Chapter 7, Part 4

More NP-Complete Problems

Clique

We know: $3SAT \leq_P CLIQUE$, $CLIQUE \in \mathbf{NP}$, and 3SAT is **NP**-complete. So, CLIQUE is **NP**-complete.

Vertex Cover

A vertex cover of an undirected graph is a subset of nodes such that every edge touches a member of the subset.

Example: a 10-node Vertex Cover

Example: Steps 8, 9, and 10

Vertex Cover Is NP-Complete

 $VERTEX-COVER = \{ \langle G, k \rangle \mid G \text{ has a vertex cover of size } k \}.$

Theorem. *VERTEX-COVER* is **NP-complete.**

Proof

Proving VERTEX- $COVER \in NP$ is easy. Guess a bit for each node to decide whether or not to select the node. Then check whether exactly k nodes have been selected, if so, check whether the k nodes selected form a vertex cover.

Proof

Reduce 3SAT to VERTEX-COVER.

Let ϕ be an instance of 3SAT with n variables and m clauses. Define the graph G as follows:

- The Nodes
 - the assignments: $v_i, \overline{v_i}, 1 \leq i \leq n$;
 - the literals: $a_{i1}, a_{i2}, a_{i3} : 1 \le i \le m$
- The Edges
 - assignment pairs: $(v_i, \overline{v_i})$, $1 \le i \le n$;
 - literal triangles: $(a_{i1}, a_{i2}), (a_{i2}, a_{i3}), (a_{i3}, a_{i1}), 1 \le i \le m;$
 - literal-assignment pairs: for each i, $1 \le i \le n$, and j, $1 \le j \le 3$, connect a_{ij} and its corresponding assignment.

Example

The graph for $(x \lor y \lor z) \land (x \lor \overline{y} \lor \overline{z}) \land (\overline{x} \lor \overline{y} \lor \overline{z})$.

We claim that G has an (n+2m) node vertex cover if and only if ϕ is in 3SAT.

• There are exactly n edges of the type $(v_i, \overline{v_i})$, $1 \le i \le n$. So a cover has to have at least one node out of v_i and $\overline{v_i}$ for every i.

We claim that G has an (n+2m) node vertex cover if and only if ϕ is in 3SAT.

- From each assignment pair, $(v_i, \overline{v_i})$, at least one node has to be chosen.
- From each literal triangle $\triangle a_{i1}a_{i2}a_{i3}$, at least two nodes have to be chosen.

The total required number of nodes to be selected is n + 2m.

Thus, any n+2m-node vertex cover must select 2 nodes per literal triangle and 1 node per assignment pair.

If exactly 2 nodes are selected from a triangle, then all the edges attached to the triangle nodes are covered except for one, which is one that connects between:

- the triangle node that is NOT chosen and
- the literal node corresponding to that unchosen node.

To cover that edge, the corresponding literal node has to be chosen.

If a selection of n + 2m nodes is a cover then for each triangle there is at least one node whose other end point is selected. Since we are select exactly one of x and \overline{x} for each literal pair, it means that the selections on the literal pairs is a satisfying assignment. that is connected to

 for each triangle, the other end of the literal-assignment pair incident at the node that is not selected is selected.
For example, if a_{i1} is not selected and is connected to v_r, then v_r has to be selected.

So an n + 2m-node vertex cover exists if and only if the selected assignment nodes form a satisfying assignment of the formula.

Subset-Sum is NP-complete

SUBSET-SUM is the problem of, given a multiset of numbers z_1, \ldots, z_m and a number S, whether there is subset y_1, \ldots, y_t of z_i 's such that $y_1 + \cdots + y_t = S$.

Subset-Sum is NP-complete

SUBSET-SUM is the problem of, given a multiset of numbers z_1, \ldots, z_m and a number S, whether there is subset y_1, \ldots, y_t of z_i 's such that $y_1 + \cdots + y_t = S$.

Theorem. *SUBSET-SUM* is NP-complete.

Subset-Sum is NP-complete

SUBSET-SUM is the problem of, given a multiset of numbers z_1, \ldots, z_m and a number S, whether there is subset y_1, \ldots, y_t of z_i 's such that $y_1 + \cdots + y_t = S$.

Theorem. SUBSET-SUM is NP-complete.

Proof Reduce 3SAT to SUBSET-SUM. The construction is reminiscent of the reduction from 3SAT to VERTEX-COVER, where the reduction generates a graph whose n + 2m node cover has a property that at least one "literal-occurrence" edge of each triangle is touched and the rest of the nodes in each triangle is touched.

Let ϕ be a formula of n variables and m clauses. Introduce decimal numbers $y_1, \ldots, y_n, z_1, \ldots, z_n, c_1, \ldots, c_m, d_1, \ldots, d_m$, each of at most n + m digits.

 y_i y_i has a 1 at the (m+1)st digit and has a 1 at position j if x_i appears in the jth clause; all the other positions have a 0

 z_i z_i has a 1 at the (m+1)st digit and has a 1 at position j if $\overline{x_i}$ appears in the jth clause; all the other positions have a 0

 c_i, d_i c_i has a 1 only at the *i*th position, d_i has a 1 only at the *i*th position,

S is the number that has a 3 at every position between 1 and m and has a 1 at every position between m + 1 and m + n

Example: $(x \lor y \lor z) \land (x \lor \overline{y} \lor \overline{z}) \land (\overline{x} \lor \overline{y} \lor \overline{z})$

Clauses									variables					
	1	1		1	1		1	1		1		1		1
					1	-		1						1
		1												1
								1				1		
		1			1							1		
								1		1				
		1			1					1				
								1						
								1						\dashv
					1			-						
					1									\dashv
		1												\dashv
		1												

In order to generate S, exactly one of y_i and z_i has to be selected for every i so that the selection as a whole touches each bit position between 1 and m at least once (and at most three times). Such a selection is a satisfying assignment of ϕ .