
Chapter 2, Part 4

Non-context-free Languages
How do we show something is not context free?

CSC527, Chapter 2, Part 4 c© 2012 Mitsunori Ogihara 1



The Pumping Lemma

Theorem. (Pumping Lemma) Let L be context free. There

exists a positive integer p with the following property.

For every w ∈ L of length at least p, w is divided into five
parts, u, v, x, y, z, such that

• |vy| ≥ 1,

• |vxy| ≤ p, and

• for each i ≥ 0, uvixyiz ∈ L.
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The Pumping Lemma

Theorem. (Pumping Lemma) Let L be context free. There

exists a positive integer p with the following property.

For every w ∈ L of length at least p, w is divided into five
parts, u, v, x, y, z, such that

• |vy| ≥ 1,

• |vxy| ≤ p, and

• for each i ≥ 0, uvixyiz ∈ L.

The differences between this pumping lemma and the previous one.

• There are two components that are jointly inserted or
deleted.

• The part vxy may not be at the beginning of w.
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Proving the Pumping Lemma

Let L = L(G) for some CNF grammar G = (V,Σ, R, S).

If L is finite (i.e., has only a finite number of members), then there

is a length k such that each member of L has length less than k.

We have only to choose p to be k.

So we will assume L is infinite.
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Proving the Pumping Lemma

Set m = ‖V ‖ and p = 2m.

Let w be an arbitrary member of L having length at least p. Let

T be a derivation tree for w.

Since G is a CNF grammar, for each subtree of T , the following
properties hold:

• Each non-leaf node of R is a variable.

• Each leaf of R is a terminal.

• Each leaf of R is a unique child of its parent.

• Except for the leaves and their parents each node of R has
exactly two children.

• The concatenation of the leaves of R is a substring of w.
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A Useful Property

An ancestor–descendant pair with identical label (ADPIL, for
short) in a production tree R is a node pair (r, s) such that

• r is an ancestor of s and

• the label of r is identical to the label of s (and thus, the label
is a nonterminal).
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Proof (cont’d)

Claim. If R has more than p/2 = 2m−1 leaves, then R

contains an ADPIL.
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Proof (cont’d)

Claim. If R has more than p/2 = 2m−1 leaves, then R

contains an ADPIL.

Proof

Suppose R is a subtree of T with at least 2m−1 + 1 leaves.

Let R′ be the tree constructed form R by removing all the leaves.

Since the terminals appear only at the leaves, the claim is equivalent

to saying that R′ has an ADPIL.

The claim is proved by showing, by contradiction, that there is a

root-to-leaf path in R′ with at least m+ 1 nodes,
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Proof (cont’d)

Assume, by way of contradiction, that every root-to-leaf path of

R′ has at most m nodes,
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Proof (cont’d)

Assume, by way of contradiction, that every root-to-leaf path of

R′ has at most m nodes,

Then the number of branches in any such path is at most m− 1.

Since R′ is a binary tree, R′ has at most 2m−1 leaves.

2^{m-1}

1

2

3

m-1

m

#Nodes in

a Path
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Proof (cont’d)

However, the number of leaves of R′ is greater than 2m−1. Thus,

there is a root-to-leaf path, say π, in R′ having length at least

m+ 1.

Then, by the pigeonhole principle, an ADPIL appears on π.

Proof of Claim

CSC527, Chapter 2, Part 4 c© 2012 Mitsunori Ogihara 11



Proof of Pumping Lemma (cont’d)

Using the following algorithm to find an ADPIL (r, s) farthest from

the root of T .

1. Set u to the root of T .

2. Execute the following loop:
• If the left child of u has an ADPIL, set u to the left child
of u.

• Otherwise, if the right child of u has an ADPIL, set u to
the right child of u.

• Otherwise, quit the loop.

3. Set r = u and s to the leftmost node with the same label as
r.
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Proof of Pumping Lemma (cont’d)

Using the following algorithm to find an ADPIL (r, s) farthest from

the root of T .

1. Set u to the root of T .

2. Execute the following loop:
• If the left child of u has an ADPIL, set u to the left child
of u.

• Otherwise, if the right child of u has an ADPIL, set u to
the right child of u.

• Otherwise, quit the loop.

3. Set r = u and s to the leftmost node with the same label as
r.

The children of r have no ADPILs. Thus, both children have at

most 2m−1 leaves and so r has at most p = 2m leaves.
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Proof of Pumping Lemma (cont’d)

Let x be the string at the leaf-level of the subtree rooted at s.

