esa)],[c_17]) ). cnf(c_1166,plain, ( ~ entity(X0_i,X1_i) | ~ general(X0_i,X1_i) ), inference(resolution,[status(thm)],[c_574,c_558]) ). cnf(c_9,plain, ( ~ abstraction(X0_i,X1_i) | general(X0_i,X1_i) ), inference(cnf_transformation,[],[f211]) ). cnf(c_556,plain, ( ~ abstraction(X0_i,X1_i) | general(X0_i,X1_i) ), inference(subtyping,[status(esa)],[c_9]) ). cnf(c_1325,plain, ( ~ entity(X0_i,X1_i) | ~ abstraction(X0_i,X1_i) ), inference(resolution,[status(thm)],[c_1166,c_556]) ). cnf(c_11,plain, ( abstraction(X0_i,X1_i) | ~ relation(X0_i,X1_i) ), inference(cnf_transformation,[],[f213]) ). cnf(c_554,plain, ( abstraction(X0_i,X1_i) | ~ relation(X0_i,X1_i) ), inference(subtyping,[status(esa)],[c_11]) ). cnf(c_12,plain, ( relation(X0_i,X1_i) | ~ relname(X0_i,X1_i) ), inference(cnf_transformation,[],[f214]) ). cnf(c_552,plain, ( relation(X0_i,X1_i) | ~ relname(X0_i,X1_i) ), inference(subtyping,[status(esa)],[c_12]) ). cnf(c_13,plain, ( ~ forename(X0_i,X1_i) | relname(X0_i,X1_i) ), inference(cnf_transformation,[],[f215]) ). cnf(c_550,plain, ( ~ forename(X0_i,X1_i) | relname(X0_i,X1_i) ), inference(subtyping,[status(esa)],[c_13]) ). cnf(c_1054,plain, ( ~ forename(X0_i,X1_i) | relation(X0_i,X1_i) ), inference(resolution,[status(thm)],[c_552,c_550]) ). cnf(c_1065,plain, ( ~ forename(X0_i,X1_i) | abstraction(X0_i,X1_i) ), inference(resolution,[status(thm)],[c_554,c_1054]) ). cnf(c_1393,plain, ( ~ entity(X0_i,X1_i) | ~ forename(X0_i,X1_i) ), inference(resolution,[status(thm)],[c_1325,c_1065]) ). cnf(c_44,plain, ( forename(sK5,sK7) ), inference(cnf_transformation,[],[f243]) ). cnf(c_539,plain, ( forename(sK5,sK7) ), inference(subtyping,[status(esa)],[c_44]) ). cnf(c_1401,plain, ( ~ entity(sK5,sK7) ), inference(resolution,[status(thm)],[c_1393,c_539]) ). cnf(c_4,plain, ( ~ organism(X0_i,X1_i) | entity(X0_i,X1_i) ), inference(cnf_transformation,[],[f206]) ). cnf(c_565,plain, ( ~ organism(X0_i,X1_i) | entity(X0_i,X1_i) ), inference(subtyping,[status(esa)],[c_4]) ). cnf(c_1405,plain, ( ~ organism(sK5,sK7) ), inference(resolution,[status(thm)],[c_1401,c_565]) ). cnf(c_524,plain, ( nonexistent(X0_i,X1_i) | ~ nonexistent(X2_i,X3_i) | X0_i != X2_i | X1_i != X3_i ), theory(equality) ). cnf(c_1385,plain, ( nonexistent(X0_i,X1_i) | ~ nonexistent(X2_i,X1_i) | X0_i != X2_i ), inference(resolution,[status(thm)],[c_524,c_500]) ). cnf(c_522,plain, ( existent(X0_i,X1_i) | ~ existent(X2_i,X3_i) | X0_i != X2_i | X1_i != X3_i ), theory(equality) ). cnf(c_1373,plain, ( existent(X0_i,X1_i) | ~ existent(X2_i,X1_i) | X0_i != X2_i ), inference(resolution,[status(thm)],[c_522,c_500]) ). cnf(c_519,plain, ( substance_matter(X0_i,X1_i) | ~ substance_matter(X2_i,X3_i) | X0_i != X2_i | X1_i != X3_i ), theory(equality) ). cnf(c_1361,plain, ( substance_matter(X0_i,X1_i) | ~ substance_matter(X2_i,X1_i) | X0_i != X2_i ), inference(resolution,[status(thm)],[c_519,c_500]) ). cnf(c_517,plain, ( food(X0_i,X1_i) | ~ food(X2_i,X3_i) | X0_i != X2_i | X1_i != X3_i ), theory(equality) ). cnf(c_1349,plain, ( food(X0_i,X1_i) | ~ food(X2_i,X1_i) | X0_i != X2_i ), inference(resolution,[status(thm)],[c_517,c_500]) ). cnf(c_515,plain, ( beverage(X0_i,X1_i) | ~ beverage(X2_i,X3_i) | X0_i != X2_i | X1_i != X3_i ), theory(equality) ). cnf(c_1337,plain, ( beverage(X0_i,X1_i) | ~ beverage(X2_i,X1_i) | X0_i != X2_i ), inference(resolution,[status(thm)],[c_515,c_500]) ). cnf(c_33,plain, ( ~ living(X0_i,X1_i) | ~ nonliving(X0_i,X1_i) ), inference(cnf_transformation,[],[f235]) ). cnf(c_509,plain, ( ~ living(X0_i,X1_i) | ~ nonliving(X0_i,X1_i) ), inference(subtyping,[status(esa)],[c_33]) ). cnf(c_15,plain, ( ~ object(X0_i,X1_i) | nonliving(X0_i,X1_i) ), inference(cnf_transformation,[],[f217]) ). cnf(c_510,plain, ( ~ object(X0_i,X1_i) | nonliving(X0_i,X1_i) ), inference(subtyping,[status(esa)],[c_15]) ). cnf(c_1157,plain, ( ~ living(X0_i,X1_i) | ~ object(X0_i,X1_i) ), inference(resolution,[status(thm)],[c_509,c_510]) ). cnf(c_19,plain, ( object(X0_i,X1_i) | ~ substance_matter(X0_i,X1_i) ), inference(cnf_transformation,[],[f221]) ). cnf(c_520,plain, ( object(X0_i,X1_i) | ~ substance_matter(X0_i,X1_i) ), inference(subtyping,[status(esa)],[c_19]) ). cnf(c_20,plain, ( substance_matter(X0_i,X1_i) | ~ food(X0_i,X1_i) ), inference(cnf_transformation,[],[f222]) ). cnf(c_518,plain, ( substance_matter(X0_i,X1_i) | ~ food(X0_i,X1_i) ), inference(subtyping,[status(esa)],[c_20]) ). cnf(c_21,plain, ( food(X0_i,X1_i) | ~ beverage(X0_i,X1_i) ), inference(cnf_transformation,[],[f223]) ). cnf(c_516,plain, ( food(X0_i,X1_i) | ~ beverage(X0_i,X1_i) ), inference(subtyping,[status(esa)],[c_21]) ). cnf(c_22,plain, ( beverage(X0_i,X1_i) | ~ shake_beverage(X0_i,X1_i) ), inference(cnf_transformation,[],[f224]) ). cnf(c_514,plain, ( beverage(X0_i,X1_i) | ~ shake_beverage(X0_i,X1_i) ), inference(subtyping,[status(esa)],[c_22]) ). cnf(c_43,plain, ( shake_beverage(sK5,sK8) ), inference(cnf_transformation,[],[f244]) ). cnf(c_512,plain, ( shake_beverage(sK5,sK8) ), inference(subtyping,[status(esa)],[c_43]) ). cnf(c_600,plain, ( beverage(sK5,sK8) ), inference(resolution,[status(thm)],[c_514,c_512]) ). cnf(c_765,plain, ( food(sK5,sK8) ), inference(resolution,[status(thm)],[c_516,c_600]) ). cnf(c_925,plain, ( substance_matter(sK5,sK8) ), inference(resolution,[status(thm)],[c_518,c_765]) ). cnf(c_1013,plain, ( object(sK5,sK8) ), inference(resolution,[status(thm)],[c_520,c_925]) ). cnf(c_1309,plain, ( ~ living(sK5,sK8) ), inference(resolution,[status(thm)],[c_1157,c_1013]) ). cnf(c_3,plain, ( living(X0_i,X1_i) | ~ organism(X0_i,X1_i) ), inference(cnf_transformation,[],[f205]) ). cnf(c_507,plain, ( living(X0_i,X1_i) | ~ organism(X0_i,X1_i) ), inference(subtyping,[status(esa)],[c_3]) ). cnf(c_5,plain, ( ~ human_person(X0_i,X1_i) | organism(X0_i,X1_i) ), inference(cnf_transformation,[],[f207]) ). cnf(c_563,plain, ( ~ human_person(X0_i,X1_i) | organism(X0_i,X1_i) ), inference(subtyping,[status(esa)],[c_5]) ). cnf(c_1092,plain, ( ~ human_person(X0_i,X1_i) | living(X0_i,X1_i) ), inference(resolution,[status(thm)],[c_507,c_563]) ). cnf(c_1313,plain, ( ~ human_person(sK5,sK8) ), inference(resolution,[status(thm)],[c_1309,c_1092]) ). cnf(c_32,plain, ( ~ human(X0_i,X1_i) | ~ nonhuman(X0_i,X1_i) ), inference(cnf_transformation,[],[f234]) ). cnf(c_542,plain, ( ~ human(X0_i,X1_i) | ~ nonhuman(X0_i,X1_i) ), inference(subtyping,[status(esa)],[c_32]) ). cnf(c_10,plain, ( ~ abstraction(X0_i,X1_i) | nonhuman(X0_i,X1_i) ), inference(cnf_transformation,[],[f212]) ). cnf(c_544,plain, ( ~ abstraction(X0_i,X1_i) | nonhuman(X0_i,X1_i) ), inference(subtyping,[status(esa)],[c_10]) ). cnf(c_1125,plain, ( ~ human(X0_i,X1_i) | ~ abstraction(X0_i,X1_i) ), inference(resolution,[status(thm)],[c_542,c_544]) ). cnf(c_1285,plain, ( ~ human(X0_i,X1_i) | ~ forename(X0_i,X1_i) ), inference(resolution,[status(thm)],[c_1125,c_1065]) ). cnf(c_1292,plain, ( ~ human(sK5,sK7) ), inference(resolution,[status(thm)],[c_1285,c_539]) ). cnf(c_2,plain, ( ~ human_person(X0_i,X1_i) | human(X0_i,X1_i) ), inference(cnf_transformation,[],[f204]) ). cnf(c_540,plain, ( ~ human_person(X0_i,X1_i) | human(X0_i,X1_i) ), inference(subtyping,[status(esa)],[c_2]) ). cnf(c_1296,plain, ( ~ human_person(sK5,sK7) ), inference(resolution,[status(thm)],[c_1292,c_540]) ). cnf(c_6,plain, ( ~ woman(X0_i,X1_i) | human_person(X0_i,X1_i) ), inference(cnf_transformation,[],[f208]) ). cnf(c_561,plain, ( ~ woman(X0_i,X1_i) | human_person(X0_i,X1_i) ), inference(subtyping,[status(esa)],[c_6]) ). cnf(c_1300,plain, ( ~ woman(sK5,sK7) ), inference(resolution,[status(thm)],[c_1296,c_561]) ). cnf(c_31,plain, ( ~ existent(X0_i,X1_i) | ~ nonexistent(X0_i,X1_i) ), inference(cnf_transformation,[],[f233]) ). cnf(c_525,plain, ( ~ existent(X0_i,X1_i) | ~ nonexistent(X0_i,X1_i) ), inference(subtyping,[status(esa)],[c_31]) ). cnf(c_25,plain, ( ~ eventuality(X0_i,X1_i) | nonexistent(X0_i,X1_i) ), inference(cnf_transformation,[],[f227]) ). cnf(c_523,plain, ( ~ eventuality(X0_i,X1_i) | nonexistent(X0_i,X1_i) ), inference(subtyping,[status(esa)],[c_25]) ). cnf(c_1118,plain, ( ~ existent(X0_i,X1_i) | ~ eventuality(X0_i,X1_i) ), inference(resolution,[status(thm)],[c_525,c_523]) ). cnf(c_27,plain, ( ~ event(X0_i,X1_i) | eventuality(X0_i,X1_i) ), inference(cnf_transformation,[],[f229]) ). cnf(c_535,plain, ( ~ event(X0_i,X1_i) | eventuality(X0_i,X1_i) ), inference(subtyping,[status(esa)],[c_27]) ). cnf(c_1196,plain, ( ~ existent(X0_i,X1_i) | ~ event(X0_i,X1_i) ), inference(resolution,[status(thm)],[c_1118,c_535]) ). cnf(c_42,plain,( event(sK5,sK9) ),inference(cnf_transformation,[],[f245]) ). cnf(c_534,plain, ( event(sK5,sK9) ), inference(subtyping,[status(esa)],[c_42]) ). cnf(c_1260,plain, ( ~ existent(sK5,sK9) ), inference(resolution,[status(thm)],[c_1196,c_534]) ). cnf(c_16,plain, ( ~ entity(X0_i,X1_i) | existent(X0_i,X1_i) ), inference(cnf_transformation,[],[f218]) ). cnf(c_521,plain, ( ~ entity(X0_i,X1_i) | existent(X0_i,X1_i) ), inference(subtyping,[status(esa)],[c_16]) ). cnf(c_1264,plain, ( ~ entity(sK5,sK9) ), inference(resolution,[status(thm)],[c_1260,c_521]) ). cnf(c_1268,plain, ( ~ organism(sK5,sK9) ), inference(resolution,[status(thm)],[c_1264,c_565]) ). cnf(c_1272,plain, ( ~ human_person(sK5,sK9) ), inference(resolution,[status(thm)],[c_1268,c_563]) ). cnf(c_1276,plain, ( ~ woman(sK5,sK9) ), inference(resolution,[status(thm)],[c_1272,c_561]) ). cnf(c_511,plain, ( object(X0_i,X1_i) | ~ object(X2_i,X3_i) | X0_i != X2_i | X1_i != X3_i ), theory(equality) ). cnf(c_1253,plain, ( object(X0_i,X1_i) | ~ object(X2_i,X1_i) | X0_i != X2_i ), inference(resolution,[status(thm)],[c_511,c_500]) ). cnf(c_508,plain, ( living(X0_i,X1_i) | ~ living(X2_i,X3_i) | X0_i != X2_i | X1_i != X3_i ), theory(equality) ). cnf(c_1241,plain, ( living(X0_i,X1_i) | ~ living(X2_i,X1_i) | X0_i != X2_i ), inference(resolution,[status(thm)],[c_508,c_500]) ). cnf(c_506,plain, ( nonliving(X0_i,X1_i) | ~ nonliving(X2_i,X3_i) | X0_i != X2_i | X1_i != X3_i ), theory(equality) ). cnf(c_1229,plain, ( nonliving(X0_i,X1_i) | ~ nonliving(X2_i,X1_i) | X0_i != X2_i ), inference(resolution,[status(thm)],[c_506,c_500]) ). cnf(c_504,plain, ( animate(X0_i,X1_i) | ~ animate(X2_i,X3_i) | X0_i != X2_i | X1_i != X3_i ), theory(equality) ). cnf(c_1217,plain, ( animate(X0_i,X1_i) | ~ animate(X2_i,X1_i) | X0_i != X2_i ), inference(resolution,[status(thm)],[c_504,c_500]) ). cnf(c_499,plain, ( X0_i != X1_i | X2_i != X1_i | X2_i = X0_i ), theory(equality) ). cnf(c_1205,plain, ( X0_i != X1_i | X1_i = X0_i ), inference(resolution,[status(thm)],[c_499,c_500]) ). cnf(c_30,plain, ( ~ animate(X0_i,X1_i) | ~ nonliving(X0_i,X1_i) ), inference(cnf_transformation,[],[f232]) ). cnf(c_505,plain, ( ~ animate(X0_i,X1_i) | ~ nonliving(X0_i,X1_i) ), inference(subtyping,[status(esa)],[c_30]) ). cnf(c_1107,plain, ( ~ animate(X0_i,X1_i) | ~ object(X0_i,X1_i) ), inference(resolution,[status(thm)],[c_505,c_510]) ). cnf(c_1183,plain, ( ~ animate(sK5,sK8) ), inference(resolution,[status(thm)],[c_1107,c_1013]) ). cnf(c_1,plain, ( animate(X0_i,X1_i) | ~ human_person(X0_i,X1_i) ), inference(cnf_transformation,[],[f203]) ). cnf(c_503,plain, ( animate(X0_i,X1_i) | ~ human_person(X0_i,X1_i) ), inference(subtyping,[status(esa)],[c_1]) ). cnf(c_755,plain, ( ~ woman(X0_i,X1_i) | animate(X0_i,X1_i) ), inference(resolution,[status(thm)],[c_503,c_561]) ). cnf(c_1187,plain, ( ~ woman(sK5,sK8) ), inference(resolution,[status(thm)],[c_1183,c_755]) ). cnf(c_26,plain, ( specific(X0_i,X1_i) | ~ eventuality(X0_i,X1_i) ), inference(cnf_transformation,[],[f228]) ). cnf(c_537,plain, ( specific(X0_i,X1_i) | ~ eventuality(X0_i,X1_i) ), inference(subtyping,[status(esa)],[c_26]) ). cnf(c_946,plain, ( specific(X0_i,X1_i) | ~ event(X0_i,X1_i) ), inference(resolution,[status(thm)],[c_537,c_535]) ). cnf(c_962,plain, ( specific(sK5,sK9) ), inference(resolution,[status(thm)],[c_946,c_534]) ). cnf(c_1165,plain, ( ~ general(sK5,sK9) ), inference(resolution,[status(thm)],[c_574,c_962]) ). cnf(c_1170,plain, ( ~ abstraction(sK5,sK9) ), inference(resolution,[status(thm)],[c_1165,c_556]) ). cnf(c_1174,plain, ( ~ forename(sK5,sK9) ), inference(resolution,[status(thm)],[c_1170,c_1065]) ). cnf(c_35,plain, ( ~ female(X0_i,X1_i) | ~ unisex(X0_i,X1_i) ), inference(cnf_transformation,[],[f237]) ). cnf(c_547,plain, ( ~ female(X0_i,X1_i) | ~ unisex(X0_i,X1_i) ), inference(subtyping,[status(esa)],[c_35]) ). cnf(c_8,plain, ( unisex(X0_i,X1_i) | ~ abstraction(X0_i,X1_i) ), inference(cnf_transformation,[],[f210]) ). cnf(c_549,plain, ( unisex(X0_i,X1_i) | ~ abstraction(X0_i,X1_i) ), inference(subtyping,[status(esa)],[c_8]) ). cnf(c_1071,plain, ( ~ forename(X0_i,X1_i) | unisex(X0_i,X1_i) ), inference(resolution,[status(thm)],[c_549,c_1065]) ). cnf(c_1136,plain, ( ~ female(X0_i,X1_i) | ~ forename(X0_i,X1_i) ), inference(resolution,[status(thm)],[c_547,c_1071]) ). cnf(c_1148,plain, ( ~ female(sK5,sK7) ), inference(resolution,[status(thm)],[c_1136,c_539]) ). cnf(c_24,plain, ( unisex(X0_i,X1_i) | ~ eventuality(X0_i,X1_i) ), inference(cnf_transformation,[],[f226]) ). cnf(c_526,plain, ( unisex(X0_i,X1_i) | ~ eventuality(X0_i,X1_i) ), inference(subtyping,[status(esa)],[c_24]) ). cnf(c_940,plain, ( unisex(X0_i,X1_i) | ~ event(X0_i,X1_i) ), inference(resolution,[status(thm)],[c_526,c_535]) ). cnf(c_954,plain, ( unisex(sK5,sK9) ), inference(resolution,[status(thm)],[c_940,c_534]) ). cnf(c_1135,plain, ( ~ female(sK5,sK9) ), inference(resolution,[status(thm)],[c_547,c_954]) ). cnf(c_14,plain, ( unisex(X0_i,X1_i) | ~ object(X0_i,X1_i) ), inference(cnf_transformation,[],[f216]) ). cnf(c_501,plain, ( unisex(X0_i,X1_i) | ~ object(X0_i,X1_i) ), inference(subtyping,[status(esa)],[c_14]) ). cnf(c_1016,plain, ( unisex(sK5,sK8) ), inference(resolution,[status(thm)],[c_501,c_1013]) ). cnf(c_1134,plain, ( ~ female(sK5,sK8) ), inference(resolution,[status(thm)],[c_547,c_1016]) ). cnf(c_36,plain, ( ~ entity(X0_i,X1_i) | ~ forename(X0_i,X2_i) | ~ forename(X0_i,X3_i) | ~ of(X0_i,X2_i,X1_i) | ~ of(X0_i,X3_i,X1_i) | X2_i = X3_i ), inference(cnf_transformation,[],[f238]) ). cnf(c_572,plain, ( ~ entity(X0_i,X1_i) | ~ forename(X0_i,X2_i) | ~ forename(X0_i,X3_i) | ~ of(X0_i,X2_i,X1_i) | ~ of(X0_i,X3_i,X1_i) | X2_i = X3_i ), inference(subtyping,[status(esa)],[c_36]) ). cnf(c_47,plain,( of(sK5,sK7,sK6) ),inference(cnf_transformation,[],[f240]) ). cnf(c_570,plain, ( of(sK5,sK7,sK6) ), inference(subtyping,[status(esa)],[c_47]) ). cnf(c_1039,plain, ( ~ entity(sK5,sK6) | ~ forename(sK5,sK7) | ~ forename(sK5,X0_i) | ~ of(sK5,X0_i,sK6) | X0_i = sK7 ), inference(resolution,[status(thm)],[c_572,c_570]) ). cnf(c_51,plain, ( forename(sK5,sK7) ), inference(subtyping,[status(esa)],[c_44]) ). cnf(c_1040,plain, ( ~ entity(sK5,sK6) | ~ forename(sK5,X0_i) | ~ of(sK5,X0_i,sK6) | X0_i = sK7 ), inference(global_propositional_subsumption,[status(thm)],[c_1039,c_51]) ). cnf(c_18,plain, ( entity(X0_i,X1_i) | ~ object(X0_i,X1_i) ), inference(cnf_transformation,[],[f220]) ). cnf(c_502,plain, ( entity(X0_i,X1_i) | ~ object(X0_i,X1_i) ), inference(subtyping,[status(esa)],[c_18]) ). cnf(c_1019,plain, ( entity(sK5,sK8) ), inference(resolution,[status(thm)],[c_502,c_1013]) ). cnf(c_571,plain, ( of(X0_i,X1_i,X2_i) | ~ of(X3_i,X4_i,X5_i) | X0_i != X3_i | X1_i != X4_i | X2_i != X5_i ), theory(equality) ). cnf(c_979,plain, ( of(X0_i,X1_i,X2_i) | ~ of(X3_i,X4_i,X2_i) | X0_i != X3_i | X1_i != X4_i ), inference(resolution,[status(thm)],[c_571,c_500]) ). cnf(c_991,plain, ( of(X0_i,X1_i,X2_i) | ~ of(X3_i,X1_i,X2_i) | X0_i != X3_i ), inference(resolution,[status(thm)],[c_979,c_500]) ). cnf(c_497,plain, ( patient(X0_i,X1_i,X2_i) | ~ patient(X3_i,X4_i,X5_i) | X0_i != X3_i | X1_i != X4_i | X2_i != X5_i ), theory(equality) ). cnf(c_903,plain, ( patient(X0_i,X1_i,X2_i) | ~ patient(X3_i,X4_i,X2_i) | X0_i != X3_i | X1_i != X4_i ), inference(resolution,[status(thm)],[c_497,c_500]) ). cnf(c_915,plain, ( patient(X0_i,X1_i,X2_i) | ~ patient(X3_i,X1_i,X2_i) | X0_i != X3_i ), inference(resolution,[status(thm)],[c_903,c_500]) ). cnf(c_495,plain, ( agent(X0_i,X1_i,X2_i) | ~ agent(X3_i,X4_i,X5_i) | X0_i != X3_i | X1_i != X4_i | X2_i != X5_i ), theory(equality) ). cnf(c_867,plain, ( agent(X0_i,X1_i,X2_i) | ~ agent(X3_i,X4_i,X2_i) | X0_i != X3_i | X1_i != X4_i ), inference(resolution,[status(thm)],[c_495,c_500]) ). cnf(c_879,plain, ( agent(X0_i,X1_i,X2_i) | ~ agent(X3_i,X1_i,X2_i) | X0_i != X3_i ), inference(resolution,[status(thm)],[c_867,c_500]) ). cnf(c_569,plain, ( forename(X0_i,X1_i) | ~ forename(X2_i,X3_i) | X0_i != X2_i | X1_i != X3_i ), theory(equality) ). cnf(c_843,plain, ( forename(X0_i,X1_i) | ~ forename(X2_i,X1_i) | X0_i != X2_i ), inference(resolution,[status(thm)],[c_569,c_500]) ). cnf(c_567,plain, ( mia_forename(X0_i,X1_i) | ~ mia_forename(X2_i,X3_i) | X0_i != X2_i | X1_i != X3_i ), theory(equality) ). cnf(c_822,plain, ( mia_forename(X0_i,X1_i) | ~ mia_forename(X2_i,X1_i) | X0_i != X2_i ), inference(resolution,[status(thm)],[c_567,c_500]) ). cnf(c_560,plain, ( woman(X0_i,X1_i) | ~ woman(X2_i,X3_i) | X0_i != X2_i | X1_i != X3_i ), theory(equality) ). cnf(c_801,plain, ( woman(X0_i,X1_i) | ~ woman(X2_i,X1_i) | X0_i != X2_i ), inference(resolution,[status(thm)],[c_560,c_500]) ). cnf(c_532,plain, ( order(X0_i,X1_i) | ~ order(X2_i,X3_i) | X0_i != X2_i | X1_i != X3_i ), theory(equality) ). cnf(c_754,plain, ( order(X0_i,X1_i) | ~ order(X2_i,X1_i) | X0_i != X2_i ), inference(resolution,[status(thm)],[c_532,c_500]) ). cnf(c_530,plain, ( event(X0_i,X1_i) | ~ event(X2_i,X3_i) | X0_i != X2_i | X1_i != X3_i ), theory(equality) ). cnf(c_733,plain, ( event(X0_i,X1_i) | ~ event(X2_i,X1_i) | X0_i != X2_i ), inference(resolution,[status(thm)],[c_530,c_500]) ). cnf(c_513,plain, ( shake_beverage(X0_i,X1_i) | ~ shake_beverage(X2_i,X3_i) | X0_i != X2_i | X1_i != X3_i ), theory(equality) ). cnf(c_712,plain, ( shake_beverage(X0_i,X1_i) | ~ shake_beverage(X2_i,X1_i) | X0_i != X2_i ), inference(resolution,[status(thm)],[c_513,c_500]) ). cnf(c_493,plain, ( nonreflexive(X0_i,X1_i) | ~ nonreflexive(X2_i,X3_i) | X0_i != X2_i | X1_i != X3_i ), theory(equality) ). cnf(c_691,plain, ( nonreflexive(X0_i,X1_i) | ~ nonreflexive(X2_i,X1_i) | X0_i != X2_i ), inference(resolution,[status(thm)],[c_493,c_500]) ). cnf(c_37,plain, ( ~ nonreflexive(X0_i,X1_i) | ~ agent(X0_i,X1_i,X2_i) | ~ patient(X0_i,X1_i,X2_i) ), inference(cnf_transformation,[],[f239]) ). cnf(c_498,plain, ( ~ nonreflexive(X0_i,X1_i) | ~ agent(X0_i,X1_i,X2_i) | ~ patient(X0_i,X1_i,X2_i) ), inference(subtyping,[status(esa)],[c_37]) ). cnf(c_40,plain, ( patient(sK5,sK9,sK8) ), inference(cnf_transformation,[],[f247]) ). cnf(c_496,plain, ( patient(sK5,sK9,sK8) ), inference(subtyping,[status(esa)],[c_40]) ). cnf(c_676,plain, ( ~ nonreflexive(sK5,sK9) | ~ agent(sK5,sK9,sK8) ), inference(resolution,[status(thm)],[c_498,c_496]) ). cnf(c_39,plain, ( nonreflexive(sK5,sK9) ), inference(cnf_transformation,[],[f248]) ). cnf(c_56,plain, ( nonreflexive(sK5,sK9) ), inference(subtyping,[status(esa)],[c_39]) ). cnf(c_677,plain, ( ~ agent(sK5,sK9,sK8) ), inference(global_propositional_subsumption,[status(thm)],[c_676,c_56]) ). cnf(c_0,plain, ( female(X0_i,X1_i) | ~ woman(X0_i,X1_i) ), inference(cnf_transformation,[],[f202]) ). cnf(c_545,plain, ( female(X0_i,X1_i) | ~ woman(X0_i,X1_i) ), inference(subtyping,[status(esa)],[c_0]) ). cnf(c_46,plain,( woman(sK5,sK6) ),inference(cnf_transformation,[],[f241]) ). cnf(c_559,plain, ( woman(sK5,sK6) ), inference(subtyping,[status(esa)],[c_46]) ). cnf(c_648,plain, ( female(sK5,sK6) ), inference(resolution,[status(thm)],[c_545,c_559]) ). cnf(c_45,plain, ( mia_forename(sK5,sK7) ), inference(cnf_transformation,[],[f242]) ). cnf(c_566,plain, ( mia_forename(sK5,sK7) ), inference(subtyping,[status(esa)],[c_45]) ). cnf(c_41,plain, ( agent(sK5,sK9,sK6) ), inference(cnf_transformation,[],[f246]) ). cnf(c_494,plain, ( agent(sK5,sK9,sK6) ), inference(subtyping,[status(esa)],[c_41]) ). cnf(c_492,plain, ( nonreflexive(sK5,sK9) ), inference(subtyping,[status(esa)],[c_39]) ). cnf(c_38,plain,( order(sK5,sK9) ),inference(cnf_transformation,[],[f249]) ). cnf(c_531,plain, ( order(sK5,sK9) ), inference(subtyping,[status(esa)],[c_38]) ). cnf(c_29,plain, ( ~ order(X0_i,X1_i) | act(X0_i,X1_i) ), inference(cnf_transformation,[],[f231]) ). cnf(c_527,plain, ( ~ order(X0_i,X1_i) | act(X0_i,X1_i) ), inference(subtyping,[status(esa)],[c_29]) ). cnf(c_28,plain, ( event(X0_i,X1_i) | ~ act(X0_i,X1_i) ), inference(cnf_transformation,[],[f230]) ). cnf(c_529,plain, ( event(X0_i,X1_i) | ~ act(X0_i,X1_i) ), inference(subtyping,[status(esa)],[c_28]) ). cnf(c_23,plain, ( event(X0_i,X1_i) | ~ order(X0_i,X1_i) ), inference(cnf_transformation,[],[f225]) ). cnf(c_533,plain, ( event(X0_i,X1_i) | ~ order(X0_i,X1_i) ), inference(subtyping,[status(esa)],[c_23]) ). cnf(c_7,plain, ( forename(X0_i,X1_i) | ~ mia_forename(X0_i,X1_i) ), inference(cnf_transformation,[],[f209]) ). cnf(c_568,plain, ( forename(X0_i,X1_i) | ~ mia_forename(X0_i,X1_i) ), inference(subtyping,[status(esa)],[c_7]) ). % SZS output end Saturation  ### Sample finite model for NLP042+1 %------ The model is defined over ground terms (initial term algebra). %------ Predicates are defined as (\forall x_1,..,x_n ((~)P(x_1,..,x_n) <=> (\phi(x_1,..,x_n)))) %------ where \phi is a formula over the term algebra. %------ If we have equality in the problem then it is also defined as a predicate above, %------ with "=" on the right-hand-side of the definition interpreted over the term algebra$$term_algebra_type %------ See help for --sat_out_model for different model outputs. %------ equality_sorted(X0,X1,X2) can be used in the place of usual "=" %------ where the first argument stands for the sort ($i in the unsorted case)
% SZS output start Model

