
Chapter 8, Part 2

NL and L

CSC527, Chapter 8 c© 2012 Mitsunori Ogihara 1



NL-Completeness

A logspace transducer is a TM with a read-only input tape, a

write-only output tape, and a read/write work tape, in which only

O(log n) tape cells of the work tape can be used.

A logspace transducer M computes a function f if for every w,

M on w halts with f(w) on the output tape.

A language A is logspace reducible, write A ≤L B, if there is a

logspace computable mapping reduction from A to B.

A language L is NL-complete if A ∈ NL and every A ∈ NL is

logspace reducible to L.

CSC527, Chapter 8 c© 2012 Mitsunori Ogihara 2



Properties of logspace reductions

Theorem. If A ≤L B and B ∈ L then A ∈ L.

If A ≤L B and B ∈ NL then A ∈ NL.

Theorem. If A is NL-complete and A ∈ L then L = NL.

CSC527, Chapter 8 c© 2012 Mitsunori Ogihara 3



NL-complete Problem

Theorem. PATH is NL-complete.

Proof PATH ∈ NL. Given an instance (G, s, t) of PATH with
n nodes, repeat the following n − 1 times with x = s at the
beginning:

• Nondeterministically select a node y from 1, . . . , n,

• If (x, y) is in G, then set x to y. If not, reject.

• If y = t, then accept.

This method correctly decides whether (G, s, t) ∈ PATH and

requires O(log n) space.

CSC527, Chapter 8 c© 2012 Mitsunori Ogihara 4



PATH is NL-complete (cont’d)

Let L be decided by a nondeterministic c log n space machine N .
We may assume that N has the unique accepting configuration for
each input. Let x be an input of some length n. Define the graph
G as follows:

• The nodes of G are the configurations of M on x. Here
each configuration is the concatenation of the state, head
positions, and the work tape contents.

• s is the initial configuration

• t is the accepting configuration.

• For every pair of nodes u and v, there is an arc from u to v if
and only if v is one of the next possible configurations of u.

Then (G, s, t) ∈ PATH if and only if x ∈ L.

CSC527, Chapter 8 c© 2012 Mitsunori Ogihara 5



Computation of (G, s, t) in logspace

Let ℓ be the encoding length of each configuration.

for u = 0ℓ, . . . , 1ℓ do

for v = 0ℓ, . . . , 1ℓ do

if u and v are configurations then

if u⇒ v then output 1 else output 0

C ← 0;

for u = 0ℓ, . . . , 1ℓ do

if u is a configuration then

C ← C + 1;

if u = the initial config. then output “s = C”

if u = the accepting config. then output “t = C”

The algorithm works in O(ℓ) = O(log n) space.

CSC527, Chapter 8 c© 2012 Mitsunori Ogihara 6



NL = coNL

Theorem. PATH ∈ NL.

Proof Let (G, s, t) be an instance of PATH with n nodes. For

each i, 0 ≤ i ≤ n, define Ai to be the set of all nodes reachable

from s within i steps and ci = ‖Ai‖.

Given ci it is possible to nondeterministically enumerate all the
nodes in Ai with the following ENUMERATE(i, ci):

1. Set counter d to 0;

2. for j = 0, . . . , n do the following:
(a) guess an s-to-j path of length at most i;

(b) if successful increment d and output j;

3. if d = ci output “SUCCESSFUL”; otherwise, output
“FAILURE”

CSC527, Chapter 8 c© 2012 Mitsunori Ogihara 7



Computing ci+1 knowing ci

1. Set counter e to 0;

2. For j = 0, . . . , n do the following:
(a) Set a variable r to false.

(b) Call ENUMERATE(i, ci). For each node u output
by ENUMERATE, check if u ⇒ j; if so, set r to
true.

(c) If ENUMERATE has output “FAILURE” at the end
output “FAILURE”.

Otherwise, increment e if and only if r = true.

3. Output e.

CSC527, Chapter 8 c© 2012 Mitsunori Ogihara 8



Testing Unreachability

1. Set i to 0 and c0 to 1.

2. For i = 0, . . . , n− 1, compute ci+1 from ci.

3. (Check if t 6∈ An by calling ENUMERATE(n, cn).) Accept if
the enumeration is “SUCCESSFUL” and t is not output.

The method uses only O(log n) space.

CSC527, Chapter 8 c© 2012 Mitsunori Ogihara 9