Similarly, let vxy be the one for r, where v and y are those to the

left and to the right of x, respectively.

Let u be the string produced to the left of r and z to the right of

s.

yxvu z

The tree T

The tree r

The tree s
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Proof of Pumping Lemma (cont’d)

Let x be the string at the leaf-level of the subtree rooted at s.

Similarly, let vxy be the one for r, where v and y are those to the

left and to the right of x, respectively.

Let u be the string produced to the left of r and z to the right of

s.

yxvu z

The tree T

The tree r

The tree s

Then |vxy| ≤ p.

Also, since s is a descendant of r and G has no ǫ-production except

for S → ǫ, x is a proper substring of vxy. Thus, |vy| ≥ 1.
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Proof of Pumping Lemma (cont’d)

Since both r and s have the same label, they are swappable. So,

for every i ≥ 0, uvixyiz ∈ L.

y

x

vu z

The tree T

The tree r

The tree s

yv

yv

The tree r

The tree r

x

u z

The tree T

The tree s
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Example 1

A = {0n1n2n | n ≥ 0} is not context free.
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Example 1

A = {0n1n2n | n ≥ 0} is not context free.

Proof Assume, to the contrary, that A is context free. By

Pumping Lemma there exists a constant p such that every w ∈ A

of length ≥ p is divided into w = uvxyz such that |vxy| ≤ p,

|vy| ≥ 1, and for every i ≥ 0, uvixyiz ∈ A.

Let w = 0p1p2p. Since |vxy| ≤ p, vxy is either in 0∗1∗ or in 1∗2∗.

This means that uv2xy2z cannot have the same number of 0s, 1s,

as 2s.
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Illustrating Conversation

Hey, I think I can show 

0^n1^n2^n isn't context 

free.
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Illustrating Conversation

Hey, I think I can show 

0^n1^n2^n isn't context 

free.

Wow, that's great.  

Tell me about it.
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Illustrating Conversation

If that thing is context 

free, I get this magic 

constant p.
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Illustrating Conversation

If that thing is context 

free, I get this magic 

constant p.

Oh, I know it.  You can 

divide any word in that 

thing into three parts...
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Illustrating Conversation

No, you idiot!  It's 

FIVE parts, w=uvxyz!
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Illustrating Conversation

No, you idiot!  It's 

FIVE parts, w=uvxyz!

Okay.   Let's say w = 

0^p1^p2^p.  Then what?
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Illustrating Conversation

w can be broken down 

into uvxyz, where vy is 

nonempty and vxy has 

length at most p.
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Illustrating Conversation

w can be broken down 

into uvxyz, where vy is 

nonempty and vxy has 

length at most p.

I see. Then v and y can 

touch at most two sections.
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Illustrating Conversation

Right.  So, either 

pumping in or pumping 

out, you can create a 

word that can't be in 

that thing.

CSC527, Chapter 2, Part 4 c© 2012 Mitsunori Ogihara 27



Illustrating Conversation

Right.  So, either 

pumping in or pumping 

out, you can create a 

word that can't be in 

that thing.

Brilliant.  You learned well 

in your CSC527.
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Illustrating Conversation

By the way, didn't 

you call me "idiot"?
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Example 2

B = {a#b#c | a, b and c are binary numbers such that a+ b = c}

is not context free.
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Example 2

B = {a#b#c | a, b and c are binary numbers such that a+ b = c}

is not context free.

Proof Assume, to the contrary, that B is context free. Let

p be the constant from Pumping Lemma for B. Let w =

10p#10p#10p+1, where a = b = 2p and c = 2p+1. Let uvxyz be

the decomposition of w as in the lemma.
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Example 2

B = {a#b#c | a, b and c are binary numbers such that a+ b = c}

is not context free.

Proof Assume, to the contrary, that B is context free. Let

p be the constant from Pumping Lemma for B. Let w =

10p#10p#10p+1, where a = b = 2p and c = 2p+1. Let uvxyz be

the decomposition of w as in the lemma.

Since each member of B has exactly two #’s, neither v nor y

contain a ♯. So, v must be a substring of a, a substring of b, or a

substring of c. The same holds for y.
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Example 2 (cont’d)

Since the equality a + b = c must be maintained during pumping

and |vy| ≥ 1, y must be a nonempty substring of c and v must

be either a nonempty substring of a or a nonempty substring of b.

