Chapter 7, Part 3

NP-Completeness

The P=NP Problem

$\mathsf{ls}\;\mathbf{P}=\mathbf{NP?}$

To study this question we look at the *most difficult* problems in NP, called NP-complete problems.

<u>SAT</u>

A **Boolean formula** is a formula of propositional logic, constructed from variables and Boolean operations (\land, \lor, \neg)

A Boolean formula is **satisfiable** if there exists some assignment to the variables that makes the formula evaluate to 1

Example: $\phi = (\overline{x} \land y) \lor (x \land \overline{z})$ is satisfiable. A satisfying assignment is x = 1, y = 1, z = 0

 $\phi = x \wedge \overline{x} \wedge y$ is not satisfiable.

The Main Theorem

The **satisfiability problem** is the problem of deciding whether a given input Boolean formula is satisfiable

 $SAT = \{ \phi \mid \phi \text{ is a satisfiable Boolean formula } \}$

Theorem. $SAT \in \mathbf{P}$ if and only if $\mathbf{P} = \mathbf{NP}$

Polynomial Time Reductions

Definition. A function f is polynomial time computable if there exists a polynomial time TM that halts on each input x with only f(x) on the tape.

Definition. A language A is polynomial time mapping reducible to a language B (write $A \leq_P B$) if A is mapping reducible to B via a polynomial time computable function.

<u>3SAT</u>

A literal is a variable or its negation

A clause is the disjunction of some literals, e.g., $x_1 \vee \overline{x_3} \vee x_{17}$

A Boolean formula is in **conjunctive normal form** if it is the conjunction (\land) of some clauses

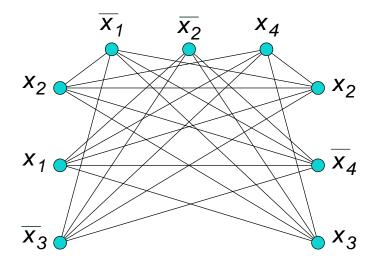
A **3CNF formula** is a formula in the CNF-form in which each clause consists of three literals

Theorem. 3SAT is polynomial time reducible to CLIQUE.

Reducing 3SAT to CLIQUE

Given a formula ϕ of k three-literal clauses construct a graph G = (V, E), where $V = \{\langle i, j \rangle \mid 1 \leq i \leq k, 1 \leq j \leq 3\}$ and $E = \{(\langle i, j \rangle, \langle i', j' \rangle) \mid (i \neq i') \text{ and (the } j \text{th literal in the } i \text{th clause}) \text{ and (the } j' \text{th literal in the } i' \text{th clause}) are$ **either identical to each other or use different variables**

The graph for the formula $\phi = (x_2 \lor x_1 \lor \overline{x_3}) \land (\overline{x_1} \lor \overline{x_2} \lor x_4) \land (x_2 \lor \overline{x_4} \lor x_3).$



Claim. G has a k-clique if and only if ϕ is satisfiable.

 $[\Rightarrow]$ Let S be a k-clique of G. Then S has a node from each triple so that the selected nodes do not interfere with each other as assignments.

[\Leftarrow] Let A be a satisfying assignment. Select from each triple **a literal that is satisfied by** A to construct a set S. ||S|| = k and it is a clique.

The mapping is **polynomial time computable**.

Definition. A language A is NP-complete if A is in NP and every language in NP is polynomial time reducible to A.

Theorem. If a language A is NP-complete, then $A \in \mathbf{P}$ if and only if $\mathbf{P} = \mathbf{NP}$.

We may use the following to prove something is \mathbf{NP} -complete.

Theorem. A language A is NP-complete, $B \in NP$, and $A \leq_P B$, then B is NP-complete.

Theorem. SAT is **NP-complete.**

Proof $SAT \in \mathbf{NP}$. Consider a two-tape NTM that, on an input ϕ of n variables, **guesses and writes an assignment** A on Tape 2 using nondeterministic moves, accepts if $\phi(A) = 1$, and rejects $\phi(A) = 0$. Such a machine decides SAT and can be polynomial time.

The Converse

Suppose A is in **NP**. We show $A \leq_P SAT$.

Note that there are some integer k>0 and a one-tape $\mathsf{NTM}\ N$ such that

- L(N) = A, and
- for all inputs x, N on input x halts within $n^k + k$ steps.

By convention we assume that once N enters q_{accept} , N keeps moving its head to the right without changing the tape contents or state.

We will use p(n) to denote $n^k + k + 2$.

Let w be an input of length n. Define a **tableau** for N on w to be a $p(n) \times p(n)$ table whose rows are members of $\#\Gamma^*Q\Gamma^*\#$ with the following properties:

1. the columns 1 and p(n) are all #,

- 1. the columns 1 and p(n) are all #,
- 2. each row, excluding the first and the last symbols, is a configuration of $N_{\rm r}$

- 1. the columns 1 and p(n) are all #,
- 2. each row, excluding the first and the last symbols, is a configuration of $N, \end{tabular}$
- 3. the first row represents the initial configuration of N on $w\mbox{,}$

- 1. the columns 1 and p(n) are all $\#\mbox{,}$
- 2. each row, excluding the first and the last symbols, is a configuration of $N_{\rm r}$
- 3. the first row represents the initial configuration of N on $w\mbox{,}$ and
- 4. for each $i,\ 2\leq i\leq p(n),$ the $i{\rm th}$ row results from the $(i-1){\rm st}$ row applying one move of N

- 1. the columns 1 and p(n) are all #,
- 2. each row, excluding the first and the last symbols, is a configuration of N with possible additional blanks at the end,
- 3. the first row represents the initial configuration of N on $w\mbox{,}$ and
- 4. for each $i,\ 2\leq i\leq p(n),$ the $i{\rm th}$ row results from the $(i-1){\rm st}$ row applying one move of N
- A tableau is **accepting** if
 - 5. the last row is an accepting configuration

Encoding of Tableau

For all $i, j, 1 \le i, j \le p(n)$, let cell[i, j] denote the *j*th element in row *i*.

cell[i, j] has more than 2 possibilities, and so, we introduce a boolean variable that represents each choice.