%------ Negative definition of $$equality_sorted fof(lit_def,axiom, (! [X0_tType,X0_i,X1_i] : ( ~($$equality_sorted(X0_$tType,X0_$i,X1_$i)) <=> ( ( ( X0_$tType=$i & X0_$i=sK9 )
&
( X1_$i!=sK9 ) ) | ( ( X0_$tType=$i & X0_$i=sK8 )
&
( X1_$i!=sK8 ) ) | ( ( X0_$tType=$i & X0_$i=sK6 )
&
( X1_$i!=sK6 ) ) | ( ( X0_$tType=$i & X0_$i=sK7 )
&
( X1_$i!=sK7 ) ) | ( ( X0_$tType=$i & X1_$i=sK9 )
&
( X0_$i!=sK9 ) ) | ( ( X0_$tType=$i & X1_$i=sK8 )
&
( X0_$i!=sK8 ) ) | ( ( X0_$tType=$i & X1_$i=sK6 )
&
( X0_$i!=sK6 ) ) | ( ( X0_$tType=$i & X1_$i=sK7 )
&
( X0_$i!=sK7 ) ) ) ) ) ). %------ Positive definition of female fof(lit_def,axiom, (! [X0_$i,X1_$i] : ( female(X0_$i,X1_$i) <=> ( ( ( X0_$i=sK5 & X1_$i=sK6 ) ) | ( ( X1_$i=sK6 )
)

)
)
)
).

%------ Positive definition of woman
fof(lit_def,axiom,
(! [X0_$i,X1_$i] :
( woman(X0_$i,X1_$i) <=>
(
(
( X0_$i=sK5 & X1_$i=sK6 )
)

|
(
( X1_$i=sK6 ) ) ) ) ) ). %------ Positive definition of animate fof(lit_def,axiom, (! [X0_$i,X1_$i] : ( animate(X0_$i,X1_$i) <=> ( ( ( X0_$i=sK5 & X1_$i=sK6 ) ) | ( ( X1_$i=sK6 )
)

)
)
)
).

%------ Positive definition of human_person
fof(lit_def,axiom,
(! [X0_$i,X1_$i] :
( human_person(X0_$i,X1_$i) <=>
(
(
( X0_$i=sK5 & X1_$i=sK6 )
)

|
(
( X1_$i=sK6 ) ) ) ) ) ). %------ Positive definition of human fof(lit_def,axiom, (! [X0_$i,X1_$i] : ( human(X0_$i,X1_$i) <=> ( ( ( X0_$i=sK5 & X1_$i=sK6 ) ) | ( ( X1_$i=sK6 )
)

)
)
)
).

%------ Positive definition of living
fof(lit_def,axiom,
(! [X0_$i,X1_$i] :
( living(X0_$i,X1_$i) <=>
(
(
( X0_$i=sK5 & X1_$i=sK6 )
)

|
(
( X1_$i=sK6 ) ) ) ) ) ). %------ Positive definition of organism fof(lit_def,axiom, (! [X0_$i,X1_$i] : ( organism(X0_$i,X1_$i) <=> ( ( ( X0_$i=sK5 & X1_$i=sK6 ) ) | ( ( X1_$i=sK6 )
)

)
)
)
).

%------ Positive definition of entity
fof(lit_def,axiom,
(! [X0_$i,X1_$i] :
( entity(X0_$i,X1_$i) <=>
(
(
( X0_$i=sK5 & X1_$i=sK8 )
)

|
(
( X0_$i=sK5 & X1_$i=sK6 )
)

|
(
( X1_$i=sK8 ) ) | ( ( X1_$i=sK6 )
)

)
)
)
).

%------ Positive definition of forename
fof(lit_def,axiom,
(! [X0_$i,X1_$i] :
( forename(X0_$i,X1_$i) <=>
(
(
( X0_$i=sK5 & X1_$i=sK7 )
)

|
(
( X1_$i=sK7 ) ) ) ) ) ). %------ Positive definition of mia_forename fof(lit_def,axiom, (! [X0_$i,X1_$i] : ( mia_forename(X0_$i,X1_$i) <=> ( ( ( X0_$i=sK5 & X1_$i=sK7 ) ) | ( ( X1_$i=sK7 )
)

)
)
)
).

%------ Positive definition of unisex
fof(lit_def,axiom,
(! [X0_$i,X1_$i] :
( unisex(X0_$i,X1_$i) <=>
(
(
( X0_$i=sK5 & X1_$i=sK9 )
)

|
(
( X0_$i=sK5 & X1_$i=sK8 )
)

|
(
( X0_$i=sK5 & X1_$i=sK7 )
)

|
(
( X1_$i=sK9 ) ) | ( ( X1_$i=sK8 )
)

|
(
( X1_$i=sK7 ) ) ) ) ) ). %------ Positive definition of abstraction fof(lit_def,axiom, (! [X0_$i,X1_$i] : ( abstraction(X0_$i,X1_$i) <=> ( ( ( X0_$i=sK5 & X1_$i=sK7 ) ) | ( ( X1_$i=sK7 )
)

)
)
)
).

