Chapter 7, Part 3

NP-Completeness

The $\mathrm{P}=\mathrm{NP}$ Problem

Is $\mathbf{P}=\mathbf{N P}$?

To study this question we look at the most difficult problems in NP, called NP-complete problems.

SAT

A Boolean formula is a formula of propositional logic, constructed from variables and Boolean operations (\wedge, \vee, \neg)

A Boolean formula is satisfiable if there exists some assignment to the variables that makes the formula evaluate to 1

Example: $\phi=(\bar{x} \wedge y) \vee(x \wedge \bar{z})$ is satisfiable. A satisfying assignment is $x=1, y=1, z=0$
$\phi=x \wedge \bar{x} \wedge y$ is not satisfiable.

The Main Theorem

The satisfiability problem is the problem of deciding whether a given input Boolean formula is satisfiable
$S A T=\{\phi \mid \phi$ is a satisfiable Boolean formula $\}$
Theorem. $S A T \in \mathbf{P}$ if and only if $\mathbf{P}=\mathbf{N P}$

Polynomial Time Reductions

Definition. A function f is polynomial time computable if there exists a polynomial time TM that halts on each input x with only $f(x)$ on the tape.

Definition. A language A is polynomial time mapping reducible to a language B (write $A \leq_{P} B$) if A is mapping reducible to B via a polynomial time computable function.

3SAT

A literal is a variable or its negation
A clause is the disjunction of some literals, e.g., $x_{1} \vee \overline{x_{3}} \vee x_{17}$
A Boolean formula is in conjunctive normal form if it is the conjunction (\wedge) of some clauses

A 3CNF formula is a formula in the CNF-form in which each clause consists of three literals

Theorem. 3SAT is polynomial time reducible to CLIQUE.

Reducing 3SAT to CLIQUE

Given a formula ϕ of k three-literal clauses construct a graph $G=(V, E)$, where $V=\{\langle i, j\rangle \mid 1 \leq i \leq k, 1 \leq j \leq 3\}$ and $E=\left\{\left(\langle i, j\rangle,\left\langle i^{\prime}, j^{\prime}\right\rangle\right) \mid\left(i \neq i^{\prime}\right)\right.$ and (the j th literal in the i th clause) and (the j^{\prime} th literal in the i^{\prime} th clause) are either identical to each other or use different variables

The graph for the formula $\phi=$ $\left(x_{2} \vee x_{1} \vee \overline{x_{3}}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{2}} \vee x_{4}\right) \wedge$ $\left(x_{2} \vee \overline{x_{4}} \vee x_{3}\right)$.

Reduction (cont'd)

Claim. G has a k-clique if and only if ϕ is satisfiable.
$[\Rightarrow] \quad$ Let S be a k-clique of G. Then S has a node from each triple so that the selected nodes do not interfere with each other as assignments.
$[\Leftarrow]$ Let A be a satisfying assignment. Select from each triple a literal that is satisfied by A to construct a set $S .\|S\|=k$ and it is a clique.

The mapping is polynomial time computable.

NP-Completeness

Definition. A language A is NP-complete if A is in NP and every language in NP is polynomial time reducible to A.

Theorem. If a language A is $\mathbf{N P}$-complete, then $A \in \mathbf{P}$ if and only if $\mathbf{P}=\mathrm{NP}$.

We may use the following to prove something is NP-complete.
Theorem. A language A is NP-complete, $B \in \mathbf{N P}$, and $A \leq_{P} B$, then B is NP-complete.

SAT is NP-Complete

Theorem. SAT is NP-complete.
Proof $S A T \in \mathbf{N P}$. Consider a two-tape NTM that, on an input ϕ of n variables, guesses and writes an assignment A on Tape 2 using nondeterministic moves, accepts if $\phi(A)=1$, and rejects $\phi(A)=0$. Such a machine decides $S A T$ and can be polynomial time.

The Converse

Suppose A is in NP. We show $A \leq_{P} S A T$.
Note that there are some integer $k>0$ and a one-tape NTM N such that

- $L(N)=A$, and
- for all inputs x, N on input x halts within $n^{k}+k$ steps.