Let $C = Q \cup \Gamma \cup \{\#\}.$

For each $i, j, 1 \leq i, j \leq p(n)$, and $s \in C$, $x_{i,j,s}$ is the variable representing condition cell[i, j] = s.

We demand for all i, j, that $x_{i,j,s} =$ true for exactly one s.

General Technique

Let F_1, \ldots, F_k be Boolean formulas. Then, "exactly one of F_1, \ldots, F_k is true" can be expressed as another Boolean formula:

$$(F_1 \vee \cdots \vee F_k) \wedge \neg ((F_1 \wedge F_2) \vee (F_1 \wedge F_3) \vee \cdots \vee (F_{k-1} \wedge F_k))$$

So, we have a formula for conditions like cell[i, j] = a and $cell[i, j] \in S$ where S is a finite set of symbols.

<u>Plan</u>

We will encode Conditions 1 through 5 into Boolean formulas ϕ_1 through ϕ_5 and then construct $\phi_x = \phi_1 \wedge \cdots \wedge \phi_5$. We will map xto ϕ_x .

Condition 1: "#'s"

$$\bigwedge_{1 \le i \le p(n)} (cell[i,1] = \# \land cell[i,p(n)] = \#).$$

Condition 5: "Accepting"

$$\bigvee_{1 \le j \le p(n)} cell[p(n), j] = q_{\text{accept}}$$

Condition 3: "Initial"

$$cell[1,2] = q_0$$

$$\land \left(\bigwedge_{1 \le j \le n} cell[1,2+j] = w_j\right)$$

$$\land \left(\bigwedge_{n+3 \le j \le p(n)-1} cell[1,j] = \sqcup\right)$$

Condition 2: "Configuration"

$$\bigwedge_{1 \leq i \leq p(n)} \left(\bigwedge_{j,2 \leq j \leq p(n)-1} (cell[i,j] \in Q \cup \Gamma) \land B_i \right)$$
 where $B_i =$ "there is exactly one $j,2 \leq j \leq p(n)-1$ such that $cell[i,j] \in Q$ "

This is

$$\bigwedge_{2 \le i \le p(n)} \bigwedge_{2 \le j \le p(n) - 1} D_{ij}$$

Here D_{ij} is the formula that states: In the 2×3 block of the tableau

$\boxed{cell[i-1,j-1]}$	cell[i-1,j]	cell[i-1, j+1]
cell[i, j-1]	cell[i,j]	cell[i, j+1]

(α_{ij}) if cell[i-1, j] is in Q then the six cells encode the outcome of a permissible action of N; and

 (β_{ij}) "if $cell[i-1,j], cell[i-1,j-1], cell[i-1,j+1] \notin Q$ then cell[i-1,j-1] = cell[i,j-1], cell[i-1,j] = cell[i,j], and cell[i-1,j+1] = cell[i,j+1]."

The entire formula has length bounded a fixed polynomial in n.

3SAT is NP-Complete

The formula in the tableau method can be **converted to an** equivalent 3CNF formula

The formula constructed in the previous proof is trivially in CNF except for the transition part, which is expressed as the conjunction of D_{ij} . Here D_{ij} is $\alpha_{ij} \wedge \beta_{ij}$ and checks that the 2-by-3 block located at (i, j) is valid.

 D_{ij} can be expressed either as

- the six cells are in one of valid combinations
- the six cells are not in any of invalid combinations.

There are only a constant number of invalid combinations, so we will use the latter.

Conversion

Suppose

$$(cell[i-1, j-1] = a, cell[i-1, j] = b, cell[i-1, j+1] = c, cell[i, j-1] = d, cell[i, j] = e, cell[i, j+1] = f)$$

is an in valid form. Then

$$(\overline{x_{i-1,j-1,a}} \lor \overline{x_{i-1,j,b}} \lor \overline{x_{i-1,j+1,c}} \lor \overline{x_{i,j-1,d}} \lor \overline{x_{i,j,e}} \lor \overline{x_{i,j+1,f}})$$

expresses that these cells are not in that combination.

By taking the conjunction for all invalid combinations, we obtain a CNF formula for D_{ij} .

Conversion rules:

- 1. $(x \wedge y) \wedge z$ is equivalent to $x \wedge y \wedge z$
- 2. $(x \lor y) \lor z$ is equivalent to $x \lor y \lor z$
- 3. $(x \lor y \lor z \lor u)$ is equivalent to $(x \lor y \lor w) \land (w \equiv (z \lor u))$. The second term is equivalent to $(\overline{w} \lor z \lor u) \land (\overline{z} \lor w) \land (\overline{u} \lor w)$

Repeat literals in clauses with < 3 literals to make the number of literals equal to three.