Chapter 7, Part 4

More NP-Complete Problems

Clique

We know: $3 S A T \leq_{P} C L I Q U E, C L I Q U E \in \mathbf{N P}$, and $3 S A T$ is NP-complete. So, $C L I Q U E$ is NP-complete.

Vertex Cover

A vertex cover of an undirected graph is a subset of nodes such that every edge touches a member of the subset.

Example: a 10-node Vertex Cover

Example: Step 1

Example: Step 2

Example: Step 3

Example: Step 4

Example: Step 5

Example: Step 6

Example: Step 7

Example: Steps 8, 9, and 10

Vertex Cover Is NP-Complete

VERTEX-COVER $=\{\langle G, k\rangle \mid G$ has a vertex cover of size $k\}$.
Theorem. VERTEX-COVER is NP-complete.

Proof

Proving VERTEX-COVER $\in \mathbf{N P}$ is easy. Guess a bit for each node to decide whether or not to select the node. Then check whether exactly k nodes have been selected, if so, check whether the k nodes selected form a vertex cover.

Proof

Reduce $3 S A T$ to VERTEX-COVER.
Let ϕ be an instance of $3 S A T$ with n variables and m clauses. Define the graph G as follows:

- The Nodes
- the assignments: $v_{i}, \overline{v_{i}}, 1 \leq i \leq n$;
- the literals: $a_{i 1}, a_{i 2}, a_{i 3}: 1 \leq i \leq m$
- The Edges
- assignment pairs: $\left(v_{i}, \overline{v_{i}}\right), 1 \leq i \leq n$;
- literal triangles: $\left(a_{i 1}, a_{i 2}\right),\left(a_{i 2}, a_{i 3}\right),\left(a_{i 3}, a_{i 1}\right), 1 \leq i \leq$ m;
- literal-assignment pairs: for each $i, 1 \leq i \leq n$, and j, $1 \leq j \leq 3$, connect $a_{i j}$ and its corresponding assignment.

Example

The graph for $(x \vee y \vee z) \wedge(x \vee \bar{y} \vee \bar{z}) \wedge(\bar{x} \vee \bar{y} \vee \bar{z})$.

Proof (cont'd)

We claim that G has an $(n+2 m)$ node vertex cover if and only if ϕ is in $3 S A T$.

- There are exactly n edges of the type $\left(v_{i}, \overline{v_{i}}\right), 1 \leq i \leq n$. So a cover has to have at least one node out of v_{i} and $\overline{v_{i}}$ for every i.

Proof (cont'd)

We claim that G has an $(n+2 m)$ node vertex cover if and only if ϕ is in $3 S A T$.

- From each assignment pair, $\left(v_{i}, \overline{v_{i}}\right)$, at least one node has to be chosen.
- From each literal triangle $\triangle a_{i 1} a_{i 2} a_{i 3}$, at least two nodes have to be chosen.

The total required number of nodes to be selected is $n+2 m$.
Thus, any $n+2 m$-node vertex cover must select 2 nodes per literal triangle and 1 node per assignment pair.

Proof (cont'd)

If exactly 2 nodes are selected from a triangle, then all the edges attached to the triangle nodes are covered except for one, which is one that connects between:

- the triangle node that is NOT chosen and
- the literal node corresponding to that unchosen node.

To cover that edge, the corresponding literal node has to be chosen.

Proof (cont'd)

If a selection of $n+2 m$ nodes is a cover then for each triangle there is at least one node whose other end point is selected. Since we are select exactly one of x and \bar{x} for each literal pair, it means that the selections on the literal pairs is a satisfying assignment. that is connected to

- for each triangle, the other end of the literal-assignment pair incident at the node that is not selected is selected.
For example, if $a_{i 1}$ is not selected and is connected to v_{r}, then v_{r} has to be selected.

So an $n+2 m$-node vertex cover exists if and only if the selected assignment nodes form a satisfying assignment of the formula.

Subset-Sum is NP-complete

SUBSET-SUM is the problem of, given a multiset of numbers z_{1}, \ldots, z_{m} and a number S, whether there is subset y_{1}, \ldots, y_{t} of z_{i} 's such that $y_{1}+\cdots+y_{t}=S$.

Subset-Sum is NP-complete

SUBSET-SUM is the problem of, given a multiset of numbers z_{1}, \ldots, z_{m} and a number S, whether there is subset y_{1}, \ldots, y_{t} of z_{i} 's such that $y_{1}+\cdots+y_{t}=S$.

Theorem. SUBSET-SUM is NP-complete.

Subset-Sum is NP-complete

SUBSET-SUM is the problem of, given a multiset of numbers z_{1}, \ldots, z_{m} and a number S, whether there is subset y_{1}, \ldots, y_{t} of z_{i} 's such that $y_{1}+\cdots+y_{t}=S$.

Theorem. SUBSET-SUM is NP-complete.
Proof Reduce $3 S A T$ to $S U B S E T-S U M$. The construction is reminiscent of the reduction from 3SAT to VERTEX-COVER, where the reduction generates a graph whose $n+2 m$ node cover has a property that at least one "literal-occurrence" edge of each triangle is touched and the rest of the nodes in each triangle is touched.

Proof (cont'd)

Let ϕ be a formula of n variables and m clauses. Introduce decimal numbers $y_{1}, \ldots, y_{n}, z_{1}, \ldots, z_{n}, c_{1}, \ldots, c_{m}, d_{1}, \ldots, d_{m}$, each of at most $n+m$ digits.
$y_{i} \quad y_{i}$ has a 1 at the $(m+1)$ st digit and has a 1 at position j if x_{i} appears in the j th clause; all the other positions have a 0
$z_{i} \quad z_{i}$ has a 1 at the $(m+1)$ st digit and has a 1 at position j if $\overline{x_{i}}$ appears in the j th clause; all the other positions have a 0
$c_{i}, d_{i} \quad c_{i}$ has a 1 only at the i th position, d_{i} has a 1 only at the i th position,
$S \quad S$ is the number that has a 3 at every position between 1 and m and has a 1 at every position between $m+1$ and $m+n$

Example: $(x \vee y \vee z) \wedge(x \vee \bar{y} \vee \bar{z}) \wedge(\bar{x} \vee \bar{y} \vee \bar{z})$

Proof (cont'd)

In order to generate S, exactly one of y_{i} and z_{i} has to be selected for every i so that the selection as a whole touches each bit position between 1 and m at least once (and at most three times). Such a selection is a satisfying assignment of ϕ.