%------ Positive definition of general
fof(lit_def,axiom,
(! [X0_$i,X1_$i] :
( general(X0_$i,X1_$i) <=>
(
(
( X0_$i=sK5 & X1_$i=sK7 )
)

|
(
( X1_$i=sK7 ) ) ) ) ) ). %------ Positive definition of nonhuman fof(lit_def,axiom, (! [X0_$i,X1_$i] : ( nonhuman(X0_$i,X1_$i) <=> ( ( ( X0_$i=sK5 & X1_$i=sK7 ) ) | ( ( X1_$i=sK7 )
)

)
)
)
).

%------ Positive definition of relation
fof(lit_def,axiom,
(! [X0_$i,X1_$i] :
( relation(X0_$i,X1_$i) <=>
(
(
( X0_$i=sK5 & X1_$i=sK7 )
)

|
(
( X1_$i=sK7 ) ) ) ) ) ). %------ Positive definition of relname fof(lit_def,axiom, (! [X0_$i,X1_$i] : ( relname(X0_$i,X1_$i) <=> ( ( ( X0_$i=sK5 & X1_$i=sK7 ) ) | ( ( X1_$i=sK7 )
)

)
)
)
).

%------ Positive definition of object
fof(lit_def,axiom,
(! [X0_$i,X1_$i] :
( object(X0_$i,X1_$i) <=>
(
(
( X0_$i=sK5 & X1_$i=sK8 )
)

|
(
( X1_$i=sK8 ) ) ) ) ) ). %------ Positive definition of nonliving fof(lit_def,axiom, (! [X0_$i,X1_$i] : ( nonliving(X0_$i,X1_$i) <=> ( ( ( X0_$i=sK5 & X1_$i=sK8 ) ) | ( ( X1_$i=sK8 )
)

)
)
)
).

%------ Positive definition of existent
fof(lit_def,axiom,
(! [X0_$i,X1_$i] :
( existent(X0_$i,X1_$i) <=>
(
(
( X0_$i=sK5 & X1_$i=sK8 )
)

|
(
( X0_$i=sK5 & X1_$i=sK6 )
)

|
(
( X1_$i=sK8 ) ) | ( ( X1_$i=sK6 )
)

)
)
)
).

%------ Positive definition of specific
fof(lit_def,axiom,
(! [X0_$i,X1_$i] :
( specific(X0_$i,X1_$i) <=>
(
(
( X0_$i=sK5 & X1_$i=sK9 )
)

|
(
( X0_$i=sK5 & X1_$i=sK8 )
)

|
(
( X0_$i=sK5 & X1_$i=sK6 )
)

|
(
( X1_$i=sK9 ) ) | ( ( X1_$i=sK8 )
)

|
(
( X1_$i=sK6 ) ) ) ) ) ). %------ Positive definition of substance_matter fof(lit_def,axiom, (! [X0_$i,X1_$i] : ( substance_matter(X0_$i,X1_$i) <=> ( ( ( X0_$i=sK5 & X1_$i=sK8 ) ) | ( ( X1_$i=sK8 )
)

)
)
)
).

%------ Positive definition of food
fof(lit_def,axiom,
(! [X0_$i,X1_$i] :
( food(X0_$i,X1_$i) <=>
(
(
( X0_$i=sK5 & X1_$i=sK8 )
)

|
(
( X1_$i=sK8 ) ) ) ) ) ). %------ Positive definition of beverage fof(lit_def,axiom, (! [X0_$i,X1_$i] : ( beverage(X0_$i,X1_$i) <=> ( ( ( X0_$i=sK5 & X1_$i=sK8 ) ) | ( ( X1_$i=sK8 )
)

)
)
)
).

%------ Positive definition of shake_beverage
fof(lit_def,axiom,
(! [X0_$i,X1_$i] :
( shake_beverage(X0_$i,X1_$i) <=>
(
(
( X0_$i=sK5 & X1_$i=sK8 )
)

|
(
( X1_$i=sK8 ) ) ) ) ) ). %------ Positive definition of event fof(lit_def,axiom, (! [X0_$i,X1_$i] : ( event(X0_$i,X1_$i) <=> ( ( ( X0_$i=sK5 & X1_$i=sK9 ) ) | ( ( X1_$i=sK9 )
)

)
)
)
).

%------ Positive definition of order
fof(lit_def,axiom,
(! [X0_$i,X1_$i] :
( order(X0_$i,X1_$i) <=>
(
(
( X0_$i=sK5 & X1_$i=sK9 )
)

|
(
( X1_$i=sK9 ) ) ) ) ) ). %------ Positive definition of eventuality fof(lit_def,axiom, (! [X0_$i,X1_$i] : ( eventuality(X0_$i,X1_$i) <=> ( ( ( X0_$i=sK5 & X1_$i=sK9 ) ) | ( ( X1_$i=sK9 )
)

)
)
)
).

%------ Positive definition of nonexistent
fof(lit_def,axiom,
(! [X0_$i,X1_$i] :
( nonexistent(X0_$i,X1_$i) <=>
(
(
( X0_$i=sK5 & X1_$i=sK9 )
)

|
(
( X1_$i=sK9 ) ) ) ) ) ). %------ Positive definition of act fof(lit_def,axiom, (! [X0_$i,X1_$i] : ( act(X0_$i,X1_$i) <=> ( ( ( X0_$i=sK5 & X1_$i=sK9 ) ) | ( ( X1_$i=sK9 )
)

)
)
)
).

%------ Positive definition of of
fof(lit_def,axiom,
(! [X0_$i,X1_$i,X2_$i] : ( of(X0_$i,X1_$i,X2_$i) <=>
(
(
( X0_$i=sK5 & X1_$i=sK7 & X2_$i=sK6 ) ) | ( ( X1_$i=sK7 & X2_$i=sK6 ) ) ) ) ) ). %------ Positive definition of nonreflexive fof(lit_def,axiom, (! [X0_$i,X1_$i] : ( nonreflexive(X0_$i,X1_$i) <=> ( ( ( X0_$i=sK5 & X1_$i=sK9 ) ) | ( ( X1_$i=sK9 )
)

)
)
)
).

%------ Positive definition of agent
fof(lit_def,axiom,
(! [X0_$i,X1_$i,X2_$i] : ( agent(X0_$i,X1_$i,X2_$i) <=>
(
(
( X0_$i=sK5 & X1_$i=sK9 & X2_$i=sK6 ) ) | ( ( X1_$i=sK9 & X2_$i=sK6 ) ) ) ) ) ). %------ Positive definition of patient fof(lit_def,axiom, (! [X0_$i,X1_$i,X2_$i] :
( patient(X0_$i,X1_$i,X2_$i) <=> ( ( ( X0_$i=sK5 & X1_$i=sK9 & X2_$i=sK8 )
)

|
(
( X1_$i=sK9 & X2_$i=sK8 )
)

)
)
)
).

% SZS output end Model


### Sample solution for SWV017+1

% SZS output start Saturation

fof(f168,plain,(
( ! [X0] : (~a_nonce(generate_key(X0))) )),
inference(cnf_transformation,[],[f36])).

fof(f36,plain,(
! [X0] : ~a_nonce(generate_key(X0))),
inference(flattening,[],[f27])).

fof(f27,axiom,(
! [X0] : ~a_nonce(generate_key(X0))),
file('/Users/korovin/TPTP-v5.4.0/Problems/SWV/SWV017+1.p',unknown)).

fof(f160,plain,(
( ! [X0,X1] : (intruder_message(pair(X0,X1)) | ~intruder_message(X1) | ~intruder_message(X0)) )),
inference(cnf_transformation,[],[f123])).

fof(f123,plain,(
! [X0,X1] : (~intruder_message(X0) | ~intruder_message(X1) | intruder_message(pair(X0,X1)))),
inference(flattening,[],[f122])).

fof(f122,plain,(
! [X0,X1] : ((~intruder_message(X0) | ~intruder_message(X1)) | intruder_message(pair(X0,X1)))),
inference(ennf_transformation,[],[f19])).

fof(f19,axiom,(
! [X0,X1] : ((intruder_message(X0) & intruder_message(X1)) => intruder_message(pair(X0,X1)))),
file('/Users/korovin/TPTP-v5.4.0/Problems/SWV/SWV017+1.p',unknown)).

fof(f176,plain,(
( ! [X0] : (intruder_message(X0) | ~fresh_intruder_nonce(X0)) )),
inference(cnf_transformation,[],[f138])).

fof(f138,plain,(
! [X0] : (~fresh_intruder_nonce(X0) | (fresh_to_b(X0) & intruder_message(X0)))),
inference(ennf_transformation,[],[f33])).

fof(f33,axiom,(
! [X0] : (fresh_intruder_nonce(X0) => (fresh_to_b(X0) & intruder_message(X0)))),
file('/Users/korovin/TPTP-v5.4.0/Problems/SWV/SWV017+1.p',unknown)).

fof(f163,plain,(
( ! [X2,X0,X1] : (intruder_message(X1) | ~party_of_protocol(X2) | ~intruder_holds(key(X1,X2)) | ~intruder_message(encrypt(X0,X1))) )),
inference(cnf_transformation,[],[f129])).

fof(f129,plain,(
! [X0,X1,X2] : (~intruder_message(encrypt(X0,X1)) | ~intruder_holds(key(X1,X2)) | ~party_of_protocol(X2) | intruder_message(X1))),
inference(flattening,[],[f128])).

fof(f128,plain,(
! [X0,X1,X2] : ((~intruder_message(encrypt(X0,X1)) | ~intruder_holds(key(X1,X2)) | ~party_of_protocol(X2)) | intruder_message(X1))),
inference(ennf_transformation,[],[f22])).

fof(f22,axiom,(
! [X0,X1,X2] : ((intruder_message(encrypt(X0,X1)) & intruder_holds(key(X1,X2)) & party_of_protocol(X2)) => intruder_message(X1))),
file('/Users/korovin/TPTP-v5.4.0/Problems/SWV/SWV017+1.p',unknown)).

fof(f156,plain,(
( ! [X2,X0,X3,X1] : (intruder_message(X0) | ~intruder_message(quadruple(X0,X1,X2,X3))) )),
inference(cnf_transformation,[],[f121])).

fof(f121,plain,(
! [X0,X1,X2,X3] : (~intruder_message(quadruple(X0,X1,X2,X3)) | (intruder_message(X0) & intruder_message(X1) & intruder_message(X2) & intruder_message(X3)))),
inference(ennf_transformation,[],[f18])).

fof(f18,axiom,(
! [X0,X1,X2,X3] : (intruder_message(quadruple(X0,X1,X2,X3)) => (intruder_message(X0) & intruder_message(X1) & intruder_message(X2) & intruder_message(X3)))),
file('/Users/korovin/TPTP-v5.4.0/Problems/SWV/SWV017+1.p',unknown)).

fof(f157,plain,(
( ! [X2,X0,X3,X1] : (intruder_message(X1) | ~intruder_message(quadruple(X0,X1,X2,X3))) )),
inference(cnf_transformation,[],[f121])).

fof(f158,plain,(
( ! [X2,X0,X3,X1] : (intruder_message(X2) | ~intruder_message(quadruple(X0,X1,X2,X3))) )),
inference(cnf_transformation,[],[f121])).

fof(f159,plain,(
( ! [X2,X0,X3,X1] : (intruder_message(X3) | ~intruder_message(quadruple(X0,X1,X2,X3))) )),
inference(cnf_transformation,[],[f121])).

fof(f153,plain,(
( ! [X2,X0,X1] : (intruder_message(X0) | ~intruder_message(triple(X0,X1,X2))) )),
inference(cnf_transformation,[],[f120])).

fof(f120,plain,(
! [X0,X1,X2] : (~intruder_message(triple(X0,X1,X2)) | (intruder_message(X0) & intruder_message(X1) & intruder_message(X2)))),
inference(ennf_transformation,[],[f17])).

fof(f17,axiom,(
! [X0,X1,X2] : (intruder_message(triple(X0,X1,X2)) => (intruder_message(X0) & intruder_message(X1) & intruder_message(X2)))),
file('/Users/korovin/TPTP-v5.4.0/Problems/SWV/SWV017+1.p',unknown)).

fof(f154,plain,(
( ! [X2,X0,X1] : (intruder_message(X1) | ~intruder_message(triple(X0,X1,X2))) )),
inference(cnf_transformation,[],[f120])).

fof(f155,plain,(
( ! [X2,X0,X1] : (intruder_message(X2) | ~intruder_message(triple(X0,X1,X2))) )),
inference(cnf_transformation,[],[f120])).

fof(f151,plain,(
( ! [X0,X1] : (intruder_message(X0) | ~intruder_message(pair(X0,X1))) )),
inference(cnf_transformation,[],[f119])).

fof(f119,plain,(
! [X0,X1] : (~intruder_message(pair(X0,X1)) | (intruder_message(X0) & intruder_message(X1)))),
inference(ennf_transformation,[],[f16])).

fof(f16,axiom,(
! [X0,X1] : (intruder_message(pair(X0,X1)) => (intruder_message(X0) & intruder_message(X1)))),
file('/Users/korovin/TPTP-v5.4.0/Problems/SWV/SWV017+1.p',unknown)).

fof(f152,plain,(
( ! [X0,X1] : (intruder_message(X1) | ~intruder_message(pair(X0,X1))) )),
inference(cnf_transformation,[],[f119])).

fof(f150,plain,(
( ! [X2,X0,X1] : (intruder_message(X2) | ~message(sent(X0,X1,X2))) )),
inference(cnf_transformation,[],[f118])).

fof(f118,plain,(
! [X0,X1,X2] : (~message(sent(X0,X1,X2)) | intruder_message(X2))),
inference(ennf_transformation,[],[f15])).

fof(f15,axiom,(
! [X0,X1,X2] : (message(sent(X0,X1,X2)) => intruder_message(X2))),
file('/Users/korovin/TPTP-v5.4.0/Problems/SWV/SWV017+1.p',unknown)).

fof(f161,plain,(
( ! [X2,X0,X1] : (intruder_message(triple(X0,X1,X2)) | ~intruder_message(X2) | ~intruder_message(X1) | ~intruder_message(X0)) )),
inference(cnf_transformation,[],[f125])).

fof(f125,plain,(
! [X0,X1,X2] : (~intruder_message(X0) | ~intruder_message(X1) | ~intruder_message(X2) | intruder_message(triple(X0,X1,X2)))),
inference(flattening,[],[f124])).

fof(f124,plain,(
! [X0,X1,X2] : ((~intruder_message(X0) | ~intruder_message(X1) | ~intruder_message(X2)) | intruder_message(triple(X0,X1,X2)))),
inference(ennf_transformation,[],[f20])).

fof(f20,axiom,(
! [X0,X1,X2] : ((intruder_message(X0) & intruder_message(X1) & intruder_message(X2)) => intruder_message(triple(X0,X1,X2)))),
file('/Users/korovin/TPTP-v5.4.0/Problems/SWV/SWV017+1.p',unknown)).

fof(f162,plain,(
( ! [X2,X0,X3,X1] : (intruder_message(quadruple(X0,X1,X2,X3)) | ~intruder_message(X3) | ~intruder_message(X2) | ~intruder_message(X1) | ~intruder_message(X0)) )),
inference(cnf_transformation,[],[f127])).

fof(f127,plain,(
! [X0,X1,X2,X3] : (~intruder_message(X0) | ~intruder_message(X1) | ~intruder_message(X2) | ~intruder_message(X3) | intruder_message(quadruple(X0,X1,X2,X3)))),
inference(flattening,[],[f126])).

fof(f126,plain,(
! [X0,X1,X2,X3] : ((~intruder_message(X0) | ~intruder_message(X1) | ~intruder_message(X2) | ~intruder_message(X3)) | intruder_message(quadruple(X0,X1,X2,X3)))),
inference(ennf_transformation,[],[f21])).

fof(f21,axiom,(
! [X0,X1,X2,X3] : ((intruder_message(X0) & intruder_message(X1) & intruder_message(X2) & intruder_message(X3)) => intruder_message(quadruple(X0,X1,X2,X3)))),
file('/Users/korovin/TPTP-v5.4.0/Problems/SWV/SWV017+1.p',unknown)).

fof(f166,plain,(
( ! [X2,X0,X1] : (intruder_message(encrypt(X0,X1)) | ~party_of_protocol(X2) | ~intruder_holds(key(X1,X2)) | ~intruder_message(X0)) )),
inference(cnf_transformation,[],[f135])).

fof(f135,plain,(
! [X0,X1,X2] : (~intruder_message(X0) | ~intruder_holds(key(X1,X2)) | ~party_of_protocol(X2) | intruder_message(encrypt(X0,X1)))),
inference(flattening,[],[f134])).

fof(f134,plain,(
! [X0,X1,X2] : ((~intruder_message(X0) | ~intruder_holds(key(X1,X2)) | ~party_of_protocol(X2)) | intruder_message(encrypt(X0,X1)))),
inference(ennf_transformation,[],[f25])).

fof(f25,axiom,(
! [X0,X1,X2] : ((intruder_message(X0) & intruder_holds(key(X1,X2)) & party_of_protocol(X2)) => intruder_message(encrypt(X0,X1)))),
file('/Users/korovin/TPTP-v5.4.0/Problems/SWV/SWV017+1.p',unknown)).

fof(f147,plain,(
t_holds(key(bt,b))),
inference(cnf_transformation,[],[f12])).

fof(f12,axiom,(
t_holds(key(bt,b))),
file('/Users/korovin/TPTP-v5.4.0/Problems/SWV/SWV017+1.p',unknown)).

fof(f146,plain,(
t_holds(key(at,a))),
inference(cnf_transformation,[],[f11])).

fof(f11,axiom,(
t_holds(key(at,a))),
file('/Users/korovin/TPTP-v5.4.0/Problems/SWV/SWV017+1.p',unknown)).

fof(f143,plain,(
party_of_protocol(b)),
inference(cnf_transformation,[],[f7])).

fof(f7,axiom,(
party_of_protocol(b)),
file('/Users/korovin/TPTP-v5.4.0/Problems/SWV/SWV017+1.p',unknown)).

fof(f139,plain,(
party_of_protocol(a)),
inference(cnf_transformation,[],[f2])).

fof(f2,axiom,(
party_of_protocol(a)),
file('/Users/korovin/TPTP-v5.4.0/Problems/SWV/SWV017+1.p',unknown)).

fof(f148,plain,(
party_of_protocol(t)),
inference(cnf_transformation,[],[f13])).

