
Chapter 5, Part 1

Reducibility

CS527, Chapter 5, Part 1 c© 2012 Mitsunori Ogihara 1

The Halting Problem

Based on undecidability of one language, A, undecidability of

another language, B, can be shown

CS527, Chapter 5, Part 1 c© 2012 Mitsunori Ogihara 2

The Halting Problem

Based on undecidability of one language, A, undecidability of

another language, B, can be shown

We will use the concept of reduction for this purpose.

This is to show that one could build a Turing machine that decides

A assuming that there were Turing machine for deciding B,

CS527, Chapter 5, Part 1 c© 2012 Mitsunori Ogihara 3

Assumption About Coding

The set of all possible inputs to the machine we will build as well

as that to the machine we assume to exist (that is, Σ∗ of the input

alphabet Σ) may contain strings not encoding any meaningful

objects.

For completeness our reduction has to handle such strings, but

since the way we handle them is very simple (either accept all

such strings or reject all such strings depending on how A or B is

defined), we will simply ignore such strings.

CS527, Chapter 5, Part 1 c© 2012 Mitsunori Ogihara 4

The Halting Problem

HALTTM = {〈M,w〉 | M is a TM and halts on input w}.

Theorem. HALTTM is undecidable.

CS527, Chapter 5, Part 1 c© 2012 Mitsunori Ogihara 5

The Halting Problem

HALTTM = {〈M,w〉 | M is a TM and halts on input w}.

Theorem. HALTTM is undecidable.

Proof Assume that there is a Turing machine R that decides

HALTTM.

We then would be able to construct a Turing machine S that

decides

ATM = {〈M,w〉 | M is a Turing machine and accepts w},

which is, however, known to be undecidable.

CS527, Chapter 5, Part 1 c© 2012 Mitsunori Ogihara 6

Logic Behind the Construction

• We want to know whether a Turing machine M on input w.

• A natural approach to finding an answer to that will be to
simulate M on w, but the simulation may not stop.
1. M accepts w → “yes” ... ACCEPT

2. M rejects w → “no” ... REJECT

3. M on w never stops → “no” ... PROBLEM

• If there is a TM machine that tells whether we will succumb to
Case 3 or not, we can use that machine to avoid the problem.

CS527, Chapter 5, Part 1 c© 2012 Mitsunori Ogihara 7

Our Turing Machine S for ATM

Let the input x = 〈M,w〉.

1. Simulate R on x.

Note: R decides HALTTM and so R on x halts.

2. If R rejects x, reject x.

Note: This corresponds to Case 3 - the problematic
case.

3. If R accepts x, simulate M on w, and accept if and only if
M accepts.

Note: Here we are distinguishing between Case 1 and
Case 2.

This machine would correctly decide ATM.

CS527, Chapter 5, Part 1 c© 2012 Mitsunori Ogihara 8

Alternative Approach

• R is a Turing machine that purportedly decides the halting
problem.

• Given a machine M we can modify its code to create a new
machine M ′ such that M ′ enters a non-accepting infinite loop
instead of rejecting. Then we have:
1. M accepts w ... M ′ on w accepts.

2. M rejects w ... M ′ on w does not halt.

3. M on w never stops ... M ′ on w does not halt.

• Then M on w accepts if and only if M ′ on w halts.

CS527, Chapter 5, Part 1 c© 2012 Mitsunori Ogihara 9

Alternative Algorithm

1. From M construct a new Turing M ′ that simulates M and
instead of entering qreject, M

′ enters an infinite loop.

2. Simulate R on 〈M ′, w〉.

3. Accept if R accepts and reject otherwise.

CS527, Chapter 5, Part 1 c© 2012 Mitsunori Ogihara 10

The Emptiness Problem

Define ETM = {〈M〉 | M is a TM and L(M) = ∅}.

Theorem. ETM is undecidable.

CS527, Chapter 5, Part 1 c© 2012 Mitsunori Ogihara 11

The Emptiness Problem

Define ETM = {〈M〉 | M is a TM and L(M) = ∅}.

Theorem. ETM is undecidable.

Proof Assume there is a TM R that decides ETM.

We’ll construct a TM S that decides ATM.

CS527, Chapter 5, Part 1 c© 2012 Mitsunori Ogihara 12

Algorithm of S for ATM

1. Input x is 〈M,w〉 for some M and w.
We want to know whether M on w accepts.

2. Construct a Turing machine M1:
M1 erases its input y, reproduces w on input tape, and
then enters simulation of M . That is, it behaves as M on
input w regardless of input. We have:

L(M1) =

{

Σ∗ if M accepts w

∅ if M does not accept w

Also, we have 〈M1〉 ∈ ETM if and only if L(M1) = ∅.
R purportedly decides ETM.

