Chapter 5, Part 2

PCP and Mapping Reducibility

Post Correspondence Problem (PCP)

We have a collection of domino pieces, each of which has a string in the top half and a string in the bottom half. Suppose we have infinitely many supplies of each piece. Can we produce a sequence of these domino pieces so that the string that emerges in the top half is identical to that in the bottom half?

We call such a placement of domino pieces a match.

Example: Given a collection

$$\left\{ \left[\frac{\mathsf{b}}{\mathsf{ca}}\right], \left[\frac{\mathsf{a}}{\mathsf{ab}}\right], \left[\frac{\mathsf{ca}}{\mathsf{a}}\right], \left[\frac{\mathsf{abc}}{\mathsf{c}}\right] \right\}$$

the list

yields

$$\left\{ \begin{bmatrix} a \\ ab \end{bmatrix} \begin{bmatrix} b \\ ca \end{bmatrix} \begin{bmatrix} ca \\ a \end{bmatrix} \begin{bmatrix} a \\ ab \end{bmatrix} \begin{bmatrix} abc \\ c \end{bmatrix} \right\}$$

the string abcaaabc in both halves.

PCP is undecidable

 $PCP = \{\langle P \rangle \mid P \text{ is an instance of the Post Correspondence Problem with a match }.$

Our goal is to show that PCP is undecidable.

MPCP

We deal with a modified version of the problem

 $MPCP = \{\langle P \rangle \mid P \text{ is an instance of the Post correspondence}$ problem with a match starting with the first domino $\}$.

Then we transform $A_{\rm TM}$ to MPCP in such a way that, for each $x=\langle M,w\rangle$:

(*) the matched string generated by the domino pieces for x will encode accepting computation of M on w.

Let $M = (Q, \Sigma, \Gamma, \delta, q_0, q_{accept}, q_{reject})$ be the machine of our interest. We will use three types of domino pieces: the initial domino, the computation domino pieces, and the clearing domino pieces.

The idea behind matching is the following:

1. The initial domino creates the initial configuration of M on both sides, with an overhang on the bottom side.

The idea behind matching is the following:

- 1. The initial domino creates the initial configuration of M on both sides, with an overhang on the bottom side.
- 2. The computation pieces **extend the domino sequence and append the next configuration**, while maintaining the existence of an overhang on the bottom side.

The idea behind matching is the following:

- 1. The initial domino creates the initial configuration of M on both sides, with an overhang on the bottom side.
- 2. The computation pieces **extend the domino sequence and append the next configuration**, while maintaining the existence of an overhang on the bottom side.
- 3. Once the configuration becomes an accepting one, the clearing pieces enable to the top part to catch up with the bottom part.

The Initial Domino

$$\frac{\#}{\#q_0x_1\cdots x_n\#}]$$

The lower part is one computational step ahead of the upper part.

The Computation Domino Pieces

What we want to do is to produce from

$$\left[\frac{\#C_1\#C_2\#\cdots\#C_{k-1}\#}{\#C_1\#C_2\#\cdots\#C_{k-1}\#C_k\#}\right]$$

such that C_1, C_2, \cdots, C_k are configurations of M and C_k is not an accepting configuration,

$$\left[\frac{\#C_1\#C_2\#\cdots\#C_{k-1}\#C_k\#}{\#C_1\#C_2\#\cdots\#C_{k-1}\#C_k\#C_{k+1}\#}\right]$$

where C_{k+1} is the next configuration of C_k .

The Computation Domino Pieces

- $\left[\frac{\#}{\#}\right]$ and $\left[\frac{\#}{\sqcup\#}\right]$.
- $\left[\frac{a}{a}\right]$ for each $a \in \Gamma$.
- $\left[\frac{\#pa}{\#qb}\right]$ and $\left[\frac{cpa}{qcb}\right]$ for all $p,q \in Q$ and $a,b,c \in \Gamma$ such that $\delta(p,a) = (q,b,L)$.
- $\left[\frac{pa}{bq}\right]$ for all $p, q \in Q$ and $a, b \in \Gamma$ such that $\delta(p, a) = (q, b, R)$.

Use of Computation Pieces

Suppose $C_k = ababpcd$ and $\delta(p, c) = (q, e, R)$. Then the following extension occurs:

 $C_{k+1} = ababeqd$ is the next configuration.

The Cleaning Domino Pieces

• For each
$$a \in \Sigma$$
, $\left[\frac{aq_{\text{accept}}}{q_{\text{accept}}}\right]$ and $\left[\frac{q_{\text{accept}}a}{q_{\text{accept}}}\right]$.

• The end domino:
$$\left[\frac{q_{\text{accept}} \# \#}{\#}\right]$$
.

These domino pieces are used to shorten the overhang configuration.