fof(f13,axiom,(
party_of_protocol(t)),
file('/Users/korovin/TPTP-v5.4.0/Problems/SWV/SWV017+1.p',unknown)).

fof(f144,plain,(
fresh_to_b(an_a_nonce)),
inference(cnf_transformation,[],[f8])).

fof(f8,axiom,(
fresh_to_b(an_a_nonce)),
file('/Users/korovin/TPTP-v5.4.0/Problems/SWV/SWV017+1.p',unknown)).

fof(f175,plain,(
( ! [X0] : (fresh_to_b(X0) | ~fresh_intruder_nonce(X0)) )),
inference(cnf_transformation,[],[f138])).

fof(f174,plain,(
( ! [X0] : (fresh_intruder_nonce(generate_intruder_nonce(X0)) | ~fresh_intruder_nonce(X0)) )),
inference(cnf_transformation,[],[f137])).

fof(f137,plain,(
! [X0] : (~fresh_intruder_nonce(X0) | fresh_intruder_nonce(generate_intruder_nonce(X0)))),
inference(ennf_transformation,[],[f32])).

fof(f32,axiom,(
! [X0] : (fresh_intruder_nonce(X0) => fresh_intruder_nonce(generate_intruder_nonce(X0)))),
file('/Users/korovin/TPTP-v5.4.0/Problems/SWV/SWV017+1.p',unknown)).

fof(f173,plain,(
fresh_intruder_nonce(an_intruder_nonce)),
inference(cnf_transformation,[],[f31])).

fof(f31,axiom,(
fresh_intruder_nonce(an_intruder_nonce)),
file('/Users/korovin/TPTP-v5.4.0/Problems/SWV/SWV017+1.p',unknown)).

fof(f141,plain,(
a_stored(pair(b,an_a_nonce))),
inference(cnf_transformation,[],[f4])).

fof(f4,axiom,(
a_stored(pair(b,an_a_nonce))),
file('/Users/korovin/TPTP-v5.4.0/Problems/SWV/SWV017+1.p',unknown)).

fof(f145,plain,(
( ! [X0,X1] : (message(sent(b,t,triple(b,generate_b_nonce(X1),encrypt(triple(X0,X1,generate_expiration_time(X1)),bt)))) | ~fresh_to_b(X1) | ~message(sent(X0,b,pair(X0,X1)))) )),
inference(cnf_transformation,[],[f115])).

fof(f115,plain,(
! [X0,X1] : (~message(sent(X0,b,pair(X0,X1))) | ~fresh_to_b(X1) | message(sent(b,t,triple(b,generate_b_nonce(X1),encrypt(triple(X0,X1,generate_expiration_time(X1)),bt)))))),
inference(flattening,[],[f114])).

fof(f114,plain,(
! [X0,X1] : ((~message(sent(X0,b,pair(X0,X1))) | ~fresh_to_b(X1)) | message(sent(b,t,triple(b,generate_b_nonce(X1),encrypt(triple(X0,X1,generate_expiration_time(X1)),bt)))))),
inference(ennf_transformation,[],[f109])).

fof(f109,plain,(
! [X0,X1] : ((message(sent(X0,b,pair(X0,X1))) & fresh_to_b(X1)) => message(sent(b,t,triple(b,generate_b_nonce(X1),encrypt(triple(X0,X1,generate_expiration_time(X1)),bt)))))),
inference(pure_predicate_removal,[],[f9])).

fof(f9,axiom,(
! [X0,X1] : ((message(sent(X0,b,pair(X0,X1))) & fresh_to_b(X1)) => (message(sent(b,t,triple(b,generate_b_nonce(X1),encrypt(triple(X0,X1,generate_expiration_time(X1)),bt)))) & b_stored(pair(X0,X1))))),
file('/Users/korovin/TPTP-v5.4.0/Problems/SWV/SWV017+1.p',unknown)).

fof(f164,plain,(
( ! [X2,X0,X1] : (message(sent(X1,X2,X0)) | ~party_of_protocol(X2) | ~party_of_protocol(X1) | ~intruder_message(X0)) )),
inference(cnf_transformation,[],[f131])).

fof(f131,plain,(
! [X0,X1,X2] : (~intruder_message(X0) | ~party_of_protocol(X1) | ~party_of_protocol(X2) | message(sent(X1,X2,X0)))),
inference(flattening,[],[f130])).

fof(f130,plain,(
! [X0,X1,X2] : ((~intruder_message(X0) | ~party_of_protocol(X1) | ~party_of_protocol(X2)) | message(sent(X1,X2,X0)))),
inference(ennf_transformation,[],[f23])).

fof(f23,axiom,(
! [X0,X1,X2] : ((intruder_message(X0) & party_of_protocol(X1) & party_of_protocol(X2)) => message(sent(X1,X2,X0)))),
file('/Users/korovin/TPTP-v5.4.0/Problems/SWV/SWV017+1.p',unknown)).

fof(f140,plain,(
message(sent(a,b,pair(a,an_a_nonce)))),
inference(cnf_transformation,[],[f3])).

fof(f3,axiom,(
message(sent(a,b,pair(a,an_a_nonce)))),
file('/Users/korovin/TPTP-v5.4.0/Problems/SWV/SWV017+1.p',unknown)).

fof(f142,plain,(
( ! [X4,X2,X0,X5,X3,X1] : (message(sent(a,X4,pair(X3,encrypt(X0,X2)))) | ~a_stored(pair(X4,X5)) | ~message(sent(t,a,triple(encrypt(quadruple(X4,X5,X2,X1),at),X3,X0)))) )),
inference(cnf_transformation,[],[f113])).

fof(f113,plain,(
! [X0,X1,X2,X3,X4,X5] : (~message(sent(t,a,triple(encrypt(quadruple(X4,X5,X2,X1),at),X3,X0))) | ~a_stored(pair(X4,X5)) | message(sent(a,X4,pair(X3,encrypt(X0,X2)))))),
inference(flattening,[],[f112])).

fof(f112,plain,(
! [X0,X1,X2,X3,X4,X5] : ((~message(sent(t,a,triple(encrypt(quadruple(X4,X5,X2,X1),at),X3,X0))) | ~a_stored(pair(X4,X5))) | message(sent(a,X4,pair(X3,encrypt(X0,X2)))))),
inference(ennf_transformation,[],[f110])).

fof(f110,plain,(
! [X0,X1,X2,X3,X4,X5] : ((message(sent(t,a,triple(encrypt(quadruple(X4,X5,X2,X1),at),X3,X0))) & a_stored(pair(X4,X5))) => message(sent(a,X4,pair(X3,encrypt(X0,X2)))))),
inference(pure_predicate_removal,[],[f5])).

fof(f5,axiom,(
! [X0,X1,X2,X3,X4,X5] : ((message(sent(t,a,triple(encrypt(quadruple(X4,X5,X2,X1),at),X3,X0))) & a_stored(pair(X4,X5))) => (message(sent(a,X4,pair(X3,encrypt(X0,X2)))) & a_holds(key(X2,X4))))),
file('/Users/korovin/TPTP-v5.4.0/Problems/SWV/SWV017+1.p',unknown)).

fof(f149,plain,(
( ! [X6,X4,X2,X0,X5,X3,X1] : (message(sent(t,X2,triple(encrypt(quadruple(X0,X3,generate_key(X3),X4),X6),encrypt(triple(X2,generate_key(X3),X4),X5),X1))) | ~a_nonce(X3) | ~t_holds(key(X6,X2)) | ~t_holds(key(X5,X0)) | ~message(sent(X0,t,triple(X0,X1,encrypt(triple(X2,X3,X4),X5))))) )),
inference(cnf_transformation,[],[f117])).

fof(f117,plain,(
! [X0,X1,X2,X3,X4,X5,X6] : (~message(sent(X0,t,triple(X0,X1,encrypt(triple(X2,X3,X4),X5)))) | ~t_holds(key(X5,X0)) | ~t_holds(key(X6,X2)) | ~a_nonce(X3) | message(sent(t,X2,triple(encrypt(quadruple(X0,X3,generate_key(X3),X4),X6),encrypt(triple(X2,generate_key(X3),X4),X5),X1))))),
inference(flattening,[],[f116])).

fof(f116,plain,(
! [X0,X1,X2,X3,X4,X5,X6] : ((~message(sent(X0,t,triple(X0,X1,encrypt(triple(X2,X3,X4),X5)))) | ~t_holds(key(X5,X0)) | ~t_holds(key(X6,X2)) | ~a_nonce(X3)) | message(sent(t,X2,triple(encrypt(quadruple(X0,X3,generate_key(X3),X4),X6),encrypt(triple(X2,generate_key(X3),X4),X5),X1))))),
inference(ennf_transformation,[],[f14])).

fof(f14,axiom,(
! [X0,X1,X2,X3,X4,X5,X6] : ((message(sent(X0,t,triple(X0,X1,encrypt(triple(X2,X3,X4),X5)))) & t_holds(key(X5,X0)) & t_holds(key(X6,X2)) & a_nonce(X3)) => message(sent(t,X2,triple(encrypt(quadruple(X0,X3,generate_key(X3),X4),X6),encrypt(triple(X2,generate_key(X3),X4),X5),X1))))),
file('/Users/korovin/TPTP-v5.4.0/Problems/SWV/SWV017+1.p',unknown)).

fof(f165,plain,(
( ! [X0,X1] : (intruder_holds(key(X0,X1)) | ~party_of_protocol(X1) | ~intruder_message(X0)) )),
inference(cnf_transformation,[],[f133])).

fof(f133,plain,(
! [X0,X1] : (~intruder_message(X0) | ~party_of_protocol(X1) | intruder_holds(key(X0,X1)))),
inference(flattening,[],[f132])).

fof(f132,plain,(
! [X0,X1] : ((~intruder_message(X0) | ~party_of_protocol(X1)) | intruder_holds(key(X0,X1)))),
inference(ennf_transformation,[],[f35])).

fof(f35,plain,(
! [X0,X1] : ((intruder_message(X0) & party_of_protocol(X1)) => intruder_holds(key(X0,X1)))),
inference(rectify,[],[f24])).

fof(f24,axiom,(
! [X1,X2] : ((intruder_message(X1) & party_of_protocol(X2)) => intruder_holds(key(X1,X2)))),
file('/Users/korovin/TPTP-v5.4.0/Problems/SWV/SWV017+1.p',unknown)).

fof(f171,plain,(
( ! [X0] : (~a_nonce(X0) | ~a_key(X0)) )),
inference(cnf_transformation,[],[f136])).

fof(f136,plain,(
! [X0] : (~a_key(X0) | ~a_nonce(X0))),
inference(ennf_transformation,[],[f29])).

fof(f29,axiom,(
! [X0] : ~(a_key(X0) & a_nonce(X0))),
file('/Users/korovin/TPTP-v5.4.0/Problems/SWV/SWV017+1.p',unknown)).

fof(f172,plain,(
( ! [X0] : (a_key(generate_key(X0))) )),
inference(cnf_transformation,[],[f30])).

fof(f30,axiom,(
! [X0] : a_key(generate_key(X0))),
file('/Users/korovin/TPTP-v5.4.0/Problems/SWV/SWV017+1.p',unknown)).

fof(f170,plain,(
( ! [X0] : (a_nonce(generate_b_nonce(X0))) )),
inference(cnf_transformation,[],[f28])).

fof(f28,axiom,(
! [X0] : (a_nonce(generate_expiration_time(X0)) & a_nonce(generate_b_nonce(X0)))),
file('/Users/korovin/TPTP-v5.4.0/Problems/SWV/SWV017+1.p',unknown)).

fof(f169,plain,(
( ! [X0] : (a_nonce(generate_expiration_time(X0))) )),
inference(cnf_transformation,[],[f28])).

fof(f167,plain,(
a_nonce(an_a_nonce)),
inference(cnf_transformation,[],[f26])).

fof(f26,axiom,(
a_nonce(an_a_nonce)),
file('/Users/korovin/TPTP-v5.4.0/Problems/SWV/SWV017+1.p',unknown)).

cnf(c_29,plain,
( ~ a_nonce(generate_key(X0_$i)) ), inference(cnf_transformation,[],[f168]) ). cnf(c_291,plain, ( ~ a_nonce(generate_key(X0_$$iProver_key_i_1)) ), inference(subtyping,[status(esa)],[c_29]) ). cnf(c_21,plain, ( intruder_message(pair(X0_i,X1_i)) | ~ intruder_message(X0_i) | ~ intruder_message(X1_i) ), inference(cnf_transformation,[],[f160]) ). cnf(c_298,plain, ( intruder_message(pair(X0_$$iProver_key_$i_1,X1_$$iProver_key_i_1)) | ~ intruder_message(X0_$$iProver_key_$i_1) | ~ intruder_message(X1_$$iProver_key_i_1) ), inference(subtyping,[status(esa)],[c_21]) ). cnf(c_36,plain, ( intruder_message(X0_i) | ~ fresh_intruder_nonce(X0_i) ), inference(cnf_transformation,[],[f176]) ). cnf(c_285,plain, ( intruder_message(X0_$$iProver_key_$i_1)
| ~ fresh_intruder_nonce(X0_$$iProver_key_i_1) ), inference(subtyping,[status(esa)],[c_36]) ). cnf(c_24,plain, ( ~ party_of_protocol(X0_i) | ~ intruder_message(encrypt(X1_i,X2_i)) | intruder_message(X2_i) | ~ intruder_holds(key(X2_i,X0_i)) ), inference(cnf_transformation,[],[f163]) ). cnf(c_295,plain, ( ~ party_of_protocol(X0_$$iProver_key_$i_1) | ~ intruder_message(encrypt(X1_$$iProver_key_i_1,X2_$$iProver_key_$i_1))
| intruder_message(X2_$$iProver_key_i_1) | ~ intruder_holds(key(X2_$$iProver_key_$i_1,X0_$$iProver_key_i_1)) ), inference(subtyping,[status(esa)],[c_24]) ). cnf(c_20,plain, ( ~ intruder_message(quadruple(X0_i,X1_i,X2_i,X3_i)) | intruder_message(X0_i) ), inference(cnf_transformation,[],[f156]) ). cnf(c_299,plain, ( ~ intruder_message(quadruple(X0_$$iProver_key_$i_1,X1_$$iProver_key_i_1,X2_$$iProver_key_$i_1,X3_$$iProver_key_i_1)) | intruder_message(X0_$$iProver_key_$i_1) ),
inference(subtyping,[status(esa)],[c_20]) ).

cnf(c_19,plain,
( ~ intruder_message(quadruple(X0_$i,X1_$i,X2_$i,X3_$i))
| intruder_message(X1_$i) ), inference(cnf_transformation,[],[f157]) ). cnf(c_300,plain, ( ~ intruder_message(quadruple(X0_$$iProver_key_i_1,X1_$$iProver_key_$i_1,X2_$$iProver_key_i_1,X3_$$iProver_key_$i_1)) | intruder_message(X1_$$iProver_key_i_1) ), inference(subtyping,[status(esa)],[c_19]) ). cnf(c_18,plain, ( ~ intruder_message(quadruple(X0_i,X1_i,X2_i,X3_i)) | intruder_message(X2_i) ), inference(cnf_transformation,[],[f158]) ). cnf(c_301,plain, ( ~ intruder_message(quadruple(X0_$$iProver_key_$i_1,X1_$$iProver_key_i_1,X2_$$iProver_key_$i_1,X3_$$iProver_key_i_1)) | intruder_message(X2_$$iProver_key_$i_1) ),
inference(subtyping,[status(esa)],[c_18]) ).

cnf(c_17,plain,
( ~ intruder_message(quadruple(X0_$i,X1_$i,X2_$i,X3_$i))
| intruder_message(X3_$i) ), inference(cnf_transformation,[],[f159]) ). cnf(c_302,plain, ( ~ intruder_message(quadruple(X0_$$iProver_key_i_1,X1_$$iProver_key_$i_1,X2_$$iProver_key_i_1,X3_$$iProver_key_$i_1)) | intruder_message(X3_$$iProver_key_i_1) ), inference(subtyping,[status(esa)],[c_17]) ). cnf(c_16,plain, ( ~ intruder_message(triple(X0_i,X1_i,X2_i)) | intruder_message(X0_i) ), inference(cnf_transformation,[],[f153]) ). cnf(c_303,plain, ( ~ intruder_message(triple(X0_$$iProver_key_$i_1,X1_$$iProver_key_i_1,X2_$$iProver_key_$i_1)) | intruder_message(X0_$$iProver_key_i_1) ), inference(subtyping,[status(esa)],[c_16]) ). cnf(c_15,plain, ( ~ intruder_message(triple(X0_i,X1_i,X2_i)) | intruder_message(X1_i) ), inference(cnf_transformation,[],[f154]) ). cnf(c_304,plain, ( ~ intruder_message(triple(X0_$$iProver_key_$i_1,X1_$$iProver_key_i_1,X2_$$iProver_key_$i_1)) | intruder_message(X1_$$iProver_key_i_1) ), inference(subtyping,[status(esa)],[c_15]) ). cnf(c_14,plain, ( ~ intruder_message(triple(X0_i,X1_i,X2_i)) | intruder_message(X2_i) ), inference(cnf_transformation,[],[f155]) ). cnf(c_305,plain, ( ~ intruder_message(triple(X0_$$iProver_key_$i_1,X1_$$iProver_key_i_1,X2_$$iProver_key_$i_1)) | intruder_message(X2_$$iProver_key_i_1) ), inference(subtyping,[status(esa)],[c_14]) ). cnf(c_13,plain, ( ~ intruder_message(pair(X0_i,X1_i)) | intruder_message(X0_i) ), inference(cnf_transformation,[],[f151]) ). cnf(c_306,plain, ( ~ intruder_message(pair(X0_$$iProver_key_$i_1,X1_$$iProver_key_i_1)) | intruder_message(X0_$$iProver_key_$i_1) ), inference(subtyping,[status(esa)],[c_13]) ). cnf(c_12,plain, ( ~ intruder_message(pair(X0_$i,X1_$i)) | intruder_message(X1_$i) ),
inference(cnf_transformation,[],[f152]) ).

