Chapter 7, Part 2

Classes P and NP

The Complexity Class P

Juris Hartmanis and Dick Stearns [1965] : proposed computational complexity - measuring complexity of problems by the number of steps (or the number of cells) expended in the worst case under the TM model

Fundamental results in the Hartmanis-Stearns paper:

1. Time Hierarchy Theorem (see Section 9.1) ...
$\operatorname{TIME}(t(n)) \neq \operatorname{TIME}\left(t(n)^{2}\right)$ for all reasonable $t(n)$
2. Linear Speed-up Theorem ... $\operatorname{TIME}(t(n))=\operatorname{TIME}(c t(n))$ for all $c>0$ and all reasonable $t(n)$

A better hierarchy theorem is proven by Harry Lewis and Stearns

The Complexity Class P (continued)

Alan Cobham [1964], Jack Edmonds [1965], and Michael Rabin [1966] suggested the "polynomial time" as a broad classification of problems that are solvable in a reasonable amount of time

$$
\mathbf{P}=\bigcup_{k>0} \operatorname{TIME}\left(n^{k}\right)
$$

Why polynomial, why not, say n^{3} ?
Because the "polynomial time" is invariant under the model of computation

NP is the nondeterministic counterpart of P

$$
\mathbf{N P}=\bigcup_{k>0} \operatorname{NTIME}\left(n^{k}\right)
$$

Problems in P

The Path Problem

Input A directed graph $G=(V, E)$ and $s, t, 1 \leq s, t \leq|V|$
Question Does the graph has a directed path from s to t ?
We define PATH to be the set of all positive instances $\langle G, s, t\rangle$ to the Path Problem.

The Path Problem

An encoding of a graph can be its adjacency matrix $\left(a_{i j}\right)$: for every $i, j, 1 \leq i, j \leq n, a_{i j}=1$ if $(i, j) \in E$ and 0 otherwise

The entire encoding can be

$$
0^{n} \# a_{1} a_{2} \cdots a_{n} \# 0^{s} \# 1^{t}
$$

where $a_{1}, a_{2}, \ldots, a_{n}$ are the rows of the adjacency matrix

A Polynomial Time Algorithm for PATH

Let $G=(V, E)$ be an instance of PATH, $n=|V|$, and A the adjacency matrix of G.

For each $k \geq 1$, let $A^{(k)}$ be the k-th power of the matrix A, where \vee and \wedge replace + and \times.

A Polynomial Time Algorithm for PATH

Let $G=(V, E)$ be an instance of PATH, $n=|V|$, and A the adjacency matrix of G.

For each $k \geq 1$, let $A^{(k)}$ be the k-th power of the matrix A, where \vee and \wedge replace + and \times.

Then for every $k \geq 1$ and every $i, j, 1 \leq i, j \leq n$, the (i, j) th entry of $A^{(k)}$ is a 1 if and only if there is a directed path from i to j of length at most k in G.

Algorithm for PATH

- Compute $B=A^{(n)}$ by iterative multiplication; that is, compute $A^{(1)}=A, A^{(2)}, A^{(3)}, A^{(4)}, \ldots$ by multiplying A by the previous matrix.
- if the (s, t) th entry of $B=1$ accept ; else reject

Running Time on a Multi-tape Turing Machine

- We have only to compute the transpose of $A^{(i)}$.
- The initial one can be obtained by transposing the input matrix A, which requires $O\left(n^{3}\right)$ steps.
- For the other matrices, that is done by controlling the order in which the entries are computed.
- There are n^{2} entries per matrix.
- There are $n-1$ matrix multiplications.
- $2 n$ bits are examined to compute an entry of one product.

Thus, the running time is $O\left(n^{4}\right)$ step algorithm

Testing Relative Primality of Two Numbers

The Relative Primality Problem
Input Integers $x, y \geq 1$.
Question Are x and y relatively prime to each other, i.e., $\operatorname{gcd}(x, y)=1 ?$
Define RELPRIME to be the set of all positive instances $\langle x, y\rangle$ of the Relative Primality Problem.

