Chapter 5, Part 2

PCP and Mapping Reducibility

Post Correspondence Problem (PCP)

We have a collection of domino pieces, each of which has a string in the top half and a string in the bottom half. Suppose we have infinitely many supplies of each piece. Can we produce a sequence of these domino pieces so that the string that emerges in the top half is identical to that in the bottom half?

We call such a placement of domino pieces a match.
Example: Given a collection

$$
\left\{\left[\frac{\mathrm{b}}{\mathrm{ca}}\right],\left[\frac{\mathrm{a}}{\mathrm{ab}}\right],\left[\frac{\mathrm{ca}}{\mathrm{a}}\right],\left[\frac{\mathrm{abc}}{\mathrm{c}}\right]\right\}
$$

the list

$$
\left\{\left[\frac{a}{a b}\right]\left[\frac{b}{c a}\right]\left[\frac{c a}{a}\right]\left[\frac{a}{a b}\right]\left[\frac{a b c}{c}\right]\right\}
$$

yields the string abcaaabc in both halves.

PCP is undecidable

$P C P=\{\langle P\rangle \mid P$ is an instance of the Post Correspondence Problem with a match $\}$.

Our goal is to show that PCP is undecidable.

MPCP

We deal with a modified version of the problem
$M P C P=\{\langle P\rangle \mid P$ is an instance of the Post correspondence problem with a match starting with the first domino $\}$.

Then we transform $A_{\text {TM }}$ to $M P C P$ in such a way that, for each $x=\langle M, w\rangle$:
(*) the matched string generated by the domino pieces for x will encode accepting computation of M on w.

Three Kinds of Domino Pieces

Let $M=\left(Q, \Sigma, \Gamma, \delta, q_{0}, q_{\text {accept }}, q_{\text {reject }}\right)$ be the machine of our interest. We will use three types of domino pieces: the initial domino, the computation domino pieces, and the clearing domino pieces.

Three Kinds of Domino Pieces

The idea behind matching is the following:

1. The initial domino creates the initial configuration of M on both sides, with an overhang on the bottom side.

Three Kinds of Domino Pieces

The idea behind matching is the following:

1. The initial domino creates the initial configuration of M on both sides, with an overhang on the bottom side.
2. The computation pieces extend the domino sequence and append the next configuration, while maintaining the existence of an overhang on the bottom side.

Three Kinds of Domino Pieces

The idea behind matching is the following:

1. The initial domino creates the initial configuration of M on both sides, with an overhang on the bottom side.
2. The computation pieces extend the domino sequence and append the next configuration, while maintaining the existence of an overhang on the bottom side.
3. Once the configuration becomes an accepting one, the clearing pieces enable to the top part to catch up with the bottom part.

The Initial Domino

$$
\left[\frac{\#}{\# q_{0} x_{1} \cdots x_{n} \#}\right]
$$

The lower part is one computational step ahead of the upper part.

The Computation Domino Pieces

What we want to do is to produce from

$$
\left[\frac{\# C_{1} \# C_{2} \# \cdots \# C_{k-1} \#}{\# C_{1} \# C_{2} \# \cdots \# C_{k-1} \# C_{k} \#}\right]
$$

such that $C_{1}, C_{2}, \cdots, C_{k}$ are configurations of M and C_{k} is not an accepting configuration,

$$
\left[\frac{\# C_{1} \# C_{2} \# \cdots \# C_{k-1} \# C_{k} \#}{\# C_{1} \# C_{2} \# \cdots \# C_{k-1} \# C_{k} \# C_{k+1} \#}\right]
$$

where C_{k+1} is the next configuration of C_{k}.

The Computation Domino Pieces

- $\left[\frac{\#}{\#}\right]$ and $\left[\frac{\#}{\square \#}\right]$.
- $\left[\frac{a}{a}\right]$ for each $a \in \Gamma$.
- $\left[\frac{\# p a}{\# q b}\right]$ and $\left[\frac{c p a}{q c b}\right]$ for all $p, q \in Q$ and $a, b, c \in \Gamma$ such that $\delta(p, a)=(q, b, L)$.
- $\left[\frac{p a}{b q}\right]$ for all $p, q \in Q$ and $a, b \in \Gamma$ such that $\delta(p, a)=(q, b, R)$.