cnf(c_307,plain,
( ~ intruder_message(pair(X0_$$iProver_key_i_1,X1_$$iProver_key_$i_1)) | intruder_message(X1_$$iProver_key_i_1) ), inference(subtyping,[status(esa)],[c_12]) ). cnf(c_11,plain, ( ~ message(sent(X0_i,X1_i,X2_i)) | intruder_message(X2_i) ), inference(cnf_transformation,[],[f150]) ). cnf(c_308,plain, ( ~ message(sent(X0_$$iProver_key_$i_1,X1_$$iProver_key_i_1,X2_$$iProver_key_$i_1)) | intruder_message(X2_$$iProver_key_i_1) ), inference(subtyping,[status(esa)],[c_11]) ). cnf(c_22,plain, ( intruder_message(triple(X0_i,X1_i,X2_i)) | ~ intruder_message(X0_i) | ~ intruder_message(X1_i) | ~ intruder_message(X2_i) ), inference(cnf_transformation,[],[f161]) ). cnf(c_297,plain, ( intruder_message(triple(X0_$$iProver_key_$i_1,X1_$$iProver_key_i_1,X2_$$iProver_key_$i_1)) | ~ intruder_message(X0_$$iProver_key_i_1) | ~ intruder_message(X1_$$iProver_key_$i_1)
| ~ intruder_message(X2_$$iProver_key_i_1) ), inference(subtyping,[status(esa)],[c_22]) ). cnf(c_23,plain, ( intruder_message(quadruple(X0_i,X1_i,X2_i,X3_i)) | ~ intruder_message(X0_i) | ~ intruder_message(X1_i) | ~ intruder_message(X2_i) | ~ intruder_message(X3_i) ), inference(cnf_transformation,[],[f162]) ). cnf(c_296,plain, ( intruder_message(quadruple(X0_$$iProver_key_$i_1,X1_$$iProver_key_i_1,X2_$$iProver_key_$i_1,X3_$$iProver_key_i_1)) | ~ intruder_message(X0_$$iProver_key_$i_1) | ~ intruder_message(X1_$$iProver_key_i_1) | ~ intruder_message(X2_$$iProver_key_$i_1)
| ~ intruder_message(X3_$$iProver_key_i_1) ), inference(subtyping,[status(esa)],[c_23]) ). cnf(c_27,plain, ( ~ party_of_protocol(X0_i) | intruder_message(encrypt(X1_i,X2_i)) | ~ intruder_message(X1_i) | ~ intruder_holds(key(X2_i,X0_i)) ), inference(cnf_transformation,[],[f166]) ). cnf(c_292,plain, ( ~ party_of_protocol(X0_$$iProver_key_$i_1) | intruder_message(encrypt(X1_$$iProver_key_i_1,X2_$$iProver_key_$i_1))
| ~ intruder_message(X1_$$iProver_key_i_1) | ~ intruder_holds(key(X2_$$iProver_key_$i_1,X0_$$iProver_key_i_1)) ), inference(subtyping,[status(esa)],[c_27]) ). cnf(c_8,plain, ( t_holds(key(bt,b)) ), inference(cnf_transformation,[],[f147]) ). cnf(c_280,plain, ( t_holds(key(bt,b)) ), inference(subtyping,[status(esa)],[c_8]) ). cnf(c_7,plain, ( t_holds(key(at,a)) ), inference(cnf_transformation,[],[f146]) ). cnf(c_279,plain, ( t_holds(key(at,a)) ), inference(subtyping,[status(esa)],[c_7]) ). cnf(c_4,plain, ( party_of_protocol(b) ), inference(cnf_transformation,[],[f143]) ). cnf(c_277,plain, ( party_of_protocol(b) ), inference(subtyping,[status(esa)],[c_4]) ). cnf(c_0,plain, ( party_of_protocol(a) ), inference(cnf_transformation,[],[f139]) ). cnf(c_274,plain, ( party_of_protocol(a) ), inference(subtyping,[status(esa)],[c_0]) ). cnf(c_9,plain, ( party_of_protocol(t) ), inference(cnf_transformation,[],[f148]) ). cnf(c_281,plain, ( party_of_protocol(t) ), inference(subtyping,[status(esa)],[c_9]) ). cnf(c_5,plain, ( fresh_to_b(an_a_nonce) ), inference(cnf_transformation,[],[f144]) ). cnf(c_278,plain, ( fresh_to_b(an_a_nonce) ), inference(subtyping,[status(esa)],[c_5]) ). cnf(c_37,plain, ( fresh_to_b(X0_i) | ~ fresh_intruder_nonce(X0_i) ), inference(cnf_transformation,[],[f175]) ). cnf(c_284,plain, ( fresh_to_b(X0_$$iProver_key_$i_1)
| ~ fresh_intruder_nonce(X0_$$iProver_key_i_1) ), inference(subtyping,[status(esa)],[c_37]) ). cnf(c_35,plain, ( fresh_intruder_nonce(generate_intruder_nonce(X0_i)) | ~ fresh_intruder_nonce(X0_i) ), inference(cnf_transformation,[],[f174]) ). cnf(c_286,plain, ( fresh_intruder_nonce(generate_intruder_nonce(X0_$$iProver_key_$i_1)) | ~ fresh_intruder_nonce(X0_$$iProver_key_i_1) ), inference(subtyping,[status(esa)],[c_35]) ). cnf(c_34,plain, ( fresh_intruder_nonce(an_intruder_nonce) ), inference(cnf_transformation,[],[f173]) ). cnf(c_283,plain, ( fresh_intruder_nonce(an_intruder_nonce) ), inference(subtyping,[status(esa)],[c_34]) ). cnf(c_2,plain, ( a_stored(pair(b,an_a_nonce)) ), inference(cnf_transformation,[],[f141]) ). cnf(c_276,plain, ( a_stored(pair(b,an_a_nonce)) ), inference(subtyping,[status(esa)],[c_2]) ). cnf(c_6,plain, ( message(sent(b,t,triple(b,generate_b_nonce(X0_i),encrypt(triple(X1_i,X0_i,generate_expiration_time(X0_i)),bt)))) | ~ message(sent(X1_i,b,pair(X1_i,X0_i))) | ~ fresh_to_b(X0_i) ), inference(cnf_transformation,[],[f145]) ). cnf(c_310,plain, ( message(sent(b,t,triple(b,generate_b_nonce(X0_$$iProver_key_$i_1),encrypt(triple(X1_$$iProver_key_i_1,X0_$$iProver_key_$i_1,generate_expiration_time(X0_$$iProver_key_i_1)),bt)))) | ~ message(sent(X1_$$iProver_key_$i_1,b,pair(X1_$$iProver_key_i_1,X0_$$iProver_key_$i_1))) | ~ fresh_to_b(X0_$$iProver_key_i_1) ), inference(subtyping,[status(esa)],[c_6]) ). cnf(c_25,plain, ( ~ party_of_protocol(X0_i) | ~ party_of_protocol(X1_i) | message(sent(X0_i,X1_i,X2_i)) | ~ intruder_message(X2_i) ), inference(cnf_transformation,[],[f164]) ). cnf(c_294,plain, ( ~ party_of_protocol(X0_$$iProver_key_$i_1)
| ~ party_of_protocol(X1_$$iProver_key_i_1) | message(sent(X0_$$iProver_key_$i_1,X1_$$iProver_key_i_1,X2_$$iProver_key_$i_1))
| ~ intruder_message(X2_$$iProver_key_i_1) ), inference(subtyping,[status(esa)],[c_25]) ). cnf(c_1,plain, ( message(sent(a,b,pair(a,an_a_nonce))) ), inference(cnf_transformation,[],[f140]) ). cnf(c_275,plain, ( message(sent(a,b,pair(a,an_a_nonce))) ), inference(subtyping,[status(esa)],[c_1]) ). cnf(c_3,plain, ( message(sent(a,X0_i,pair(X1_i,encrypt(X2_i,X3_i)))) | ~ message(sent(t,a,triple(encrypt(quadruple(X0_i,X4_i,X3_i,X5_i),at),X1_i,X2_i))) | ~ a_stored(pair(X0_i,X4_i)) ), inference(cnf_transformation,[],[f142]) ). cnf(c_311,plain, ( message(sent(a,X0_$$iProver_key_$i_1,pair(X1_$$iProver_key_i_1,encrypt(X2_$$iProver_key_$i_1,X3_$$iProver_key_i_1)))) | ~ message(sent(t,a,triple(encrypt(quadruple(X0_$$iProver_key_$i_1,X4_$$iProver_key_i_1,X3_$$iProver_key_$i_1,X5_$$iProver_key_i_1),at),X1_$$iProver_key_$i_1,X2_$$iProver_key_i_1))) | ~ a_stored(pair(X0_$$iProver_key_$i_1,X4_$$iProver_key_i_1)) ), inference(subtyping,[status(esa)],[c_3]) ). cnf(c_10,plain, ( message(sent(t,X0_i,triple(encrypt(quadruple(X1_i,X2_i,generate_key(X2_i),X3_i),X4_i),encrypt(triple(X0_i,generate_key(X2_i),X3_i),X5_i),X6_i))) | ~ message(sent(X1_i,t,triple(X1_i,X6_i,encrypt(triple(X0_i,X2_i,X3_i),X5_i)))) | ~ t_holds(key(X5_i,X1_i)) | ~ t_holds(key(X4_i,X0_i)) | ~ a_nonce(X2_i) ), inference(cnf_transformation,[],[f149]) ). cnf(c_309,plain, ( message(sent(t,X0_$$iProver_key_$i_1,triple(encrypt(quadruple(X1_$$iProver_key_i_1,X2_$$iProver_key_$i_1,generate_key(X2_$$iProver_key_i_1),X3_$$iProver_key_$i_1),X4_$$iProver_key_i_1),encrypt(triple(X0_$$iProver_key_$i_1,generate_key(X2_$$iProver_key_i_1),X3_$$iProver_key_$i_1),X5_$$iProver_key_i_1),X6_$$iProver_key_$i_1)))
| ~ message(sent(X1_$$iProver_key_i_1,t,triple(X1_$$iProver_key_$i_1,X6_$$iProver_key_i_1,encrypt(triple(X0_$$iProver_key_$i_1,X2_$$iProver_key_i_1,X3_$$iProver_key_$i_1),X5_$$iProver_key_i_1)))) | ~ t_holds(key(X5_$$iProver_key_$i_1,X1_$$iProver_key_i_1)) | ~ t_holds(key(X4_$$iProver_key_$i_1,X0_$$iProver_key_i_1)) | ~ a_nonce(X2_$$iProver_key_$i_1) ),
inference(subtyping,[status(esa)],[c_10]) ).

cnf(c_26,plain,
( ~ party_of_protocol(X0_$i) | ~ intruder_message(X1_$i)
| intruder_holds(key(X1_$i,X0_$i)) ),
inference(cnf_transformation,[],[f165]) ).

cnf(c_293,plain,
( ~ party_of_protocol(X0_$$iProver_key_i_1) | ~ intruder_message(X1_$$iProver_key_$i_1) | intruder_holds(key(X1_$$iProver_key_i_1,X0_$$iProver_key_$i_1)) ),
inference(subtyping,[status(esa)],[c_26]) ).

cnf(c_32,plain,
( ~ a_nonce(X0_$i) | ~ a_key(X0_$i) ),
inference(cnf_transformation,[],[f171]) ).

cnf(c_321,plain,
( ~ a_nonce(X0_$$iProver_key_i_1) | ~ a_key(X0_$$iProver_key_$i_1) ), inference(subtyping,[status(esa)],[c_32]) ). cnf(c_33,plain, ( a_key(generate_key(X0_$i)) ),
inference(cnf_transformation,[],[f172]) ).

cnf(c_320,plain,
( a_key(generate_key(X0_$$iProver_key_i_1)) ), inference(subtyping,[status(esa)],[c_33]) ). cnf(c_338,plain, ( ~ a_nonce(generate_key(X0_$$iProver_key_$i_1)) ), inference(resolution,[status(thm)],[c_321,c_320]) ). cnf(c_30,plain, ( a_nonce(generate_b_nonce(X0_$i)) ),
inference(cnf_transformation,[],[f170]) ).

cnf(c_319,plain,
( a_nonce(generate_b_nonce(X0_$$iProver_key_i_1)) ), inference(subtyping,[status(esa)],[c_30]) ). cnf(c_31,plain, ( a_nonce(generate_expiration_time(X0_i)) ), inference(cnf_transformation,[],[f169]) ). cnf(c_318,plain, ( a_nonce(generate_expiration_time(X0_$$iProver_key_$i_1)) ), inference(subtyping,[status(esa)],[c_31]) ). cnf(c_28,plain, ( a_nonce(an_a_nonce) ), inference(cnf_transformation,[],[f167]) ). cnf(c_317,plain, ( a_nonce(an_a_nonce) ), inference(subtyping,[status(esa)],[c_28]) ). % SZS output end Saturation  ### Sample finite model for SWV017+1 %------ The model is defined over ground terms (initial term algebra). %------ Predicates are defined as (\forall x_1,..,x_n ((~)P(x_1,..,x_n) <=> (\phi(x_1,..,x_n)))) %------ where \phi is a formula over the term algebra. %------ If we have equality in the problem then it is also defined as a predicate above, %------ with "=" on the right-hand-side of the definition interpreted over the term algebra $$term_algebra_type %------ See help for --sat_out_model for different model outputs. %------ equality_sorted(X0,X1,X2) can be used in the place of usual "=" %------ where the first argument stands for the sort (i in the unsorted case) % SZS output start Model %------ Negative definition of party_of_protocol fof(lit_def,axiom, (! [X0_$$iProver_key_$i_1] :
( ~(party_of_protocol(X0_$$iProver_key_i_1)) <=> false ) ) ). %------ Negative definition of message fof(lit_def,axiom, (! [X0_$$iProver_message_$i_1] : ( ~(message(X0_$$iProver_message_i_1)) <=> false ) ) ). %------ Negative definition of a_stored fof(lit_def,axiom, (! [X0_$$iProver_key_$i_1] :
( ~(a_stored(X0_$$iProver_key_i_1)) <=> false ) ) ). %------ Positive definition of fresh_to_b fof(lit_def,axiom, (! [X0_$$iProver_key_$i_1] : ( fresh_to_b(X0_$$iProver_key_i_1) <=> true ) ) ). %------ Negative definition of t_holds fof(lit_def,axiom, (! [X0_$$iProver_intruder_holds_$i_1] :
( ~(t_holds(X0_$$iProver_intruder_holds_i_1)) <=> false ) ) ). %------ Positive definition of a_nonce fof(lit_def,axiom, (! [X0_$$iProver_key_$i_1] : ( a_nonce(X0_$$iProver_key_i_1) <=> ( ( ( X0_$$iProver_key_$i_1=$$iProver_Domain_$$iProver_key_$i_1_1 ) ) ) ) ) ). %------ Positive definition of intruder_message fof(lit_def,axiom, (! [X0_$$iProver_key_i_1] : ( intruder_message(X0_$$iProver_key_$i_1) <=>
$true ) ) ). %------ Negative definition of intruder_holds fof(lit_def,axiom, (! [X0_$$iProver_intruder_holds_i_1] : ( ~(intruder_holds(X0_$$iProver_intruder_holds_$i_1)) <=>
$false ) ) ). %------ Positive definition of a_key fof(lit_def,axiom, (! [X0_$$iProver_key_i_1] : ( a_key(X0_$$iProver_key_$i_1) <=>
(
(
( X0_$$iProver_key_i_1=$$iProver_Domain_$$iProver_key_i_1_2 ) ) ) ) ) ). %------ Negative definition of fresh_intruder_nonce fof(lit_def,axiom, (! [X0_$$iProver_key_$i_1] : ( ~(fresh_intruder_nonce(X0_$$iProver_key_i_1)) <=> false ) ) ). %------ Positive definition of$$iProver_Flat_an_a_nonce fof(lit_def,axiom, (! [X0_$$iProver_key_i_1] : ($$iProver_Flat_an_a_nonce(X0_$$iProver_key_i_1) <=> ( ( ( X0_$$iProver_key_$i_1=$$iProver_Domain_$$iProver_key_$i_1_1 ) ) ) ) ) ). %------ Positive definition of $$iProver_Flat_generate_b_nonce fof(lit_def,axiom, (! [X0_$$iProver_key_$i_1,X1_$$iProver_key_i_1] : ($$iProver_Flat_generate_b_nonce(X0_$$iProver_key_i_1,X1_$$iProver_key_$i_1) <=> ( ( ( X0_$$iProver_key_i_1=$$iProver_Domain_$$iProver_key_i_1_1 ) ) ) ) ) ). %------ Positive definition of$$iProver_Flat_generate_expiration_time fof(lit_def,axiom, (! [X0_$$iProver_key_i_1,X1_$$iProver_key_$i_1] :
( $$iProver_Flat_generate_expiration_time(X0_$$iProver_key_$i_1,X1_$$iProver_key_i_1) <=> ( ( ( X0_$$iProver_key_$i_1=$$iProver_Domain_$$iProver_key_$i_1_1 ) ) ) ) ) ). %------ Positive definition of $$iProver_Flat_generate_key fof(lit_def,axiom, (! [X0_$$iProver_key_$i_1,X1_$$iProver_key_i_1] : ($$iProver_Flat_generate_key(X0_$$iProver_key_i_1,X1_$$iProver_key_$i_1) <=> ( ( ( X0_$$iProver_key_i_1=$$iProver_Domain_$$iProver_key_$i_1_2 )
)

)
)
)
).