By convention we assume that once N enters $q_{\text {accept }}, N$ keeps moving its head to the right without changing the tape contents or state.

We will use $p(n)$ to denote $n^{k}+k+2$.

Tableau

Let w be an input of length n. Define a tableau for N on w to be a $p(n) \times p(n)$ table whose rows are members of $\# \Gamma^{*} Q \Gamma^{*} \#$ with the following properties:

1. the columns 1 and $p(n)$ are all $\#$,

Tableau

Let w be an input of length n. Define a tableau for N on w to be a $p(n) \times p(n)$ table whose rows are members of $\# \Gamma^{*} Q \Gamma^{*} \#$ with the following properties:

1. the columns 1 and $p(n)$ are all $\#$,
2. each row, excluding the first and the last symbols, is a configuration of N,

Tableau

Let w be an input of length n. Define a tableau for N on w to be a $p(n) \times p(n)$ table whose rows are members of $\# \Gamma^{*} Q \Gamma^{*} \#$ with the following properties:

1. the columns 1 and $p(n)$ are all $\#$,
2. each row, excluding the first and the last symbols, is a configuration of N,
3. the first row represents the initial configuration of N on w,

Tableau

Let w be an input of length n. Define a tableau for N on w to be a $p(n) \times p(n)$ table whose rows are members of $\# \Gamma^{*} Q \Gamma^{*} \#$ with the following properties:

1. the columns 1 and $p(n)$ are all $\#$,
2. each row, excluding the first and the last symbols, is a configuration of N,
3. the first row represents the initial configuration of N on w, and
4. for each $i, 2 \leq i \leq p(n)$, the i th row results from the $(i-1)$ st row applying one move of N

Tableau

Let w be an input of length n. Define a tableau for N on w to be a $p(n) \times p(n)$ table whose rows are members of $\# \Gamma^{*} Q \Gamma^{*} \#$ with the following properties:

1. the columns 1 and $p(n)$ are all $\#$,
2. each row, excluding the first and the last symbols, is a configuration of N with possible additional blanks at the end,
3. the first row represents the initial configuration of N on w, and
4. for each $i, 2 \leq i \leq p(n)$, the i th row results from the $(i-1)$ st row applying one move of N

A tableau is accepting if
5. the last row is an accepting configuration

Encoding of Tableau

For all $i, j, 1 \leq i, j \leq p(n)$, let cell $[i, j]$ denote the j th element in row i.
cell $[i, j]$ has more than 2 possibilities, and so, we introduce a boolean variable that represebnts each choice.

Let $C=Q \cup \Gamma \cup\{\#\}$.
For each $i, j, 1 \leq i, j \leq p(n)$, and $s \in C, x_{i, j, s}$ is the variable representing condition $\operatorname{cell}[i, j]=s$.

We demand for all i, j, that $x_{i, j, s}=$ true for exactly one s.

General Technique

Let F_{1}, \ldots, F_{k} be Boolean formulas. Then, "exactly one of F_{1}, \ldots, F_{k} is true" can be expressed as another Boolean formula:

$$
\left(F_{1} \vee \cdots \vee F_{k}\right) \wedge \neg\left(\left(F_{1} \wedge F_{2}\right) \vee\left(F_{1} \wedge F_{3}\right) \vee \cdots \vee\left(F_{k-1} \wedge F_{k}\right)\right)
$$

So, we have a formula for conditions like $\operatorname{cell}[i, j]=a$ and $\operatorname{cell}[i, j] \in S$ where S is a finite set of symbols.

Plan

We will encode Conditions 1 through 5 into Boolean formulas ϕ_{1} through ϕ_{5} and then construct $\phi_{x}=\phi_{1} \wedge \cdots \wedge \phi_{5}$. We will map x to ϕ_{x}.

