Chapter 2, Part 3

Pushdown Automata and CFLs Are Equivalent

Properties of Context-Free Languages

Theorem. The context-free languages are closed under union, concatenation, and star.

Proof Let S_1 and S_2 be the start symbols of two CFG. Let S_0 be the new start symbol of the new CFG we are to create.

Adding $S_0 \Rightarrow S_1 \mid S_2$ works for union.

Adding $S_0 \Rightarrow S_1 S_2$ works for concatenation.

Adding $S_0 \Rightarrow \epsilon \mid S_0 S_1$ works for star.

Theorem. Every language recognized by PDA is context-free.

Let L be a language recognized by a PDA $M = (Q, \Sigma, \Gamma, \delta, p_0, F)$.

- We can modify M so that:
- (*) M has a unique accept state and, when it enters the state, the stack is empty.
- (**) In a single move M may not both pop and push.

Unique accept state and Empty Stack Acceptance

 $\begin{array}{lll} \mbox{Modify} & M & \mbox{to create} & \mbox{an equivalent} & \mbox{PDA} & N & = \\ (Q', \Sigma, \Gamma', \delta', q_0', \{q_f\}). \end{array}$

Unique accept state and Empty Stack Acceptance

N simulates M after adding a new special symbol \perp to the stack. If M enters a accept state, N may choose to empty the stack until it encounters \perp , when N may accept.

Unique Accept State and Empty Stack Acceptance

- $\Gamma' = \Gamma \cup \{\bot\}.$
- Q' consists of:
 - Q,
 - a new initial state I,
 - a new, unique accept state q_f ,
 - ullet a clean-up state C,
 - some additional states for achieving the "not both push and pop" requirement.

The use of q_0^\prime and C as a Bottom Marker

There is just one move in state q_0 : $\delta'(q'_0, \epsilon, \epsilon) = \{(p_0, \bot)\}.$

The transition mean: place a \perp on stack and then proceed to the initial state of M.

The Role of \perp **and** *C*

In each accept state p of M, we add (C,ϵ) to $\delta'(p,\epsilon,\epsilon).$

The transition means: from any accept state of F, you may proceed to C.

The Role of \perp **and** *C*

We have

- $\delta'(C,\epsilon,\perp) = \{(q_f,\epsilon)\}$ and
- for each $a \in \Gamma$, $\delta'(C, \epsilon, a) = \{(C, \epsilon)\}.$

These transitions allow emptying stack and then entering q_f .

No Pop and Push at the Same Time

Suppose we have a permissible transition (q, c) for $\delta(p, a, b)$, where $a \in \Sigma_{\epsilon}$ and $b, c \in \Gamma$. Then we add a new state q' exclusively for this particular transition and replace this transition with two transitions:

- (q',ϵ) in $\delta(p,a,b)$ and
- (q,c) in $\delta(q',\epsilon,\epsilon)$.

Construction of Grammar

We say that M can transition from state p to state q on input w while maintaining the minimum stack height if it is possible for M to transition from p to q by processing w so that

- the stack height before reading w is the same as the stack height after finishing to read w and then entering q,
- during these two events the stack height never goes below the stack level at the time M starts processing w.

Construction of Grammar

Construct a CFG (V, Σ, P, S) : $V = \{A_{pq} \mid p, q \in Q\}$ and $S = A_{q_0q_f}$, where q_0 is the initial state of M and q_f is the unique accept state of M.

 A_{pq} is the variable corresponding to the set of all strings w that M can process and transition from p to q while maintaining the minimum stack height.

Production rules:

• For every $p \in Q$, $A_{pp} \to \epsilon$.

Production rules:

- For every $p \in Q$, $A_{pp} \to \epsilon$.
- For all $p, q, r \in Q$, $A_{pq} \rightarrow A_{pr}A_{rq}$.

Production rules:

- For every $p \in Q$, $A_{pp} \to \epsilon$.
- For all $p, q, r \in Q$, $A_{pq} \rightarrow A_{pr}A_{rq}$.
- For all p,q,r,s ∈ Q, b, c ∈ Σ_ε, and d ∈ Γ_ε,
 if (r,d) ∈ δ(p,b,ε) and (q,ε) ∈ δ(s,c,d), then A_{pq} → bA_{rs}c.
 This means: one possibility for transition from p to q while maintaining the stack height is to:
 - transition from p to \vec{r} after adding d on top of stack,
 - $\bullet\,$ transition from r to s while maintaining the stack height, and
 - transition from s to q while popping the d.

Theorem. Each context-free language is recognized by a PDA.

Given an arbitrary CFL L and want to construct a PDA for L.

We can assume that L is given by a CNF grammar $G=(V,\Sigma,R,S).$

We will design a PDA that simulates a leftmost derivation with respect to G.

Simulating Leftmost Derivation

Use symbol \perp to mark the bottom of stack.

After placing a string $S \perp$ (read from top to bottom) on top of stack, repeat the following:

- Pop one symbol X from stack.
- If $X = \bot$ enter a accept state.
- Otherwise, nondeterministically select a rule $X \rightarrow w$.
 - If w = a for some terminal a, read one input symbol; if the symbol is a, continue; otherwise, stop.
 - If w = AB, place AB on top of stack and continue.

Do It in a PDA Way

- If there is a pending job from the previous step, do it and continue.
- $\bullet\,$ If at the initial state, place \perp and continue.
- Choose whether to read input or not; $a \in \Sigma_{\epsilon}$.
- Choose whether to read from stack or not; $X \in \Gamma_{\epsilon}$.
- If $a \neq \epsilon$ and X is a variable with rule $X \rightarrow a$, continue.
- If $a = \epsilon$ and $X = \bot$, enter the accept state.
- If $a = \epsilon$, X is a variable, and there is a rule of the form $X \rightarrow BC$, select one rule place C on top of stack and in the next step place B.