% SZS output end Model


## Prover9 2009-11A

William McCune, Bob Veroff
University of New Mexico, USA

### Sample solution for SEU140+2

8 (all A all B (subset(A,B) <-> (all C (in(C,A) -> in(C,B))))) # label(d3_tarski) # label(axiom) # label(non_clause).  [assumption].
26 (all A all B (disjoint(A,B) -> disjoint(B,A))) # label(symmetry_r1_xboole_0) # label(axiom) # label(non_clause).  [assumption].
42 (all A all B (-(-disjoint(A,B) & (all C -(in(C,A) & in(C,B)))) & -((exists C (in(C,A) & in(C,B))) & disjoint(A,B)))) # label(t3_xboole_0) # label(lemma) # label(non_clause).  [assumption].
55 -(all A all B all C (subset(A,B) & disjoint(B,C) -> disjoint(A,C))) # label(t63_xboole_1) # label(negated_conjecture) # label(non_clause).  [assumption].
60 subset(c3,c4) # label(t63_xboole_1) # label(negated_conjecture).  [clausify(55)].
61 disjoint(c4,c5) # label(t63_xboole_1) # label(negated_conjecture).  [clausify(55)].
75 disjoint(A,B) | in(f7(A,B),A) # label(t3_xboole_0) # label(lemma).  [clausify(42)].
76 disjoint(A,B) | in(f7(A,B),B) # label(t3_xboole_0) # label(lemma).  [clausify(42)].
92 -disjoint(c3,c5) # label(t63_xboole_1) # label(negated_conjecture).  [clausify(55)].
101 -in(A,B) | -in(A,C) | -disjoint(B,C) # label(t3_xboole_0) # label(lemma).  [clausify(42)].
109 -disjoint(A,B) | disjoint(B,A) # label(symmetry_r1_xboole_0) # label(axiom).  [clausify(26)].
123 -subset(A,B) | -in(C,A) | in(C,B) # label(d3_tarski) # label(axiom).  [clausify(8)].
273 -disjoint(c5,c3).  [ur(109,b,92,a)].
300 -in(A,c3) | in(A,c4).  [resolve(123,a,60,a)].
959 in(f7(c5,c3),c3).  [resolve(273,a,76,a)].
960 in(f7(c5,c3),c5).  [resolve(273,a,75,a)].
1084 -in(f7(c5,c3),c4).  [ur(101,b,960,a,c,61,a)].
1292 $F. [resolve(300,a,959,a),unit_del(a,1084)].  ## Vampire 2.6 Krystof Hoder, Andrei Voronkov University of Manchester, England ### Sample solution for SEU140+2 % SZS output start Proof for SEU140+2 fof(f1738,plain,($false),
inference(subsumption_resolution,[],[f1737,f136])).
fof(f136,plain,(
~disjoint(sK0,sK2)),
inference(cnf_transformation,[],[f104])).
fof(f104,plain,(
subset(sK0,sK1) & disjoint(sK1,sK2) & ~disjoint(sK0,sK2)),
inference(skolemisation,[status(esa)],[f76])).
fof(f76,plain,(
? [X0,X1,X2] : (subset(X0,X1) & disjoint(X1,X2) & ~disjoint(X0,X2))),
inference(flattening,[],[f75])).
fof(f75,plain,(
? [X0,X1,X2] : ((subset(X0,X1) & disjoint(X1,X2)) & ~disjoint(X0,X2))),
inference(ennf_transformation,[],[f52])).
fof(f52,negated_conjecture,(
~! [X0,X1,X2] : ((subset(X0,X1) & disjoint(X1,X2)) => disjoint(X0,X2))),
inference(negated_conjecture,[],[f51])).
fof(f51,conjecture,(
! [X0,X1,X2] : ((subset(X0,X1) & disjoint(X1,X2)) => disjoint(X0,X2))),
file('Problems/SEU/SEU140+2.p',t63_xboole_1)).
fof(f1737,plain,(
disjoint(sK0,sK2)),
inference(duplicate_literal_removal,[],[f1736])).
fof(f1736,plain,(
disjoint(sK0,sK2) | disjoint(sK0,sK2)),
inference(resolution,[],[f1707,f378])).
fof(f378,plain,(
( ! [X1] : (~in(sK4(sK2,X1),sK1) | disjoint(X1,sK2)) )),
inference(resolution,[],[f372,f148])).
fof(f148,plain,(
( ! [X0,X1] : (in(sK4(X1,X0),X1) | disjoint(X0,X1)) )),
inference(cnf_transformation,[],[f106])).
fof(f106,plain,(
! [X0,X1] : ((disjoint(X0,X1) | (in(sK4(X1,X0),X0) & in(sK4(X1,X0),X1))) & (! [X2] : (~in(X2,X0) | ~in(X2,X1)) | ~disjoint(X0,X1)))),
inference(skolemisation,[status(esa)],[f79])).
fof(f79,plain,(
! [X0,X1] : ((disjoint(X0,X1) | ? [X3] : (in(X3,X0) & in(X3,X1))) & (! [X2] : (~in(X2,X0) | ~in(X2,X1)) | ~disjoint(X0,X1)))),
inference(ennf_transformation,[],[f61])).
fof(f61,plain,(
! [X0,X1] : (~(~disjoint(X0,X1) & ! [X3] : ~(in(X3,X0) & in(X3,X1))) & ~(? [X2] : (in(X2,X0) & in(X2,X1)) & disjoint(X0,X1)))),
inference(flattening,[],[f60])).
fof(f60,plain,(
! [X0,X1] : (~(~disjoint(X0,X1) & ! [X3] : ~(in(X3,X0) & in(X3,X1))) & ~(? [X2] : (in(X2,X0) & in(X2,X1)) & disjoint(X0,X1)))),
inference(rectify,[],[f43])).
fof(f43,axiom,(
! [X0,X1] : (~(~disjoint(X0,X1) & ! [X2] : ~(in(X2,X0) & in(X2,X1))) & ~(? [X2] : (in(X2,X0) & in(X2,X1)) & disjoint(X0,X1)))),
file('Problems/SEU/SEU140+2.p',t3_xboole_0)).
fof(f372,plain,(
( ! [X0] : (~in(X0,sK2) | ~in(X0,sK1)) )),
inference(resolution,[],[f149,f135])).
fof(f135,plain,(
disjoint(sK1,sK2)),
inference(cnf_transformation,[],[f104])).
fof(f149,plain,(
( ! [X2,X0,X1] : (~disjoint(X0,X1) | ~in(X2,X1) | ~in(X2,X0)) )),
inference(cnf_transformation,[],[f106])).
fof(f1707,plain,(
( ! [X0] : (in(sK4(X0,sK0),sK1) | disjoint(sK0,X0)) )),
inference(resolution,[],[f1706,f147])).
fof(f147,plain,(
( ! [X0,X1] : (in(sK4(X1,X0),X0) | disjoint(X0,X1)) )),
inference(cnf_transformation,[],[f106])).
fof(f1706,plain,(
( ! [X78] : (~in(X78,sK0) | in(X78,sK1)) )),
inference(resolution,[],[f1661,f134])).
fof(f134,plain,(
subset(sK0,sK1)),
inference(cnf_transformation,[],[f104])).
fof(f1661,plain,(
( ! [X6,X7,X5] : (~subset(X5,X6) | in(X7,X6) | ~in(X7,X5)) )),
inference(superposition,[],[f236,f218])).
fof(f218,plain,(
( ! [X0,X1] : (set_difference(X0,set_difference(X0,X1)) = X0 | ~subset(X0,X1)) )),
inference(definition_unfolding,[],[f150,f144])).
fof(f144,plain,(
( ! [X0,X1] : (set_intersection2(X0,X1) = set_difference(X0,set_difference(X0,X1))) )),
inference(cnf_transformation,[],[f47])).
fof(f47,axiom,(
! [X0,X1] : set_intersection2(X0,X1) = set_difference(X0,set_difference(X0,X1))),
file('Problems/SEU/SEU140+2.p',t48_xboole_1)).
fof(f150,plain,(
( ! [X0,X1] : (set_intersection2(X0,X1) = X0 | ~subset(X0,X1)) )),
inference(cnf_transformation,[],[f80])).
fof(f80,plain,(
! [X0,X1] : (~subset(X0,X1) | set_intersection2(X0,X1) = X0)),
inference(ennf_transformation,[],[f34])).
fof(f34,axiom,(
! [X0,X1] : (subset(X0,X1) => set_intersection2(X0,X1) = X0)),
file('Problems/SEU/SEU140+2.p',t28_xboole_1)).
fof(f236,plain,(
( ! [X4,X0,X1] : (~in(X4,set_difference(X0,set_difference(X0,X1))) | in(X4,X1)) )),
inference(equality_resolution,[],[f230])).
fof(f230,plain,(
( ! [X4,X2,X0,X1] : (in(X4,X1) | ~in(X4,X2) | set_difference(X0,set_difference(X0,X1)) != X2) )),
inference(definition_unfolding,[],[f196,f144])).
fof(f196,plain,(
( ! [X4,X2,X0,X1] : (in(X4,X1) | ~in(X4,X2) | set_intersection2(X0,X1) != X2) )),
inference(cnf_transformation,[],[f123])).
fof(f123,plain,(
! [X0,X1,X2] : ((set_intersection2(X0,X1) != X2 | ! [X4] : ((~in(X4,X2) | (in(X4,X0) & in(X4,X1))) & (~in(X4,X0) | ~in(X4,X1) | in(X4,X2)))) & (((in(sK8(X2,X1,X0),X2) | (in(sK8(X2,X1,X0),X0) & in(sK8(X2,X1,X0),X1))) & (~in(sK8(X2,X1,X0),X2) | ~in(sK8(X2,X1,X0),X0) | ~in(sK8(X2,X1,X0),X1))) | set_intersection2(X0,X1) = X2))),
inference(skolemisation,[status(esa)],[f122])).
fof(f122,plain,(
! [X0,X1,X2] : ((set_intersection2(X0,X1) != X2 | ! [X4] : ((~in(X4,X2) | (in(X4,X0) & in(X4,X1))) & (~in(X4,X0) | ~in(X4,X1) | in(X4,X2)))) & (? [X3] : ((in(X3,X2) | (in(X3,X0) & in(X3,X1))) & (~in(X3,X2) | ~in(X3,X0) | ~in(X3,X1))) | set_intersection2(X0,X1) = X2))),
inference(rectify,[],[f121])).
fof(f121,plain,(
! [X0,X1,X2] : ((set_intersection2(X0,X1) != X2 | ! [X3] : ((~in(X3,X2) | (in(X3,X0) & in(X3,X1))) & (~in(X3,X0) | ~in(X3,X1) | in(X3,X2)))) & (? [X3] : ((in(X3,X2) | (in(X3,X0) & in(X3,X1))) & (~in(X3,X2) | ~in(X3,X0) | ~in(X3,X1))) | set_intersection2(X0,X1) = X2))),
inference(flattening,[],[f120])).
fof(f120,plain,(
! [X0,X1,X2] : ((set_intersection2(X0,X1) != X2 | ! [X3] : ((~in(X3,X2) | (in(X3,X0) & in(X3,X1))) & ((~in(X3,X0) | ~in(X3,X1)) | in(X3,X2)))) & (? [X3] : ((in(X3,X2) | (in(X3,X0) & in(X3,X1))) & (~in(X3,X2) | (~in(X3,X0) | ~in(X3,X1)))) | set_intersection2(X0,X1) = X2))),
inference(nnf_transformation,[],[f9])).
fof(f9,axiom,(
! [X0,X1,X2] : (set_intersection2(X0,X1) = X2 <=> ! [X3] : (in(X3,X2) <=> (in(X3,X0) & in(X3,X1))))),
file('Problems/SEU/SEU140+2.p',d3_xboole_0)).
% SZS output end Proof for SEU140+2