Condition 1: "\#'s"

$$
\bigwedge_{1 \leq i \leq p(n)}(\operatorname{cell}[i, 1]=\# \wedge \operatorname{cell}[i, p(n)]=\#) .
$$

Condition 5: "Accepting"

$$
\bigvee_{1 \leq j \leq p(n)} \operatorname{cell}[p(n), j]=q_{\text {accept }}
$$

Condition 3: "Initial"

$$
\begin{array}{r}
\operatorname{cell}[1,2]=q_{0} \\
\wedge\left(\bigwedge_{1 \leq j \leq n} \operatorname{cell}[1,2+j]=w_{j}\right) \\
\wedge\left(\bigwedge_{n+3 \leq j \leq p(n)-1} \operatorname{cell}[1, j]=\sqcup\right)
\end{array}
$$

Condition 2: "Configuration"

$$
\bigwedge_{1 \leq i \leq p(n)}\left(\bigwedge_{j, 2 \leq j \leq p(n)-1}(\operatorname{cell}[i, j] \in Q \cup \Gamma) \wedge B_{i}\right)
$$

where $B_{i}=$ "there is exactly one $j, 2 \leq j \leq p(n)-1$ such that $\operatorname{cell}[i, j] \in Q^{\prime \prime}$

Condition 4: "Step"

This is

$$
\bigwedge_{2 \leq i \leq p(n)} \bigwedge_{2 \leq j \leq p(n)-1} D_{i j}
$$

Here $D_{i j}$ is the formula that states: In the 2×3 block of the tableau

$\operatorname{cell}[i-1, j-1]$	$\operatorname{cell}[i-1, j]$	$\operatorname{cell}[i-1, j+1]$
$\operatorname{cell}[i, j-1]$	$\operatorname{cell}[i, j]$	$\operatorname{cell}[i, j+1]$

$\left(\alpha_{i j}\right)$ if $\operatorname{cell}[i-1, j]$ is in Q then the six cells encode the outcome of a permissible action of N; and
($\beta_{i j}$) "if $\operatorname{cell}[i-1, j], \operatorname{cell}[i-1, j-1], \operatorname{cell}[i-1, j+1] \notin Q$ then $\operatorname{cell}[i-1, j-1]=\operatorname{cell}[i, j-1], \operatorname{cell}[i-1, j]=\operatorname{cell}[i, j]$, and $\operatorname{cell}[i-1, j+1]=\operatorname{cell}[i, j+1] . "$
The entire formula has length bounded a fixed polynomial in n.

3SAT is NP-Complete

The formula in the tableau method can be converted to an equivalent 3CNF formula

The formula constructed in the previous proof is trivially in CNF except for the transition part, which is expressed as the conjunction of $D_{i j}$. Here $D_{i j}$ is $\alpha_{i j} \wedge \beta_{i j}$ and checks that the 2-by-3 block located at (i, j) is valid.
$D_{i j}$ can be expressed either as

- the six cells are in one of valid combinations
- the six cells are not in any of invalid combinations.

There are only a constant number of invalid combinations, so we will use the latter.

Conversion

Suppose

$$
\begin{gathered}
(\operatorname{cell}[i-1, j-1]=a, \operatorname{cell}[i-1, j]=b, \operatorname{cell}[i-1, j+1]=c, \\
\operatorname{cell}[i, j-1]=d, \operatorname{cell}[i, j]=e, \operatorname{cell}[i, j+1]=f)
\end{gathered}
$$

is an in valid form. Then

$$
\begin{gathered}
\left(\overline{x_{i-1, j-1, a}} \vee \overline{x_{i-1, j, b}} \vee \overline{x_{i-1, j+1, c}}\right. \\
\left.\quad \vee \overline{x_{i, j-1, d}} \vee \overline{x_{i, j, e}} \vee \overline{x_{i, j+1, f}}\right)
\end{gathered}
$$

expresses that these cells are not in that combination.
By taking the conjunction for all invalid combinations, we obtain a CNF formula for $D_{i j}$.

Converting CNF to 3CNF

Conversion rules:

1. $(x \wedge y) \wedge z$ is equivalent to $x \wedge y \wedge z$
2. $(x \vee y) \vee z$ is equivalent to $x \vee y \vee z$
3. $(x \vee y \vee z \vee u)$ is equivalent to $(x \vee y \vee w) \wedge(w \equiv(z \vee u))$. The second term is equivalent to $(\bar{w} \vee z \vee u) \wedge(\bar{z} \vee w) \wedge(\bar{u} \vee w)$

Repeat literals in clauses with <3 literals to make the number of literals equal to three.