Note: x and y should not be encoded in unary

A Polynomial Time Algorithm for RELPRIME

Use the Euclidean Algorithm: On input $\langle x, y\rangle$:

1. repeat $x \leftarrow x \bmod y$; swap x and y; until $y=0$
2. output x

How Quickly Does x Decrease?

Suppose x has value u, y has value $v, v \leq u$, after one iteration of the above algorithm, the value of x becomes u^{\prime} and the value of y becomes v^{\prime}. and after another iteration of the above algorithm, the value of x becomes $u^{\prime \prime}$ and the value of y becomes $v^{\prime \prime}$.

We have:

- $u^{\prime}=v$,
- if $v>u / 2$, then $v^{\prime}=u \bmod v=u-v<u / 2$;
- if $v \leq u / 2$, then $v^{\prime} \leq v-1<u / 2$.

So, we have

- $u^{\prime \prime}=v^{\prime}<u / 2$,
- $v^{\prime \prime}<u^{\prime} / 2=v / 2$.

This implies that in two iterations, both x and y will be less than half of what they are now.

Running Time Analysis

If $\max \{|x|,|y|\}=n$, then the running time is $O\left(n^{3}\right)$.
$\mathbf{(}^{*}$) if the Euclid algorithm on $\langle x, y\rangle$ outputs 1 then accept ; else reject
The Running Time Analysis: $O\left(n^{3}\right)$.

Polynomial Time Decidability of Context-Free Languages

Theorem. Every context-free language is in P.

Polynomial Time Decidability of Context-Free Languages

Theorem. Every context-free language is in P.
Proof Let L be context-free. Let G be a CNF grammar for L. Suppose $w=w_{1} \cdots w_{n}$ be a string whose membership in L we are testing.

The case when $w=\epsilon$ is easy: we accept if and only if $S \rightarrow \epsilon$ is a in G.

The Nonempty Case

So, assume $w \neq \epsilon$ and let w_{1}, \ldots, w_{n} be the symbols of w.
For each $i, j, 1 \leq i \leq j \leq n$, let $t(i, j)$ be the set of all variables from which $w_{i} \cdots w_{j}$ can be produced.

The Nonempty Case

So, assume $w \neq \epsilon$.
For each $i, j, 1 \leq i \leq j \leq n$, let $t(i, j)$ be the set of all variables from which $w_{i} \cdots w_{j}$ can be produced

We can compute $t(i, j)$ for all $i, j, 1 \leq i \leq j \leq n$, using dynamic programming.

Then test the membership by examining whether $S \in t(1, n)$

Dynamic Programming for Computing the Table

Set $t(i, i) \leftarrow$ the set of all A such that $A \rightarrow w_{i}$ is in G. Then execute the following:
for $\ell=2$ to n

$$
\begin{aligned}
& \text { for } \begin{array}{l}
i=1 \text { to } n-\ell+1 \\
\quad j=i+\ell-1 ; t(i, j)=\emptyset ; \\
\text { for } k=i \text { to } j-1 \\
\text { if } \exists A, B \in t(i, k), C \in t(k+1, j) \\
\text { such that } A \rightarrow B C \text { is in } G \\
\quad \text { then add } A \text { to } t(i, j)
\end{array} .
\end{aligned}
$$

The running time is $O\left(n^{3}\right)$ since ℓ, i, and k have at most n possible values.

The size of $t(i, j)$ is at most the number of variables of G, but that is a constant since G is fixed.

Examples of NP Languages

The Hamilton Path Problem

Input A directed graph $G=(V, E)$ and $s, t \in V, s \neq t$
Question Is there a Hamilton Path from s to t in G, i.e., a directed path from s to t that visits all the nodes exactly once?
Define HAMPATH to be the set of all positive instances $\langle G, s, t\rangle$ to the Hamilton Path Problem.