## VanHElsing 1.0

Daniel Kuehlwein
Radboud University Nijmegen, The Netherlands

### Sample solution for SEU140+2

# Proof found!
# SZS status Theorem
# SZS output start CNFRefutation.
fof(c_0_0, lemma,
(![X1]:![X2]:(~((~(disjoint(X1,X2))&![X3]:~((in(X3,X1)&in(X3,X2)))))&~((?[X3]:(i
n(X3,X1)&in(X3,X2))&disjoint(X1,X2))))),
fof(c_0_1, conjecture,
(![X1]:![X2]:![X3]:((subset(X1,X2)&disjoint(X2,X3))=>disjoint(X1,X3))),
fof(c_0_2, axiom,
(![X1]:![X2]:(subset(X1,X2)<=>![X3]:(in(X3,X1)=>in(X3,X2)))),
fof(c_0_3, axiom, (![X1]:![X2]:(disjoint(X1,X2)=>disjoint(X2,X1))),
symmetry_r1_xboole_0)).
fof(c_0_4, lemma,
(![X1]:![X2]:(~((~disjoint(X1,X2)&![X3]:~((in(X3,X1)&in(X3,X2)))))&~((?[X3]:(in(
X3,X1)&in(X3,X2))&disjoint(X1,X2))))),
inference(fof_simplification,[status(thm)],[c_0_0])).
fof(c_0_5, negated_conjecture,
(~(![X1]:![X2]:![X3]:((subset(X1,X2)&disjoint(X2,X3))=>disjoint(X1,X3)))),
inference(assume_negation,[status(cth)],[c_0_1])).
fof(c_0_6, axiom,
(![X1]:![X2]:(subset(X1,X2)<=>![X3]:(in(X3,X1)=>in(X3,X2)))), c_0_2).
fof(c_0_7, lemma,
(![X4]:![X5]:![X7]:![X8]:![X9]:(((in(esk9_2(X4,X5),X4)|disjoint(X4,X5))&(in(esk9
_2(X4,X5),X5)|disjoint(X4,X5)))&((~in(X9,X7)|~in(X9,X8))|~disjoint(X7,X8)))),
inference(distribute,[status(thm)],[inference(shift_quantors,[status(thm)],[infe
rence(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inferenc
e(shift_quantors,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_4])])])])])
])).
fof(c_0_8, negated_conjecture,
(((subset(esk11_0,esk12_0)&disjoint(esk12_0,esk13_0))&~disjoint(esk11_0,esk13_0)
)),
inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[infe
rence(fof_nnf,[status(thm)],[c_0_5])])])).
fof(c_0_9, plain,
(![X4]:![X5]:![X6]:![X7]:![X8]:((~subset(X4,X5)|(~in(X6,X4)|in(X6,X5)))&((in(esk
3_2(X7,X8),X7)|subset(X7,X8))&(~in(esk3_2(X7,X8),X8)|subset(X7,X8))))),
inference(distribute,[status(thm)],[inference(shift_quantors,[status(thm)],[infe
rence(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inferenc
e(shift_quantors,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_6])])])])])
])).
cnf(c_0_10,lemma,(~disjoint(X1,X2)|~in(X3,X2)|~in(X3,X1)),
inference(split_conjunct,[status(thm)],[c_0_7])).
cnf(c_0_11,negated_conjecture,(disjoint(esk12_0,esk13_0)),
inference(split_conjunct,[status(thm)],[c_0_8])).
cnf(c_0_12,plain,(in(X1,X2)|~in(X1,X3)|~subset(X3,X2)),
inference(split_conjunct,[status(thm)],[c_0_9])).
cnf(c_0_13,negated_conjecture,(subset(esk11_0,esk12_0)),
inference(split_conjunct,[status(thm)],[c_0_8])).
fof(c_0_14, axiom, (![X1]:![X2]:(disjoint(X1,X2)=>disjoint(X2,X1))), c_0_3).
cnf(c_0_15,lemma,(~in(X3,X2)|~in(X3,X1)|~disjoint(X1,X2)), c_0_10).
cnf(c_0_16,negated_conjecture,(disjoint(esk12_0,esk13_0)), c_0_11).
cnf(c_0_17,lemma,(disjoint(X1,X2)|in(esk9_2(X1,X2),X1)),
inference(split_conjunct,[status(thm)],[c_0_7])).
cnf(c_0_18,plain,(in(X1,X2)|~in(X1,X3)|~subset(X3,X2)), c_0_12).
cnf(c_0_19,negated_conjecture,(subset(esk11_0,esk12_0)), c_0_13).
cnf(c_0_20,lemma,(disjoint(X1,X2)|in(esk9_2(X1,X2),X2)),
inference(split_conjunct,[status(thm)],[c_0_7])).
fof(c_0_21, plain, (![X3]:![X4]:(~disjoint(X3,X4)|disjoint(X4,X3))),
inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_14
])])).
cnf(c_0_22,lemma,(~disjoint(X1,X2)|~in(X3,X2)|~in(X3,X1)), c_0_15).
cnf(c_0_23,negated_conjecture,(disjoint(esk12_0,esk13_0)), c_0_16).
cnf(c_0_24,lemma,(disjoint(X1,X2)|in(esk9_2(X1,X2),X1)), c_0_17).
cnf(c_0_25,plain,(in(X1,X2)|~subset(X3,X2)|~in(X1,X3)), c_0_18).
cnf(c_0_26,negated_conjecture,(subset(esk11_0,esk12_0)), c_0_19).
cnf(c_0_27,lemma,(disjoint(X1,X2)|in(esk9_2(X1,X2),X2)), c_0_20).
cnf(c_0_28,plain,(disjoint(X1,X2)|~disjoint(X2,X1)),
inference(split_conjunct,[status(thm)],[c_0_21])).
cnf(c_0_29,lemma,(~disjoint(X1,X2)|~in(X3,X2)|~in(X3,X1)), c_0_22).
cnf(c_0_30,negated_conjecture,(disjoint(esk12_0,esk13_0)), c_0_23).
cnf(c_0_31,lemma,(disjoint(X1,X2)|in(esk9_2(X1,X2),X1)), c_0_24).
cnf(c_0_32,plain,(in(X1,X2)|~subset(X3,X2)|~in(X1,X3)), c_0_25).
cnf(c_0_33,negated_conjecture,(subset(esk11_0,esk12_0)), c_0_26).
cnf(c_0_34,lemma,(disjoint(X1,X2)|in(esk9_2(X1,X2),X2)), c_0_27).
cnf(c_0_35,negated_conjecture,(~disjoint(esk11_0,esk13_0)),
inference(split_conjunct,[status(thm)],[c_0_8])).
cnf(c_0_36,plain,(disjoint(X1,X2)|~disjoint(X2,X1)), c_0_28).
cnf(c_0_37,negated_conjecture,(~in(X1,esk13_0)|~in(X1,esk12_0)),
inference(spm,[status(thm)],[c_0_29, c_0_30, theory(equality)])).
cnf(c_0_38,lemma,(disjoint(X1,X2)|in(esk9_2(X1,X2),X1)), c_0_31).
cnf(c_0_39,negated_conjecture,(in(X1,esk12_0)|~in(X1,esk11_0)),
inference(spm,[status(thm)],[c_0_32, c_0_33, theory(equality)])).
cnf(c_0_40,lemma,(disjoint(X1,X2)|in(esk9_2(X1,X2),X2)), c_0_34).
cnf(c_0_41,negated_conjecture,(~disjoint(esk11_0,esk13_0)), c_0_35).
cnf(c_0_42,plain,(disjoint(X1,X2)|~disjoint(X2,X1)), c_0_36).
cnf(c_0_43,lemma,(disjoint(esk13_0,X1)|~in(esk9_2(esk13_0,X1),esk12_0)),
inference(spm,[status(thm)],[c_0_37, c_0_38, theory(equality)])).
cnf(c_0_44,lemma,(disjoint(X1,esk11_0)|in(esk9_2(X1,esk11_0),esk12_0)),
inference(spm,[status(thm)],[c_0_39, c_0_40, theory(equality)])).
cnf(c_0_45,negated_conjecture,(~disjoint(esk11_0,esk13_0)), c_0_41).
cnf(c_0_46,plain,(disjoint(X1,X2)|~disjoint(X2,X1)), c_0_42).
cnf(c_0_47,lemma,(disjoint(esk13_0,esk11_0)),
inference(spm,[status(thm)],[c_0_43, c_0_44, theory(equality)])).
cnf(c_0_48,negated_conjecture,(~disjoint(esk11_0,esk13_0)), c_0_45).
cnf(c_0_49,lemma,($false), inference(sr,[status(thm)],[inference(spm,[status(thm)],[c_0_46, c_0_47, theory(equality)]), c_0_48, theory(equality)]), ['proof']). # SZS output end CNFRefutation.  ## Zipperposition 0.4 Simon Cruanes INRIA, France ### Sample solution for SEU140+2 % [0.001] setup GC and signal handler % [0.001] register extension arith_int... % [0.001] ================ process file examples/SEU140+2.p =========== % [0.001] parsed 56 declarations % [0.006] precedence: empty > disjoint > set_difference > empty_set > subset > set_intersection2 > set_union2 > proper_subset > in >$greatereq > $greater >$lesseq > $less >$to_rat > $to_int >$is_rat > $is_int >$remainder_f > $remainder_t >$remainder_e > $quotient_f >$quotient_t > $quotient_e >$quotient > $product >$uminus > $difference >$sum > $round >$truncate > $ceiling >$floor > $i > _ > ∀ > ∃ > false > true > ≠ > = > <~> > <=> > → > ∨ > ∧ > ¬ % [0.006] selection function: SelectComplex % [0.006] signature: {in:$i → $i →$o, proper_subset: $i →$i → $o, set_union2:$i → $i →$i, set_intersection2: $i →$i → $i, subset:$i → $i →$o, empty_set: $i, set_difference:$i → $i →$i, disjoint: $i →$i → $o, empty:$i → $o} % [0.006] completeness is lost % [0.007] reduce to CNF... % [0.012] signature: {in:$i → $i →$o, proper_subset: $i →$i → $o, set_union2:$i → $i →$i, set_intersection2: $i →$i → $i, subset:$i → $i →$o, empty_set: $i, set_difference:$i → $i →$i, disjoint: $i →$i → $o, empty:$i → $o, zsk0:$i → $i, zsk1:$i → $i →$i → $i, zsk2:$i → $i →$i, zsk3: $i →$i → $i →$i, zsk4: $i →$i → $i →$i, zsk5: $i, zsk6:$i, zsk7: $i →$i → $i, proxy_logtk8:$i → $i →$o, zsk9: $i →$i → $i, zsk10:$i → $i →$i, zsk11: $i, zsk12:$i, zsk13: $i} % [0.012] perform cleanup of passive set % [0.012] given: [¬in X4 X7+* | ¬in X7 X4*] % [0.012] given: [¬proper_subset X4 X7+* | ¬proper_subset X7 X4*] % [0.012] given: [set_union2 X4 X7 = set_union2 X7 X4*] % [0.013] given: [¬empty zsk6+*] % [0.013] given: [empty zsk5*] % [0.013] given: [empty empty_set*] % [0.013] given: [¬proper_subset X2 X2+*] % [0.013] given: [disjoint zsk12 zsk13*] % [0.013] given: [set_intersection2 X4 X7 = set_intersection2 X7 X4*] % [0.014] given: [X16 = X26 | ¬subset X16 X26+* | ¬subset X26 X16*] % [0.014] given: [subset X0 X0*] % [0.014] given: [subset empty_set X2*] % [0.014] given: [¬disjoint zsk11 zsk13+*] % [0.015] given: [¬in X4 X7+* | ¬empty X7*] % [0.015] given: [subset zsk11 zsk12*] % [0.015] given: [X15 = empty_set | in (zsk0 X15) X15*] % [0.015] given: [¬in X0 empty_set+*] % [0.015] given: [X75 = set_union2 X32 X49 | in (zsk1 X32 X49 X75) X75* | in (zsk1 X32 X49 X75) X32* | in (zsk1 X32 X49 X75) X49*] % [0.019] given: [X75 = set_union2 X32 X49 | ¬in (zsk1 X32 X49 X75) X75+* | ¬in (zsk1 X32 X49 X75) X49*] % [0.019] given: [set_difference X4 empty_set = X4*] % [0.019] given: [set_difference empty_set X4 = empty_set*] % [0.019] given: [set_intersection2 X4 X4 = X4*] % [0.020] given: [X75 = set_union2 X32 X49 | ¬in (zsk1 X32 X49 X75) X75+* | ¬in (zsk1 X32 X49 X75) X32*] % [0.021] given: [in X1 X0 | in X1 X2 | ¬in X1 (set_union2 X2 X0)+*] % [0.022] given: [in X2 (set_union2 X1 X0)* | ¬in X2 X0+] % [0.022] given: [in X2 (set_union2 X1 X0)* | ¬in X2 X1+] % [0.023] given: [set_union2 X4 X4 = X4*] % [0.023] given: [¬proper_subset X7 X4+ | ¬subset X4 X7*] % [0.023] given: [subset X12 X23 | in (zsk2 X12 X23) X12*] % [0.024] given: [subset X12 X23 | ¬in (zsk2 X12 X23) X23+*] % [0.024] given: [¬subset X12 X16+* | ¬in X19 X12* | in X19 X16*] % [0.025] given: [X75 = set_intersection2 X32 X49 | in (zsk3 X32 X49 X75) X75* | in (zsk3 X32 X49 X75) X49*] % [0.027] given: [set_intersection2 X4 empty_set = empty_set*] % [0.027] given: [empty_set = set_intersection2 empty_set X0*] % [0.028] given: [¬disjoint X8 X14* | ¬in X16 (set_intersection2 X8 X14)+*] % [0.029] given: [set_union2 X4 empty_set = X4*] % [0.029] given: [X75 = set_intersection2 X32 X49 | in (zsk3 X32 X49 X75) X75* | in (zsk3 X32 X49 X75) X32*] % [0.033] given: [X75 = set_intersection2 X32 X49 | ¬in (zsk3 X32 X49 X75) X75+* | ¬in (zsk3 X32 X49 X75) X32* | ¬in (zsk3 X32 X49 X75) X49*] % [0.033] given: [in X1 X0 | ¬in X1 (set_intersection2 X2 X0)+*] % [0.035] given: [in X1 X0 | ¬in X1 (set_intersection2 X0 X2)+*] % [0.037] given: [X0 = set_union2 empty_set X0*] % [0.038] given: [¬in X2 X1+ | ¬in X2 X0 | in X2 (set_intersection2 X1 X0)*] % [0.039] given: [X75 = set_difference X32 X49 | in (zsk4 X32 X49 X75) X75* | ¬in (zsk4 X32 X49 X75) X49+*] % [0.040] given: [X75 = set_difference X32 X49 | in (zsk4 X32 X49 X75) X75* | in (zsk4 X32 X49 X75) X32*] % [0.043] given: [X75 = set_difference X32 X49 | ¬in (zsk4 X32 X49 X75) X75+* | ¬in (zsk4 X32 X49 X75) X32* | in (zsk4 X32 X49 X75) X49*] % [0.044] given: [subset (set_difference X2 X4) X2*] % [0.044] given: [¬in X1 X0 | ¬in X1 (set_difference X2 X0)+*] % [0.046] given: [in X1 X0 | ¬in X1 (set_difference X0 X2)+*] % [0.048] given: [¬in X2 X1+ | in X2 X0 | in X2 (set_difference X1 X0)*] % [0.049] given: [set_intersection2 X12 X20 ≠ empty_set+ | disjoint X12 X20*] % [0.050] given: [disjoint empty_set X0*] % [0.050] given: [disjoint X0 empty_set*] % [0.050] given: [subset X2 (set_union2 X2 X4)*] % [0.051] given: [set_intersection2 X12 X16 = empty_set | ¬disjoint X12 X16+*] % [0.051] given: [X16 = X26 | ¬subset X16 X26+* | proper_subset X16 X26] % [0.052] given: [subset X16 X21* | ¬proper_subset X16 X21+] % [0.052] given: [empty X4 | ¬empty (set_union2 X4 X6)+*] % [0.052] given: [set_intersection2 zsk12 zsk13 = empty_set*] % [0.053] given: [¬in X1 X0+* | ¬disjoint X0 X0*] % [0.054] given: [empty X4 | ¬empty (set_union2 X6 X4)+*] % [0.054] given: [set_difference X12 X20 = empty_set* | ¬subset X12 X20+] % [0.055] given: [set_difference X12 X16 ≠ empty_set+* | subset X12 X16] % [0.055] given: [¬disjoint X4 X7+* | disjoint X7 X4*] % [0.055] given: [disjoint zsk13 zsk12*] % [0.055] given: [set_difference zsk11 zsk12 = empty_set*] % [0.056] given: [set_difference X0 X0 = empty_set*] % [0.056] given: [set_union2 X6 X10 = X10 | ¬subset X6 X10+*] % [0.057] given: [subset (set_intersection2 X2 X4) X2*] % [0.058] given: [¬subset X6 X10+ | ¬subset X6 X13 | subset X6 (set_intersection2 X10 X13)*] % [0.058] given: [¬subset X6 X10+* | subset X6 X13* | ¬subset X10 X13*] % [0.059] given: [set_union2 zsk11 zsk12 = zsk12*] % [0.059] given: [¬in X2 (set_intersection2 X1 X0)+* | ¬disjoint X0 X1*] % [0.061] given: [¬subset X4 X7+ | subset (set_intersection2 X4 X9) (set_intersection2 X7 X9)*] % [0.062] given: [set_intersection2 X6 X10 = X6 | ¬subset X6 X10+*] % [0.062] given: [X12 = X19 | in (zsk7 X12 X19) X12* | in (zsk7 X12 X19) X19*] % [0.066] given: [X12 = X19 | ¬in (zsk7 X12 X19) X12+* | ¬in (zsk7 X12 X19) X19*] % [0.066] given: [set_intersection2 zsk11 zsk12 = zsk11*] % [0.066] given: [¬in X0 zsk11* | ¬disjoint zsk12 zsk11+*] % [0.067] given: [¬subset X4 X7+ | subset (set_difference X4 X9) (set_difference X7 X9)*] % [0.067] given: [set_union2 X4 (set_difference X7 X4) = set_union2 X4 X7*] % [0.068] given: [¬disjoint X10 X17+* | ¬in X20 X10* | ¬in X20 X17*] % [0.069] given: [disjoint X10 X13 | ¬proxy_logtk8 X13 X10+*] % [0.069] given: [subset (set_intersection2 X1 X0) X0*] % [0.070] given: [¬in X0 zsk12+ | ¬in X0 zsk13*] % [0.071] given: [proxy_logtk8 X5 X6 | in (zsk9 X6 X5) X6*] % [0.073] given: [proxy_logtk8 X5 X6 | in (zsk9 X6 X5) X5*] % [0.074] given: [X6 = empty_set | ¬subset X6 empty_set+*] % [0.074] given: [set_difference (set_union2 X4 X7) X7 = set_difference X4 X7*] % [0.075] given: [proxy_logtk8 empty_set X0*] % [0.076] given: [proxy_logtk8 X0 empty_set*] % [0.076] given: [¬in X0 zsk11* | ¬disjoint zsk11 zsk12+*] % [0.076] given: [set_difference X4 (set_difference X4 X7) = set_intersection2 X4 X7*] % [0.078] given: [disjoint X8 X11 | in (zsk10 X11 X8) (set_intersection2 X8 X11)*] % [0.079] given: [X6 = empty_set | ¬empty X6+*] % [0.079] given: [zsk5 = empty_set*] % [0.080] given: [X8 = X12* | ¬empty X8+* | ¬empty X12*] % [0.080] given: [¬subset X6 X10+ | ¬subset X13 X10 | subset (set_union2 X6 X13) X10*] % [0.081] given: [zsk11 = zsk12 | ¬subset zsk12 zsk11+*] % [0.082] given: [subset X0 (set_union2 X1 X0)*] % [0.083] given: [X0 = empty_set | ¬in X0 (zsk0 X0)+*] % [0.084] given: [X0 = set_union2 X2 X1 | in (zsk1 X2 X1 X0) X2* | in (zsk1 X2 X1 X0) X1* | ¬in X0 (zsk1 X2 X1 X0)+] % [0.085] given: [X0 = set_union2 X2 X1 | ¬empty X0+ | in (zsk1 X2 X1 X0) X2* | in (zsk1 X2 X1 X0) X1*] % [0.085] given: [¬in X2 (set_intersection2 X1 X0)+ | ¬in X2 (set_difference X1 X0)*] % [0.088] given: [set_difference X0 X0 = set_difference empty_set X0*] % [0.089] given: [empty_set = set_union2 X1 X0 | in (zsk1 X1 X0 empty_set) X1* | in (zsk1 X1 X0 empty_set) X0*] % [0.096] given: [X1 = set_union2 X0 X2 | in (zsk1 X0 X2 X1) X2* | in (zsk1 X0 X2 X1) X1* | ¬in X0 (zsk1 X0 X2 X1)+] % [0.097] given: [X1 = set_union2 X0 X2 | ¬empty X0+ | in (zsk1 X0 X2 X1) X2* | in (zsk1 X0 X2 X1) X1*] % [0.097] given: [X0 = X1 | in (zsk1 empty_set X1 X0) X0* | in (zsk1 empty_set X1 X0) X1*] % [0.103] given: [X1 = set_union2 X2 X0 | in (zsk1 X2 X0 X1) X2* | in (zsk1 X2 X0 X1) X1* | ¬in X0 (zsk1 X2 X0 X1)+] % [0.104] given: [X1 = set_union2 X2 X0 | ¬empty X0+ | in (zsk1 X2 X0 X1) X2* | in (zsk1 X2 X0 X1) X1*] % [0.105] given: [X0 = X1 | in (zsk1 X1 empty_set X0) X0* | in (zsk1 X1 empty_set X0) X1*] % [0.110] given: [X1 = set_union2 X0 X1 | in (zsk1 X0 X1 X1) X0* | in (zsk1 X0 X1 X1) X1*] % [0.117] given: [set_union2 X0 empty_set = set_union2 X0 X0*] % [0.119] given: [X1 = set_union2 X1 X0 | in (zsk1 X1 X0 X1) X0* | in (zsk1 X1 X0 X1) X1*] % [0.126] given: [X0 = X1 | in (zsk1 X1 X1 X0) X0* | in (zsk1 X1 X1 X0) X1*] % [0.133] given: [set_union2 X1 X0 = empty_set | in (zsk0 (set_union2 X1 X0)) X0* | in (zsk0 (set_union2 X1 X0)) X1*] % [0.141] given: [set_union2 X1 X0 = set_union2 X3 X2 | in (zsk1 X3 X2 (set_union2 X1 X0)) X0* | in (zsk1 X3 X2 (set_union2 X1 X0)) X1* | in (zsk1 X3 X2 (set_union2 X1 X0)) X3* | in (zsk1 X3 X2 (set_union2 X1 X0)) X2*] % [0.183] given: [¬in X2 (set_intersection2 X1 X0)+ | ¬in X2 (set_difference X0 X1)*] % [0.188] given: [set_union2 X0 (set_difference X0 X1) = X0*] % [0.192] given: [X2 = set_union2 (set_union2 X1 X0) X3 | in (zsk1 (set_union2 X1 X0) X3 X2) X1* | in (zsk1 (set_union2 X1 X0) X3 X2) X0* | in (zsk1 (set_union2 X1 X0) X3 X2) X3* | in (zsk1 (set_union2 X1 X0) X3 X2) X2*] % [0.237] given: [X2 = set_union2 X3 (set_union2 X1 X0) | in (zsk1 X3 (set_union2 X1 X0) X2) X1* | in (zsk1 X3 (set_union2 X1 X0) X2) X0* | in (zsk1 X3 (set_union2 X1 X0) X2) X3* | in (zsk1 X3 (set_union2 X1 X0) X2) X2*] % [0.288] given: [X0 = empty_set | in (zsk0 X0) (set_union2 X1 X0)*] % [0.291] given: [X0 = set_union2 X2 X1 | in (zsk1 X2 X1 X0) X2* | in (zsk1 X2 X1 X0) X1* | in (zsk1 X2 X1 X0) (set_union2 X3 X0)*] % [0.318] given: [X1 = set_union2 X0 X2 | in (zsk1 X0 X2 X1) X2* | in (zsk1 X0 X2 X1) X1* | in (zsk1 X0 X2 X1) (set_union2 X3 X0)*] % [0.347] given: [X1 = set_union2 X2 X0 | in (zsk1 X2 X0 X1) X2* | in (zsk1 X2 X0 X1) X1* | in (zsk1 X2 X0 X1) (set_union2 X3 X0)*] % [0.379] given: [X0 = empty_set | in (zsk0 X0) (set_union2 X0 X1)*] % [0.381] given: [set_union2 X0 (set_intersection2 X0 X1) = X0*] % [0.387] given: [X0 = set_union2 X2 X1 | in (zsk1 X2 X1 X0) X2* | in (zsk1 X2 X1 X0) X1* | in (zsk1 X2 X1 X0) (set_union2 X0 X3)*] % [0.422] given: [X1 = set_union2 X0 X2 | in (zsk1 X0 X2 X1) X2* | in (zsk1 X0 X2 X1) X1* | in (zsk1 X0 X2 X1) (set_union2 X0 X3)*] % [0.458] given: [X1 = set_union2 X2 X0 | in (zsk1 X2 X0 X1) X2* | in (zsk1 X2 X0 X1) X1* | in (zsk1 X2 X0 X1) (set_union2 X0 X3)*] % [0.495] given: [subset X0 X1 | ¬in X0 (zsk2 X0 X1)+*] % [0.495] given: [set_difference (set_intersection2 X0 X1) X0 = empty_set*] % [0.497] given: [subset X0 X1* | ¬empty X0+*] % [0.497] given: [subset X0 X1 | in (zsk2 X0 X1) (set_union2 X0 X2)*] % [0.499] given: [subset X0 X1 | in (zsk2 X0 X1) (set_union2 X2 X0)*] % [0.501] given: [set_difference X1 (set_union2 X1 X0) = empty_set*] % [0.503] given: [in (zsk2 (set_union2 X1 X0) X2) X1* | in (zsk2 (set_union2 X1 X0) X2) X0* | subset (set_union2 X1 X0) X2] % [0.511] given: [¬in X0 zsk11+ | in X0 zsk12*] % [0.518] given: [set_difference (set_difference X0 X1) X0 = empty_set*] % [0.520] given: [X0 = set_intersection2 X2 X1 | in (zsk3 X2 X1 X0) X1* | ¬in X0 (zsk3 X2 X1 X0)+] % [0.520] given: [X0 = set_intersection2 X2 X1 | ¬empty X0+ | in (zsk3 X2 X1 X0) X1*] % [0.521] given: [X0 = set_intersection2 X2 X1 | in (zsk3 X2 X1 X0) X1* | in (zsk3 X2 X1 X0) (set_union2 X0 X3)*] % [0.529] given: [X0 = set_intersection2 X2 X1 | in (zsk3 X2 X1 X0) X1* | in (zsk3 X2 X1 X0) (set_union2 X3 X0)*] % [0.537] given: [set_union2 X0 X0 = set_union2 empty_set X0*] % [0.547] given: [empty_set = set_intersection2 X1 X0 | in (zsk3 X1 X0 empty_set) X0*] % [0.551] given: [set_union2 X1 X0 = set_intersection2 X3 X2 | in (zsk3 X3 X2 (set_union2 X1 X0)) X0* | in (zsk3 X3 X2 (set_union2 X1 X0)) X1* | in (zsk3 X3 X2 (set_union2 X1 X0)) X2*] % [0.573] given: [X1 = set_intersection2 X2 X0 | in (zsk3 X2 X0 X1) X1* | ¬in X0 (zsk3 X2 X0 X1)+] % [0.574] given: [set_intersection2 X1 (set_union2 X1 X0) = X1*] % [0.576] given: [X1 = set_intersection2 X2 X0 | ¬empty X0+ | in (zsk3 X2 X0 X1) X1*] % [0.577] given: [X1 = set_intersection2 X2 X0 | in (zsk3 X2 X0 X1) X1* | in (zsk3 X2 X0 X1) (set_union2 X0 X3)*] % [0.585] given: [X1 = set_intersection2 X2 X0 | in (zsk3 X2 X0 X1) X1* | in (zsk3 X2 X0 X1) (set_union2 X3 X0)*] % [0.595] given: [¬in X2 X0* | ¬disjoint (set_union2 X0 X1) X0+*] % [0.596] given: [set_union2 X0 (set_intersection2 X1 X0) = X0*] % [0.602] given: [X0 = empty_set | in (zsk3 X1 empty_set X0) X0*] % [0.606] given: [X2 = set_intersection2 X3 (set_union2 X1 X0) | in (zsk3 X3 (set_union2 X1 X0) X2) X1* | in (zsk3 X3 (set_union2 X1 X0) X2) X0* | in (zsk3 X3 (set_union2 X1 X0) X2) X2*] % [0.633] given: [X0 = set_intersection2 X1 X0 | in (zsk3 X1 X0 X0) X0*] % [0.638] given: [¬disjoint X1 X0+* | subset (set_intersection2 X1 X0) X2*] % [0.638] given: [¬in X2 X0* | ¬disjoint (set_union2 X1 X0) X0+*] % [0.639] given: [set_difference (set_intersection2 X1 X0) X0 = empty_set*] % [0.642] given: [set_intersection2 X1 X0 = set_union2 X3 X2 | ¬disjoint X1 X0+ | in (zsk1 X3 X2 (set_intersection2 X1 X0)) X3* | in (zsk1 X3 X2 (set_intersection2 X1 X0)) X2*] % [0.643] given: [X2 = set_union2 (set_intersection2 X1 X0) X3 | ¬disjoint X1 X0+ | in (zsk1 (set_intersection2 X1 X0) X3 X2) X3* | in (zsk1 (set_intersection2 X1 X0) X3 X2) X2*] % [0.645] given: [X2 = set_union2 X3 (set_intersection2 X1 X0) | ¬disjoint X1 X0+ | in (zsk1 X3 (set_intersection2 X1 X0) X2) X3* | in (zsk1 X3 (set_intersection2 X1 X0) X2) X2*] % [0.647] given: [set_intersection2 X1 X0 = set_intersection2 X3 X2 | ¬disjoint X1 X0+ | in (zsk3 X3 X2 (set_intersection2 X1 X0)) X2*] % [0.648] given: [X2 = set_intersection2 X3 (set_intersection2 X1 X0) | ¬disjoint X1 X0+ | in (zsk3 X3 (set_intersection2 X1 X0) X2) X2*] % [0.649] given: [X0 = set_intersection2 X2 X1 | ¬in X0 (zsk3 X2 X1 X0)+ | in (zsk3 X2 X1 X0) X2*] % [0.650] given: [X0 = set_intersection2 X2 X1 | ¬empty X0+ | in (zsk3 X2 X1 X0) X2*] % [0.651] given: [X0 = set_intersection2 X2 X1 | in (zsk3 X2 X1 X0) (set_union2 X0 X3)* | in (zsk3 X2 X1 X0) X2*] % [0.666] given: [X0 = set_intersection2 X2 X1 | in (zsk3 X2 X1 X0) (set_union2 X3 X0)* | in (zsk3 X2 X1 X0) X2*] % [0.684] given: [empty_set = set_intersection2 X1 X0 | in (zsk3 X1 X0 empty_set) X1*] % [0.692] given: [set_intersection2 X0 (set_union2 X1 X0) = X0*] % [0.696] given: [set_union2 X1 X0 = set_intersection2 X3 X2 | in (zsk3 X3 X2 (set_union2 X1 X0)) X0* | in (zsk3 X3 X2 (set_union2 X1 X0)) X1* | in (zsk3 X3 X2 (set_union2 X1 X0)) X3*] % [0.736] given: [set_intersection2 X1 X0 = set_intersection2 X3 X2 | ¬disjoint X1 X0+ | in (zsk3 X3 X2 (set_intersection2 X1 X0)) X3*] % [0.737] given: [X1 = set_intersection2 X0 X2 | in (zsk3 X0 X2 X1) X1* | ¬in X0 (zsk3 X0 X2 X1)+] % [0.738] given: [X1 = set_intersection2 X0 X2 | ¬empty X0+ | in (zsk3 X0 X2 X1) X1*] % [0.738] given: [set_difference X0 (set_union2 X1 X0) = empty_set*] % [0.740] given: [¬in X2 X0* | ¬disjoint X0 (set_union2 X1 X0)+*] % [0.741] given: [X1 = set_intersection2 X0 X2 | in (zsk3 X0 X2 X1) X1* | in (zsk3 X0 X2 X1) (set_union2 X0 X3)*] % [0.758] given: [X1 = set_intersection2 X0 X2 | in (zsk3 X0 X2 X1) X1* | in (zsk3 X0 X2 X1) (set_union2 X3 X0)*] % [0.778] given: [X2 = set_intersection2 (set_union2 X1 X0) X3 | in (zsk3 (set_union2 X1 X0) X3 X2) X1* | in (zsk3 (set_union2 X1 X0) X3 X2) X0* | in (zsk3 (set_union2 X1 X0) X3 X2) X2*] % [0.833] given: [X2 = set_intersection2 (set_intersection2 X1 X0) X3 | ¬disjoint X1 X0+ | in (zsk3 (set_intersection2 X1 X0) X3 X2) X2*] % [0.834] given: [subset (set_difference X0 X1) (set_union2 X1 X0)*] % [0.837] given: [X0 = set_intersection2 X0 X1 | in (zsk3 X0 X1 X0) X0*] % [0.844] given: [X0 = empty_set | in (zsk3 empty_set X1 X0) X0*] % [0.849] given: [subset (set_difference zsk11 X0) (set_difference zsk12 X0)*] % [0.851] given: [subset (set_difference zsk11 (set_union2 X0 zsk12)) empty_set*] % [0.853] given: [¬in X2 X1* | ¬disjoint X1 (set_union2 X1 X0)+*] % [0.854] given: [empty_set = set_difference zsk11 (set_union2 X0 zsk12)*] % [0.856] given: [set_intersection2 X1 X0 = empty_set | in (zsk0 (set_intersection2 X1 X0)) X0*] % [0.859] given: [subset zsk11 (set_union2 X0 zsk12)*] % [0.860] given: [subset zsk11 (set_union2 zsk12 X0)*] % [0.862] given: [subset (set_intersection2 X1 X0) X2 | in (zsk2 (set_intersection2 X1 X0) X2) X0*] % [0.867] given: [set_intersection2 X1 X0 = set_union2 X3 X2 | in (zsk1 X3 X2 (set_intersection2 X1 X0)) X3* | in (zsk1 X3 X2 (set_intersection2 X1 X0)) X2* | in (zsk1 X3 X2 (set_intersection2 X1 X0)) X0*] % [0.920] given: [X2 = set_union2 (set_intersection2 X1 X0) X3 | in (zsk1 (set_intersection2 X1 X0) X3 X2) X3* | in (zsk1 (set_intersection2 X1 X0) X3 X2) X2* | in (zsk1 (set_intersection2 X1 X0) X3 X2) X0*] % [0.969] given: [zsk11 = set_intersection2 zsk11 (set_union2 X0 zsk12)*] % [0.972] given: [zsk11 = set_intersection2 zsk11 (set_union2 zsk12 X0)*] % [0.977] given: [X2 = set_union2 X3 (set_intersection2 X1 X0) | in (zsk1 X3 (set_intersection2 X1 X0) X2) X3* | in (zsk1 X3 (set_intersection2 X1 X0) X2) X2* | in (zsk1 X3 (set_intersection2 X1 X0) X2) X0*] % [1.034] given: [set_intersection2 X1 X0 = set_intersection2 X3 X2 | in (zsk3 X3 X2 (set_intersection2 X1 X0)) X2* | in (zsk3 X3 X2 (set_intersection2 X1 X0)) X0*] % [1.057] given: [set_intersection2 X1 X0 = set_intersection2 X3 X2 | in (zsk3 X3 X2 (set_intersection2 X1 X0)) X3* | in (zsk3 X3 X2 (set_intersection2 X1 X0)) X0*] % [1.083] given: [X2 = set_intersection2 (set_intersection2 X1 X0) X3 | in (zsk3 (set_intersection2 X1 X0) X3 X2) X2* | in (zsk3 (set_intersection2 X1 X0) X3 X2) X0*] % [1.113] given: [empty_set = set_difference zsk11 (set_union2 zsk12 X0)*] % [1.116] given: [X2 = set_intersection2 X3 (set_intersection2 X1 X0) | in (zsk3 X3 (set_intersection2 X1 X0) X2) X2* | in (zsk3 X3 (set_intersection2 X1 X0) X2) X0*] % [1.147] given: [set_intersection2 X1 X0 = empty_set | in (zsk0 (set_intersection2 X1 X0)) X1*] % [1.150] given: [subset (set_intersection2 X1 X0) X2 | in (zsk2 (set_intersection2 X1 X0) X2) X1*] % [1.154] given: [¬in X1 zsk11* | ¬disjoint (set_union2 zsk12 X0) zsk11+*] % [1.156] given: [set_intersection2 X1 X0 = set_union2 X3 X2 | in (zsk1 X3 X2 (set_intersection2 X1 X0)) X3* | in (zsk1 X3 X2 (set_intersection2 X1 X0)) X2* | in (zsk1 X3 X2 (set_intersection2 X1 X0)) X1*] % [1.216] given: [X2 = set_union2 (set_intersection2 X1 X0) X3 | in (zsk1 (set_intersection2 X1 X0) X3 X2) X3* | in (zsk1 (set_intersection2 X1 X0) X3 X2) X2* | in (zsk1 (set_intersection2 X1 X0) X3 X2) X1*] % [1.278] given: [X2 = set_union2 X3 (set_intersection2 X1 X0) | in (zsk1 X3 (set_intersection2 X1 X0) X2) X3* | in (zsk1 X3 (set_intersection2 X1 X0) X2) X2* | in (zsk1 X3 (set_intersection2 X1 X0) X2) X1*] % [1.345] given: [set_intersection2 X1 X0 = set_intersection2 X3 X2 | in (zsk3 X3 X2 (set_intersection2 X1 X0)) X2* | in (zsk3 X3 X2 (set_intersection2 X1 X0)) X1*] % [1.373] given: [subset (set_intersection2 zsk11 X0) (set_intersection2 zsk12 X0)*] % [1.375] given: [subset (set_intersection2 zsk11 zsk13) empty_set*] % [1.378] given: [set_intersection2 X1 X0 = set_intersection2 X3 X2 | in (zsk3 X3 X2 (set_intersection2 X1 X0)) X3* | in (zsk3 X3 X2 (set_intersection2 X1 X0)) X1*] % [1.407] given: [X2 = set_intersection2 (set_intersection2 X1 X0) X3 | in (zsk3 (set_intersection2 X1 X0) X3 X2) X2* | in (zsk3 (set_intersection2 X1 X0) X3 X2) X1*] % [1.439] given: [X2 = set_intersection2 X3 (set_intersection2 X1 X0) | in (zsk3 X3 (set_intersection2 X1 X0) X2) X2* | in (zsk3 X3 (set_intersection2 X1 X0) X2) X1*] % [1.471] given: [empty_set = set_intersection2 zsk11 zsk13*] % [1.476] given: [disjoint zsk11 zsk13*] % [1.477] done 372 iterations % [1.477] final precedence: zsk13 > zsk12 > zsk11 > zsk10 > zsk9 > proxy_logtk8 > zsk7 > zsk6 > zsk5 > zsk4 > zsk3 > zsk2 > zsk1 > zsk0 > empty > disjoint > set_difference > empty_set > subset > set_intersection2 > set_union2 > proper_subset > in >$greatereq > $greater >$lesseq > $less >$to_rat > $to_int >$is_rat > $is_int >$remainder_f > $remainder_t >$remainder_e > $quotient_f >$quotient_t > $quotient_e >$quotient > $product >$uminus > $difference >$sum > $round >$truncate > $ceiling >$floor > $i > _ > ∀ > ∃ > false > true > ≠ > = > <~> > <=> > → > ∨ > ∧ > ¬ % [1.477] ================================================= % [1.477] print proof graph to /tmp/truc.dot % SZS status Theorem for 'examples/SEU140+2.p' % SZS output start Refutation ⊥ <--- inf sup-, theories [] with disjoint zsk11 zsk13 ¬disjoint zsk11 zsk13 disjoint zsk11 zsk13 <--- simp simplify, theories [] with empty_set ≠ empty_set ∨ disjoint zsk11 zsk13 ¬disjoint zsk11 zsk13 <--- esa cnf, theories [] with ¬ ∀ Y0:$i. ∀ Y1: $i. ∀ Y2:$i. ((subset Y0 Y1 ∧ disjoint Y1 Y2) => disjoint Y0 Y2)
empty_set ≠ empty_set ∨ disjoint zsk11 zsk13 <--- inf sup-, theories [] with
empty_set = set_intersection2 zsk11 zsk13
set_intersection2 X12 X20 ≠ empty_set ∨ disjoint X12 X20
¬ ∀ Y0: $i. ∀ Y1:$i. ∀ Y2: $i. ((subset Y0 Y1 ∧ disjoint Y1 Y2) => disjoint Y0 Y2) <--- axiom 't63_xboole_1' in 'examples/SEU140+2.p', theories [] empty_set = set_intersection2 zsk11 zsk13 <--- simp demod, theories [] with set_intersection2 (set_intersection2 zsk11 zsk13) empty_set = set_intersection2 zsk11 zsk13 set_intersection2 X4 empty_set = empty_set set_intersection2 X12 X20 ≠ empty_set ∨ disjoint X12 X20 <--- esa cnf, theories [] with ∀ Y0:$i. ∀ Y1: $i. (disjoint Y0 Y1 <=> set_intersection2 Y0 Y1 = empty_set) set_intersection2 (set_intersection2 zsk11 zsk13) empty_set = set_intersection2 zsk11 zsk13 <--- inf sup-, theories [] with subset (set_intersection2 zsk11 zsk13) empty_set set_intersection2 X6 X10 = X6 ∨ ¬subset X6 X10 set_intersection2 X4 empty_set = empty_set <--- esa cnf, theories [] with ∀ Y0:$i. set_intersection2 Y0 empty_set = empty_set
∀ Y0: $i. ∀ Y1:$i. (disjoint Y0 Y1 <=> set_intersection2 Y0 Y1 = empty_set) <--- axiom 'd7_xboole_0' in 'examples/SEU140+2.p', theories []
subset (set_intersection2 zsk11 zsk13) empty_set <--- inf sup+, theories [] with
set_intersection2 zsk12 zsk13 = empty_set
subset (set_intersection2 zsk11 X0) (set_intersection2 zsk12 X0)
set_intersection2 X6 X10 = X6 ∨ ¬subset X6 X10 <--- esa cnf, theories [] with
∀ Y0: $i. ∀ Y1:$i. (subset Y0 Y1 => set_intersection2 Y0 Y1 = Y0)
∀ Y0: $i. set_intersection2 Y0 empty_set = empty_set <--- axiom 't2_boole' in 'examples/SEU140+2.p', theories [] set_intersection2 zsk12 zsk13 = empty_set <--- inf sup-, theories [] with disjoint zsk12 zsk13 set_intersection2 X12 X16 = empty_set ∨ ¬disjoint X12 X16 subset (set_intersection2 zsk11 X0) (set_intersection2 zsk12 X0) <--- inf sup-, theories [] with subset zsk11 zsk12 ¬subset X4 X7 ∨ subset (set_intersection2 X4 X9) (set_intersection2 X7 X9) ∀ Y0:$i. ∀ Y1: $i. (subset Y0 Y1 => set_intersection2 Y0 Y1 = Y0) <--- axiom 't28_xboole_1' in 'examples/SEU140+2.p', theories [] disjoint zsk12 zsk13 <--- esa cnf, theories [] with ¬ ∀ Y0:$i. ∀ Y1: $i. ∀ Y2:$i. ((subset Y0 Y1 ∧ disjoint Y1 Y2) => disjoint Y0 Y2)
set_intersection2 X12 X16 = empty_set ∨ ¬disjoint X12 X16 <--- esa cnf, theories [] with
∀ Y0: $i. ∀ Y1:$i. (disjoint Y0 Y1 <=> set_intersection2 Y0 Y1 = empty_set)
subset zsk11 zsk12 <--- esa cnf, theories [] with
¬ ∀ Y0: $i. ∀ Y1:$i. ∀ Y2: $i. ((subset Y0 Y1 ∧ disjoint Y1 Y2) => disjoint Y0 Y2) ¬subset X4 X7 ∨ subset (set_intersection2 X4 X9) (set_intersection2 X7 X9) <--- esa cnf, theories [] with ∀ Y0:$i. ∀ Y1: $i. ∀ Y2:$i. (subset Y0 Y1 => subset (set_intersection2 Y0 Y2) (set_intersection2 Y1 Y2))
∀ Y0: $i. ∀ Y1:$i. ∀ Y2: \$i. (subset Y0 Y1 => subset (set_intersection2 Y0 Y2) (set_intersection2 Y1 Y2)) <--- axiom 't26_xboole_1' in 'examples/SEU140+2.p', theories []
% SZS output end Refutation
% [1.477] =================================================
% [1.477] run time: 1.477