3. Simulate R on 〈M1〉. Accept if R rejects and reject otherwise.

CS527, Chapter 5, Part 1 c© 2012 Mitsunori Ogihara 13

Testing Whether a TM Accepts a Regular Language

REGULARTM = {〈M〉 | M is a TM and L(M) is regular }.

Theorem. REGULARTM is undecidable.

CS527, Chapter 5, Part 1 c© 2012 Mitsunori Ogihara 14

Testing Whether a TM Accepts a Regular Language

REGULARTM = {〈M〉 | M is a TM and L(M) is regular }.

Theorem. REGULARTM is undecidable.

Proof Assume there is a TM R that decides REGULARTM.

We’ll construct a TM S that decides ATM.

CS527, Chapter 5, Part 1 c© 2012 Mitsunori Ogihara 15

Testing Whether a TM Accepts a Regular Language

Input x = 〈M,w〉.

1. Let Σ be the input alphabet of M . If Σ has only one symbol
add another symbol.

2. Choose two symbols, say a and b, from Σ.

3. Construct a machine M1 that on input y behaves as follow:
(a) If y = anbn for some n ≥ 1, accept.

(b) Otherwise, erase y, reproduce w, simulate M on w.
We have:

L(M1) =

{

Σ∗ if M accepts w

{anbn | n ≥ 0} if M does not accept w

Also, Σ∗ is regular and {anbn | n ≥ 0} is non-regular.

4. Simulate R on 〈M1〉. Accept if and only if R accepts.

CS527, Chapter 5, Part 1 c© 2012 Mitsunori Ogihara 16

Testing Equivalence Between TMs

Define EQTM = {〈M1,M2〉 | both M1 and M2 are TMs and

L(M1) = L(M2)}.

Theorem. EQTM is undecidable.

CS527, Chapter 5, Part 1 c© 2012 Mitsunori Ogihara 17

Testing Equivalence Between TMs

Define EQTM = {〈M1,M2〉 | both M1 and M2 are TMs and

L(M1) = L(M2)}.

Theorem. EQTM is undecidable.

Proof Assume there is a TM R that decides EQTM. We’ll

construct a TM S that decides ATM.

In the previous proof, in addition to M1 construct M2 that accepts

Σ∗. Then we have

L(M1) = L(M2) if and only if M accepts w.

We simulate R on 〈M1,M2〉. Accept if R accepts and reject

otherwise.

CS527, Chapter 5, Part 1 c© 2012 Mitsunori Ogihara 18

Linear Bounded Automata

A linear bounded automaton is a Turing machine wherein the

head is not permitted to move beyond the region in which the

input was written. If the head attempts to move beyond the region

it is kept at the same position.

CS527, Chapter 5, Part 1 c© 2012 Mitsunori Ogihara 19

Linear Bounded Automata

A linear bounded automaton is a Turing machine wherein the

head is not permitted to move beyond the region in which the

input was written. If the head attempts to move beyond the region

it is kept at the same position.

For example, the machine for deciding {0n#1n#2n | n ≥ 0} can

be made to be an LBA, by making it to mark each end of the

input area.

CS527, Chapter 5, Part 1 c© 2012 Mitsunori Ogihara 20

Linear Bounded Automata

Lemma. Let M be an LBA with q states and with a tape

alphabet of size s. For every n ≥ 1, for every input of length

n, there are precisely qnsn possible configurations.

CS527, Chapter 5, Part 1 c© 2012 Mitsunori Ogihara 21

The Acceptance Problem for LBA

ALBA = {〈M,w〉 | M is a TM and accepts w when restricted to

be an LBA }.

Theorem. ALBA is decidable.

Proof Let M be a TM with q states and s symbols in the tape

alphabet and let w be an input to M having length n. By the

previous lemma, there are at most qnsn possible configurations

that M might take on input w. Thus, if M on w accepts, it

should do so within qnsn steps. This means that we have only to

simulate M on w for at most qnsn steps to find out whether M

accepts w or not.

CS527, Chapter 5, Part 1 c© 2012 Mitsunori Ogihara 22

The Emptiness Problem About LBA

ELBA = {〈M〉 | M is a TM and accepts no input when viewed as

an LBA }.

Theorem. ELBA is undecidable.

CS527, Chapter 5, Part 1 c© 2012 Mitsunori Ogihara 23

The Emptiness Problem About LBA

ELBA = {〈M〉 | M is a TM and accepts no input viewed as an

LBA }.

Theorem. ELBA is undecidable.

We use ATM again. Given x = 〈M,w〉 whose membership in

ATM to be tested, we will construct a Truing machine S that

tests whether a given series of configurations of M represents an

accepting computation path of M on input w and show that this

S can be made to be an LBA.