The Class NP

The Compositeness Problem

Input Integer $x \geq 1$
Question Does x a composite number, i.e., have an integer divisor other than 1 and x ?

Define COMPOSITES to be the set of all composite numbers x.

A Characterization of NP by Verifiers

A verifier of a language A is an algorithm V such that $A=\{w \mid V$ accepts $\langle w, c\rangle$ for some $c\}$.

That is, a verifier is an algorithm that takes two inputs w and c and decides whether to accept or reject in such a way that:

- If $w \in A$, there is an auxiliary input c that makes the verifier accept and
- If $w \notin A$, there is no auxiliary input c that makes the verifier accept.

For a fixed V, the string c witnessing to $w \in A$ (that is, one such that V accepts $\langle w, c\rangle$) is called a certificate or a proof.

An Alternative Definition of NP

We will measure the time of V in terms of the length of w.
Definition. (alternate) NP is the class of languages that have polynomial time verifiers.

This means that polynomial time verifies reject (input, proofcandidate) pairs in which the proof candidate is exceedingly long.

Equivalence Between the Two Definitions of NP

Theorem. The alternative definition is equivalent to the first definition of NP.

Proof (Sketch) If L has a polynomial time verifier, then we can construct a nondeterministic Turing machine that nondeterministic guesses a proof of length bounded by some fixed polynomial and then verifies the proof.

If L is accepted by a polynomial time nondeterministic Turing machine, we can use the accepting computation paths of the machine as the proofs of membership.

Membership of HAMPATH in NP

Define a certificate for each $\langle G, s, t\rangle \in H A M P A T H$ to be any sequence $\left\langle v_{1}, \ldots, v_{n}\right\rangle$ of nodes such that
(i) for every $i, 1 \leq i \leq n, i=v_{j}$ for some j,
(ii) $s=v_{1}$,
(iii) $t=v_{n}$, and
(iv) for every $i, 1 \leq i \leq n-1,\left(v_{i}, v_{i+1}\right) \in E$.

A correct certificate can be of length $O(n \log n)$ and verification can be done in $O\left(n^{3}\right)$ steps.

Membership in NP

Define a certificate for each $x \in C O M P O S I T E S$ to be any number y such that y divides x and $1<y<x$. Then a correct certificate can be of length $O(n)$

More Problems in NP: Clique

The Clique Problem
Input A graph $G=(V, E)$ and $k \geq 1$.
Question Does G contain a complete graph of size $\geq k$?
Define CLIQUE to be the set of all positive instances $\langle G, k\rangle$ to the Clique Problem.

Membership in NP

Theorem. CLIQUE is in NP.
Proof (Sketch) Define a certificate for an instance $\langle G, k\rangle$, where G is an n node graph, to be an n bit sequence $c=c_{1} \cdots c_{n}$ such that:

Exactly k of c_{1}, \ldots, c_{n} are 1 s and for every $i, j, 1 \leq i<j \leq n$, if $c_{i}=c_{j}=1$, then $(i, j) \in E$

Then verification can be done in $O\left(n^{3}\right)$ steps.

More Problems in NP: Subset Sum

The Subset Sum Problem

Input integers x_{1}, \ldots, x_{k} and t
Question Is there a subset of $\left\{x_{1}, \ldots, x_{k}\right\}$ that adds up to t ?
Define $S U B S E T-S U M$ to be the set of all positive instances $\langle S, t\rangle$ to the Subset Sum Problem.

Membership in NP

Theorem. SUBSET-SUM is in NP.
Proof (Sketch) Define a certificate for an instance $\langle S, t\rangle$ with $|S|=n$ in $S U B S E T-S U M$ to be an n bit sequence such that $\sum_{i=1}^{n} c_{i} x_{i}=t$

Then verification can be done in $O\left(n^{2}\right)$ steps.