Use of Computation Pieces

Suppose $C_{k}=a b a b p c d$ and $\delta(p, c)=(q, e, R)$. Then the following extension occurs:

$$
\begin{aligned}
& {\left[\frac{\cdots \#}{\cdots \# a b a b p c d \#}\right] \Longrightarrow\left[\frac{\cdots \# a}{\cdots \# a b a b p c d \# a}\right] \Longrightarrow} \\
& {\left[\frac{\cdots \# a b}{\cdots \# a b a b p c d \# a b}\right] \Longrightarrow\left[\frac{\cdots \# a b a}{\cdots \# a b a b p c d \# a b a}\right] \Longrightarrow} \\
& {\left[\frac{\cdots \# a b a b}{\cdots \# a b a b p c d \# a b a b}\right] \Longrightarrow\left[\frac{\cdots \# a b a b p c}{\cdots \# a b a b p c d \# a b a b e q}\right] \Longrightarrow} \\
& {\left[\frac{\cdots \# a b a b p c d}{\cdots \# a b a b p c d \# a b a b e q d}\right] \Longrightarrow\left[\frac{\cdots \# a b a b p c d \#}{\cdots \# a b a b p c d \# a b a b e q d \#}\right]}
\end{aligned}
$$

$C_{k+1}=a b a b e q d$ is the next configuration.

The Cleaning Domino Pieces

- For each $a \in \Sigma,\left[\frac{a q_{\mathrm{accept}}}{q_{\text {accept }}}\right]$ and $\left[\frac{q_{\text {accept }} a}{q_{\text {accept }}}\right]$.
- The end domino: $\left[\frac{q_{\text {accept }} \# \#}{\#}\right]$.

These domino pieces are used to shorten the overhang configuration.

Use of Cleaning Pieces
Suppose the current overhang is $a b q_{\text {accept }} c d e \#$. We have:

$$
\begin{aligned}
& {\left[\begin{array}{l}
\cdots \# \\
\cdots \# a b q_{\mathrm{accept}} c d e \#
\end{array}\right] \Longrightarrow\left[\frac{\cdots \# a}{\cdots \# a b q_{\mathrm{accept}} c d e \# a}\right] \Longrightarrow} \\
& {\left[\begin{array}{l}
\cdots \# a b q_{\mathrm{accept}} \\
\cdots \# a b q_{\mathrm{accept}} c d e \# a q_{\mathrm{accept}}
\end{array}\right] \Longrightarrow\left[\frac{\cdots \# a b q_{\mathrm{accept}} c}{\cdots \# a b q_{\mathrm{accept}} c d e \# a q_{\mathrm{accept}} c}\right]} \\
& \Longrightarrow\left[\frac{\cdots \# a b q_{\mathrm{accept}} c d}{\cdots \# a b q_{\mathrm{accept}} c d e \# a q_{\mathrm{accept}} c d}\right] \\
& \Longrightarrow\left[\frac{\cdots \# a b q_{\mathrm{accept}} c d e}{\cdots \# a b q_{\mathrm{accept}} c d e \# a q_{\mathrm{accept}} c d e}\right] \Longrightarrow \\
& {\left[\frac{\cdots \# a b q_{\mathrm{accept}} c d e \#}{\cdots \# a b q_{\mathrm{accept}} c d e \# a q_{\mathrm{accept}} c d e \#}\right]}
\end{aligned}
$$

The bottom overhang has lost the b !

From MPCP to PCP

Let \star be a new symbol. For a string $u=u_{1} u_{2} \cdots u_{m}$ not containing a \star, define

- $\star u=\star u_{1} \star u_{2} \star \cdots \star u_{m}$,
- $u \star=u_{1} \star u_{2} \star \cdots \star u_{m} \star$, and
- $\star u \star=\star u_{1} \star u_{2} \star \cdots \star u_{m} \star$,

String Modification

- Change the start domino $\left[\frac{t}{b}\right]$ to $\left[\frac{\star t}{\star b \star}\right]$.
- Change each of the remaining domino pieces $u v$ to $\left[\frac{\star u}{v \star}\right]$.
- Add a new "last" domino [妢], where \diamond is a yet another new symbol.