However, since vxy has length at most p, it must be the case that

v is a nonempty substring of b.
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Example 2 (cont’d)

Since the equality a + b = c must be maintained during pumping

and |vy| ≥ 1, y must be a nonempty substring of c and v must

be either a nonempty substring of a or a nonempty substring of b.

However, since vxy has length at most p, it must be the case that

v is a nonempty substring of b.

If v contains the first letter of b, then vxy must be a part of b, so

v should consist solely of 0’s.
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Example 2 (cont’d)

Since the equality a + b = c must be maintained during pumping

and |vy| ≥ 1, y must be a nonempty substring of c and v must

be either a nonempty substring of a or a nonempty substring of b.

However, since vxy has length at most p, it must be the case that

v is a nonempty substring of b.

If v contains the first letter of b, then vxy must be a part of b, so

v should consist solely of 0’s.

Suppose y contains 1, the first letter of c. Then uvz is the form

10p#10q#0r, which clearly is not a member of B.
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Example 2 (cont’d)

Since the equality a + b = c must be maintained during pumping

and |vy| ≥ 1, y must be a nonempty substring of c and v must

be either a nonempty substring of a or a nonempty substring of b.

However, since vxy has length at most p, it must be the case that

v is a nonempty substring of b.

If v contains the first letter of b, then vxy must be a part of b, so

v should consist solely of 0’s.

Suppose y contains 1, the first letter of c. Then uvz is the form

10p#10q#0r, which clearly is not a member of B.

Suppose y does not contain the letter 1. Then y consists solely of

0s. Then uvvxyyz is of the form 10p#10q#10r such that q, r > p,

which clearly isn’t a member of B.
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Example 3

C = {ww | w ∈ {0, 1}∗} is not context free.
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Example 3

C = {ww | w ∈ {0, 1}∗} is not context free.

Proof Assume C is context free. Let p the constant from the

pumping lemma for C.

Let w = 0p1p0p1p. Then w in C.
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Example 3

C = {ww | w ∈ {0, 1}∗} is not context free.

Proof Assume C is context free. Let p the constant from the

pumping lemma for C.

Let w = 0p1p0p1p. Then w in C.

Let w = uvxyz be the decomposition of w such that |vy| > 0,

|vxy| ≤ p, and for every i ≥ 0, uvixyiz ∈ C.
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Example 3

C = {ww | w ∈ {0, 1}∗} is not context free.

Proof Assume C is context free. Let p the constant from the

pumping lemma for C.

Let w = 0p1p0p1p. Then w in C.

Let w = uvxyz be the decomposition of w such that |vy| > 0,

|vxy| ≤ p, and for every i ≥ 0, uvixyiz ∈ C.

If v contains a symbol from the first 0p then y cannot contain one

from the second 0p, so pumping doesn’t work.
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Example 3

C = {ww | w ∈ {0, 1}∗} is not context free.

Proof Assume C is context free. Let p the constant from the

pumping lemma for C.

Let w = 0p1p0p1p. Then w in C.

Let w = uvxyz be the decomposition of w such that |vy| > 0,

|vxy| ≤ p, and for every i ≥ 0, uvixyiz ∈ C.

If v contains a symbol from the first 0p then y cannot contain one

from the second 0p, so pumping doesn’t work.

If v contains only symbols from the first 1p then y cannot contain

one from the second 1p, so pumping doesn’t work.
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Example 3

C = {ww | w ∈ {0, 1}∗} is not context free.

Proof Assume C is context free. Let p the constant from the

pumping lemma for C.

Let w = 0p1p0p1p. Then w in C.

Let w = uvxyz be the decomposition of w such that |vy| > 0,

|vxy| ≤ p, and for every i ≥ 0, uvixyiz ∈ C.

If v contains a symbol from the first 0p then y cannot contain one

from the second 0p, so pumping doesn’t work.

If v contains only symbols from the first 1p then y cannot contain

one from the second 1p, so pumping doesn’t work.

If v contains only symbols from the second 0p1p then pumping

does not work.
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Application

Corollary. The class of context-free languages is not closed

under intersection.

Proof Let L1 = {0i1j2k | i = j} and L2 = {0i1j2k | j = k}.

Then L1 and L2 are both context free. If the class were closed

under intersection then L1 ∩ L2 = {0n1n2n | n ≥ 0} would be

context free.

Corollary. The class of context-free languages is not closed

under complement.

Proof We know that the class is closed under union. It the class

were closed under complement, then by DeMorgan’s Law, it would

be closed under intersection.
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