CS527, Chapter 5, Part 1 c© 2012 Mitsunori Ogihara 24

Assume there is a TM R that decides ELBA.

Given x = 〈M,w〉, define Lx to be the set of all strings of the
form #C1#C2# · · ·#Cm# such that

1. C1, . . . , Cm are configurations of M ,

2. C1 is the initial configuration of M on w,

3. Cm is an accepting configuration of M on w, and

4. for every i, 1 ≤ i ≤ m − 1, Ci+1 is the next configuration
of Ci.

Then Lx 6= ∅ if and only M accepts w.

Lx can be decided by an LBA S.

We have only to test whether R accepts Lx.

CS527, Chapter 5, Part 1 c© 2012 Mitsunori Ogihara 25

The Equivalence Problem About CFG

Define ALLCFG = {〈G〉 | G is a CFG and L(G) = Σ∗}.

CS527, Chapter 5, Part 1 c© 2012 Mitsunori Ogihara 26

The Equivalence Problem About CFG

Define ALLCFG = {〈G〉 | G is a CFG and L(G) = Σ∗}.

Theorem. ALLCFG is undecidable.

Proof For a sting x = 〈M,w〉 such that M is a Turing machine
and w is an input to M , let Lx be the set of all #D1# · · ·#Dm#
for which there exist C1, . . . , Cm such that:

1. C1, . . . , Cm are configurations of M ,

2. C1 is the initial configuration of M on w,

3. Cm is an accepting configuration of M on w,

4. for every i, 2 ≤ i ≤ m, Ci is the next configuration of
Ci−1, and

5. for every i, 1 ≤ i ≤ m, Di = Ci if i is odd and Di = CR

i

otherwise.

CS527, Chapter 5, Part 1 c© 2012 Mitsunori Ogihara 27

Proof (cont’d)

Then Lx is empty if and only if M does not accept w,

and so

Lx = Σ∗ if and only if M does not accept w.

Lx is a CFL.

CS527, Chapter 5, Part 1 c© 2012 Mitsunori Ogihara 28

Why Is Lx a CFL?

Lx consists of all words w for which at least one of the following
properties holds:

(I) w does not start with a #.

(II) w does not end with a #.

(III) w contains as a substring #y# such that y is free of # but
is not a configuration.

(IV) w starts with #y# such that y is free of # and y is not the
initial configuration.

(V) w ends with #y# such that y is free of # and y is not an
accepting configuration or its reverse.

CS527, Chapter 5, Part 1 c© 2012 Mitsunori Ogihara 29

(Cont’d)

(VI) w contains a pattern #Di#Di+1# such that i is an odd
number, Di = upa, δ(p, a) = (q, b, R), and Di+1 6= (ubq⊔)R.

(VII) w contains a pattern #Di#Di+1# such that i is an odd
number, Di = upav, |v| ≥ 1, δ(p, a) = (q, b, R), and Di+1 6=
(ubqv)R.

(VIII) w contains a pattern #Di#Di+1# such that i is an odd
number, Di = pav, δ(p, a) = (q, b, L), and Di+1 6= (qbv)R.
(Di+1 6= uqcbv in the case where c 6= ǫ).

(IX) w contains a pattern #Di#Di+1# such that i is an odd
number, Di = ucpav, δ(p, a) = (q, b, L), Di+1 6= (uqcbv)R.

(X) The even-i versions of (VI) – (IX), where the Di side is
reversed instead.

CS527, Chapter 5, Part 1 c© 2012 Mitsunori Ogihara 30

Proof (cont’d)

Now given a TM R that decides ALLCFG we will construct a TM
S that decides ATM

S’s algorithm: on input x = 〈M,w〉,

1. Construct a CFG G for Lx.

2. Simulate R on 〈G〉. Accept x if R accepts 〈G〉 and reject x
otherwise.

CS527, Chapter 5, Part 1 c© 2012 Mitsunori Ogihara 31

The Equivalence Problem

Define EQCFG = {〈G,H〉 | G and H are CFGs that generate the

same language }.

Corollary. EQCFG is undecidable.

CS527, Chapter 5, Part 1 c© 2012 Mitsunori Ogihara 32

The Equivalence Problem

Define EQCFG = {〈G,H〉 | G and H are CFGs that generate the

same language }.

Corollary. EQCFG is undecidable.

Proof From a TM R that decides EQCFG we can construct a

TM S that decides ALLCFG.

On input x = 〈G〉, S behaves as follows:

1. Let Σ be the terminals of G. Construct a grammar H that
generates Σ∗.

2. Simulate R on 〈G,H〉. Accept x if R accepts and reject x
otherwise.

CS527, Chapter 5, Part 1 c© 2012 Mitsunori Ogihara 33

