Chapter 8, Part 2

NL and L

NL-Completeness

A **logspace** transducer is a TM with a read-only input tape, a write-only output tape, and a read/write work tape, in which only $O(\log n)$ tape cells of the work tape can be used.

A logspace transducer M computes a function f if for every w, M on w halts with f(w) on the output tape.

A language A is **logspace reducible**, write $A \leq_L B$, if there is a logspace computable mapping reduction from A to B.

A language L is **NL-complete** if $A \in \mathbf{NL}$ and every $A \in \mathbf{NL}$ is logspace reducible to L.

Properties of logspace reductions

Theorem. If $A \leq_L B$ and $B \in \mathbf{L}$ then $A \in \mathbf{L}$.

If $A \leq_L B$ and $B \in \mathbf{NL}$ then $A \in \mathbf{NL}$.

Theorem. If A is NL-complete and $A \in \mathbf{L}$ then $\mathbf{L} = \mathbf{NL}$.

Theorem. *PATH* is **NL-complete.**

Proof $PATH \in \mathbf{NL}$. Given an instance (G, s, t) of PATH with n nodes, repeat the following n - 1 times with x = s at the beginning:

- Nondeterministically select a node y from $1,\ldots,n$,
- If (x, y) is in G, then set x to y. If not, reject.
- If y = t, then accept.

This method correctly decides whether $(G, s, t) \in PATH$ and requires $O(\log n)$ space.

PATH is NL-complete (cont'd)

Let L be decided by a nondeterministic $c \log n$ space machine N. We may assume that N has the unique accepting configuration for each input. Let x be an input of some length n. Define the graph G as follows:

- The nodes of G are the configurations of M on x. Here each configuration is the concatenation of the state, head positions, and the work tape contents.
- s is the initial configuration
- t is the accepting configuration.
- For every pair of nodes u and v, there is an arc from u to v if and only if v is one of the next possible configurations of u.

Then $(G, s, t) \in PATH$ if and only if $x \in L$.

Computation of (G, s, t) in logspace

Let ℓ be the encoding length of each configuration.

for $u = 0^{\ell}, ..., 1^{\ell}$ do for $v = 0^{\ell}, ..., 1^{\ell}$ do if u and v are configurations then if $u \Rightarrow v$ then output 1 else output 0 $C \leftarrow 0$: for $u = 0^{\ell}, ..., 1^{\ell}$ do if u is a configuration then $C \leftarrow C + 1$: if u = the initial config. then output "s = C" if u = the accepting config. then output "t = C" The algorithm works in $O(\ell) = O(\log n)$ space.

NL = coNL

Theorem. $\overline{PATH} \in \mathbf{NL}$.

Proof Let (G, s, t) be an instance of *PATH* with *n* nodes. For each *i*, $0 \le i \le n$, define A_i to be the set of all nodes reachable from *s* within *i* steps and $c_i = ||A_i||$.

Given c_i it is possible to nondeterministically enumerate all the nodes in A_i with the following ENUMERATE (i, c_i) :

- 1. Set counter d to 0;
- 2. for j = 0,...,n do the following:
 (a) guess an s-to-j path of length at most i;
 (b) if successful increment d and output j;
- 3. if $d = c_i$ output "SUCCESSFUL"; otherwise, output "FAILURE"

Computing c_{i+1} knowing c_i

- 1. Set counter e to 0;
- 2. For $j = 0, \ldots, n$ do the following:
 - (a) Set a variable r to false.
 - (b) Call ENUMERATE(*i*, c_i). For each node u output by ENUMERATE, check if $u \Rightarrow j$; if so, set r to true.
 - (c) If ENUMERATE has output "FAILURE" at the end output "FAILURE".

Otherwise, increment e if and only if r = true.

3. Output *e*.

Testing Unreachability

- 1. Set i to 0 and c_0 to 1.
- 2. For $i = 0, \ldots, n-1$, compute c_{i+1} from c_i .
- 3. (Check if $t \notin A_n$ by calling ENUMERATE (n, c_n) .) Accept if the enumeration is "SUCCESSFUL" and t is not output.

The method uses only $O(\log n)$ space.