This will force the start domino to be the first one and the "last" domino to be the last one.

Computable Functions

A function $f: \Sigma^{*} \rightarrow \Sigma^{*}$ is computable if there exists a Turing machine M such that for every $x \in \Sigma^{*}, M$ on x halts with just $f(x)$ on its tape.

Example: Let Σ be a fixed alphabet. Define $f: \Sigma^{*} \rightarrow \Sigma^{*}$ as follows:

- If $w=\langle M\rangle$ for some Turing machine, then $f(w)=\left\langle M^{\prime}\right\rangle$ where M^{\prime} is M with $q_{\text {accept }}$ and $q_{\text {reject }}$ swapped.
- Otherwise, $f(w)=w$.

Then f is computable.

Mapping Reducibility

A language $A \subseteq \Sigma^{*}$ is mapping reducible to $B \subseteq \Sigma^{*}$ (write $A \leq_{\mathrm{m}} B$) if there exists a computable function $f: \Sigma^{*} \rightarrow \Sigma^{*}$ such that for every $x \in \Sigma^{*}$,

$$
x \in A \text { if and only if } f(x) \in B
$$

Namely, the function f maps members of A to members of B and non-members of A to non-members of B.

Properties About Mapping Reducibility

Theorem. If $A \leq_{\mathrm{m}} B$ and B is decidable then A is decidable.

Proof Let $A \leq_{\mathrm{m}} B$ be witnessed by a Turing machine R that computes a mapping reduction f from A to B.

Suppose B is decided by a Turing machine M. Construct a new Turing machine N :

1. On input x, simulate R on x to compute $f(x)$.
2. Simulate M on $f(x)$. Accept if M accepts and reject if M rejects.

Then N decides A.

Properties of Mapping Reducibility (cont'd)

Corollary. If $A \leq_{\mathrm{m}} B$ and A is undecidable then B is undecidable.

Theorem. If $A \leq_{\mathrm{m}} B$ and B is Turing-recognizable then A is Turing-recognizable.

Corollary. If $A \leq_{\mathrm{m}} B$ and A is not Turing-recognizable then B is not Turing-recognizable.

EQTM Goes Beyond the Turing-Recognizable Languages

Recall that $E Q_{\mathrm{TM}}=\left\{\left\langle M_{1}, M_{2}\right\rangle \mid M_{1}\right.$ and M_{2} are Turing machines and $\left.L\left(M_{1}\right)=L\left(M_{2}\right)\right\}$.

Theorem. $E Q_{\mathrm{TM}}$ is neither Turing-recognizable nor co-Turing-recognizable.

Proof

Show that A_{TM} is mapping reducible to $E Q_{\mathrm{TM}}$ as well as to $\overline{E Q_{\mathrm{TM}}}$. Let $s \in E Q_{\mathrm{TM}}$ and $t \in \overline{E Q_{\mathrm{TM}}}$ be fixed.

Reduction to $E Q_{\mathrm{TM}}$

- If x is of the form $\langle M, w\rangle$, then $f(x)=\left\langle M_{1}, M_{2}\right\rangle$, where
- M_{1} accepts every input; and
- M_{2} first simulates M on w and accepts its own input if M accepts.
- Otherwise, $f(x)=t$.
f is computable, and for every $x, x \in A_{\text {TM }}$ if and only if $f(x) \in E Q_{\mathrm{TM}}$.

Proof (cont'd)

Reduction to $\overline{E Q_{\mathrm{TM}}}$

- If x is of the form $\langle M, w\rangle$, then $g(x)=\left\langle M_{1}, M_{2}\right\rangle$, where
- M_{1} rejects every input; and
- M_{2} first simulates M on w and accepts its own input if M accepts.
- Otherwise, $f(x)=s$.
g is computable and for every $x, x \in A_{\mathrm{TM}}$ if and only if $f(x) \notin$ $E Q_{\mathrm{TM}}$.

Thus, $A_{\mathrm{TM}} \leq_{\mathrm{m}} E Q_{\mathrm{TM}}$ and $A_{\mathrm{TM}} \leq_{\mathrm{m}} \overline{E Q_{\mathrm{TM}}}$.

