Chapter 6

Advanced Topics in Computability Theory

The Recursion Theorem

A self-reproducing machine $S E L F$ is a machine that disregards its input and produces its description on the input.

We will contruct such a machine. For that matter, we need to modify the Turing machine and the Turing machine description so as to embrace the concept of concatenation.

Concatenating Turing Machines

For two Turing machines A and $B, A \cdot B$ is the Turing machine M that on input x behaves as follows:

- M acts as A on x;
- if A rejects so does A;
- if A accepts M acts as B, where the computation with respect to B 's code starts with the tape contents and the head location at the moment of A 's termination.
- if B accepts so does M; if B rejects so does M.

Concatenating Turing Machine Descriptions

For two Turing machine descriptions $a=\langle A\rangle$ and $b=\langle B\rangle$, the string $a b$ (that is, a followed by b) is the description of $A \cdot B$.

Fixed Output Turing Machines

For each fixed string w, there exists a machine that, for all inputs x, writes w on its tape, moves the head to the first character of w, and then accepts.

Fix one strategy for constructing such a machine. The machine for w is a machine that has the characters of w encoded in the state and produces those encoded characters on the tape.

This strategy can be implemented on a Turing machine. Fix such a machine and then for all w, let P_{w} denote the output of the machine on input w.

Constructing $S E L F$

$S E L F$ is the concatenation, $A \cdot B$, of two machines A and B. Thus, for all inputs $w, S E L F$ outputs $\langle A \cdot B\rangle$.

On input x, the machine B, behaves as follows:

- B computes P_{x} and inserts it in front of x.
- B erases other parts of the tape and accepts.

Suppose x is the description of a Turing machine C, that is, $\langle C\rangle$. Then B produces $\left\langle P_{x} \cdot C\right\rangle$, that is, the description of the machine that executes P_{x} and then executes C.

Final Step

The property B has: for all Turing machines C, B on input $\langle C\rangle$ produces $\left\langle P_{\langle C\rangle} \cdot C\right\rangle$.

In particular, if $C=B$, then B on input $\langle B\rangle$ produces $\left\langle P_{\langle B\rangle} \cdot B\right\rangle$.
Let A be the machine $P_{\langle B\rangle}$ and let $S E L F=A \cdot B$. For all inputs x, during the execution of A-part, $S E L F$ produces $\langle B\rangle$ and then during the execution of B-part, it produces $S E L F=A \cdot B$.

Recursion Theorem

Theorem 6.3. Let T be a Turing machine that computes a function $t: \Sigma^{*} \times \Sigma^{*} \rightarrow \Sigma^{*}$, where the input to T is specified in the form k Then there exists a Turing machine R that computes a function $r: \Sigma^{*} \rightarrow \Sigma^{*}$ such that for all w

$$
r(w)=t(\langle R\rangle, w)
$$

Encoding an Input to T
Assume that ',' is represented by a special character \# not in Σ. The two inputs x and y to $T, x, y \in \Sigma^{*}$, are given as the word $x \# y$.

Proof The machine R we'll design is $A \cdot B \cdot T$ for some machines A and B

The role of A is to insert in front of its input $x \in \Sigma^{*}\langle B \cdot T\rangle \#$, thereby creating $\langle B\rangle\langle T\rangle \# x$.

The role of B is to insert in front of its input $\langle A\rangle$.
Thus, on input $x, A \cdot B$ produces $\langle A\rangle\langle B\rangle\langle T\rangle \# x$. This is equal to $\langle R\rangle \# x$.

Now, T produces $t(\langle R\rangle, x)$ as desired.
B is now set to be a machine that divides its input into the form $\langle C\rangle u$ and inserts the description of a machine D defined by: on input w, D inserts $\langle C\rangle\langle T\rangle$ in front of w.

Using the Recursion Theorem to Construct SELF

Set T to be a machine that on input $\langle M, w\rangle$ outputs $\langle M\rangle$.
Set R to be a machine from the theorem with respect to this T.
On input w, R executes T on $\langle R, w\rangle$ and so outputs $\langle R\rangle$.

Simpler Proof That A_{TM} Is Undecidable

Theorem 6.5. A_{TM} Is Undecidable.
Proof Assume A_{TM} is decidable. Let H be a Turing machine that decides the complement of A_{TM}. By Recursion Theorem, there is a machine B that, on input w, executes H on $\langle B, w\rangle$.

For all w, B accepts $w \Leftrightarrow H$ accepts $\langle B, w\rangle \Leftrightarrow\langle B, w\rangle \in A_{\mathrm{TM}} \Leftrightarrow$ B does not accept w.

Minimum Description

Define $M I N_{\mathrm{TM}}$ be the set of all $\langle M\rangle$ with the following property: there is no machine N such that $|\langle N\rangle|<|\langle M\rangle|$ and $L(M)=$ $L(N)$.

Theorem 1. 6.7. $M I N_{\mathrm{TM}}$ is not Turing-recognizable.

Proof Assume, to the contrary, that $M I N_{\text {TM }}$ is Turingrecognizable. Then there is an enumerator E of all members of $M I N_{\text {TM }}$. Let T be a machine that on input $\langle M, w\rangle$ behaves as follows: (i) T simulates E until a Turing machine that is longer than $\langle M\rangle$ is produced, and then, (ii) T simulates that machine on input w.

According to Recursion Theorem, there is a machine R that on input w executes T on input $\langle R, w\rangle$. Let D be the machine that R finds.

Then D and R recognize the same language and $\langle D\rangle$ is longer than $\langle R\rangle$, which contradicts the assumption that $\langle D\rangle$ appears in E 's enumeration.