Use of Cleaning Pieces

Suppose the current overhang is $abq_{accept}cde\#$. We have:

$$\begin{bmatrix} \cdots \# \\ \cdots \# abq_{accept}cde \# \end{bmatrix} \Longrightarrow \begin{bmatrix} \cdots \# a \\ \cdots \# abq_{accept}cde \# a \end{bmatrix} \Longrightarrow \begin{bmatrix} \cdots \# abq_{accept}cde \# a \\ \cdots \# abq_{accept}cde \# a q_{accept}c \end{bmatrix}$$

$$\begin{bmatrix} \cdots \# abq_{accept}cd \\ \cdots \# abq_{accept}cde \# a q_{accept}cd \end{bmatrix}$$

$$\Longrightarrow \begin{bmatrix} \cdots \# abq_{accept}cde \\ \cdots \# abq_{accept}cde \# a q_{accept}cde \end{bmatrix}$$

$$\Longrightarrow \begin{bmatrix} \cdots \# abq_{accept}cde \\ \cdots \# abq_{accept}cde \# a q_{accept}cde \end{bmatrix}$$

$$\begin{bmatrix} \cdots \# abq_{accept}cde \\ \cdots \# abq_{accept}cde \# a q_{accept}cde \end{bmatrix}$$

The bottom overhang has lost the b!

From MPCP to PCP

Let \star be a new symbol. For a string $u = u_1 u_2 \cdots u_m$ not containing a \star , define

- $\star u = \star u_1 \star u_2 \star \cdots \star u_m$,
- $u \star = u_1 \star u_2 \star \cdots \star u_m \star$, and
- $\star u \star = \star u_1 \star u_2 \star \cdots \star u_m \star$,

String Modification

- Change the start domino $\left[\frac{t}{b}\right]$ to $\left[\frac{\star t}{\star b\star}\right]$.
- Change each of the remaining domino pieces uv to $\left[\frac{\star u}{v\star}\right]$.

This will force the start domino to be the first one and the "last" domino to be the last one.

Computable Functions

A function $f: \Sigma^* \to \Sigma^*$ is **computable** if there exists a Turing machine M such that for every $x \in \Sigma^*$, M on x halts with just f(x) on its tape.

Example: Let Σ be a fixed alphabet. Define $f: \Sigma^* \to \Sigma^*$ as follows:

- If $w = \langle M \rangle$ for some Turing machine, then $f(w) = \langle M' \rangle$ where M' is M with q_{accept} and q_{reject} swapped.
- Otherwise, f(w) = w.

Then f is computable.

Mapping Reducibility

A language $A \subseteq \Sigma^*$ is mapping reducible to $B \subseteq \Sigma^*$ (write $A \leq_{\mathrm{m}} B$) if there exists a computable function $f : \Sigma^* \to \Sigma^*$ such that for every $x \in \Sigma^*$,

 $x \in A$ if and only if $f(x) \in B$.

Namely, the function f maps members of A to members of B and non-members of A to non-members of B.

Theorem. If $A \leq_m B$ and B is decidable then A is decidable.

Proof Let $A \leq_{m} B$ be witnessed by a Turing machine R that computes a mapping reduction f from A to B.

Suppose B is decided by a Turing machine M. Construct a new Turing machine N:

- 1. On input x, simulate R on x to compute f(x).
- 2. Simulate M on f(x). Accept if M accepts and reject if M rejects.

Then N decides A.

Properties of Mapping Reducibility (cont'd)

Corollary. If $A \leq_m B$ and A is undecidable then B is undecidable.

Theorem. If $A \leq_m B$ and B is Turing-recognizable then A is Turing-recognizable.

Corollary. If $A \leq_m B$ and A is not Turing-recognizable then B is not Turing-recognizable.

 $EQTM\ {\rm Goes}\ {\rm Beyond}\ {\rm the}\ {\rm Turing-Recognizable}\ {\rm Languages}$

Recall that $EQ_{TM} = \{ \langle M_1, M_2 \rangle \mid M_1 \text{ and } M_2 \text{ are Turing machines}$ and $L(M_1) = L(M_2) \}.$

Theorem. $EQ_{\rm TM}$ is neither Turing-recognizable nor co-Turing-recognizable.

Proof

Show that $A_{\rm TM}$ is mapping reducible to $EQ_{\rm TM}$ as well as to $\overline{EQ_{\rm TM}}$. Let $s \in EQ_{\rm TM}$ and $t \in \overline{EQ_{\rm TM}}$ be fixed.

Reduction to $EQ_{\rm TM}$

- If x is of the form $\langle M, w \rangle$, then $f(x) = \langle M_1, M_2 \rangle$, where
 - $-\ M_1$ accepts every input; and
 - $-M_2$ first simulates M on w and accepts *its own input* if M accepts.
- Otherwise, f(x) = t.

f is computable, and for every $x,\ x\in A_{\rm TM}$ if and only if $f(x)\in EQ_{\rm TM}.$

Proof (cont'd)

Reduction to $\overline{EQ_{\mathrm{TM}}}$

- If x is of the form $\langle M, w \rangle$, then $g(x) = \langle M_1, M_2 \rangle$, where
 - M_1 rejects every input; and
 - $-M_2$ first simulates M on w and accepts *its own input* if M accepts.

• Otherwise,
$$f(x) = s$$
.

g is computable and for every $x,\ x\in A_{\rm TM}$ if and only if $f(x)\not\in EQ_{\rm TM}.$

Thus, $A_{\rm TM} \leq_{\rm m} EQ_{\rm TM}$ and $A_{\rm TM} \leq_{\rm m} \overline{EQ_{\rm TM}}$.