Chapter 2, Part 3

Pushdown Automata and CFLs Are Equivalent

Properties of Context-Free Languages

Theorem. The context-free languages are closed under union, concatenation, and star.

Proof Let S_{1} and S_{2} be the start symbols of two CFG. Let S_{0} be the new start symbol of the new CFG we are to create.

Adding $S_{0} \Rightarrow S_{1} \mid S_{2}$ works for union.
Adding $S_{0} \Rightarrow S_{1} S_{2}$ works for concatenation.
Adding $S_{0} \Rightarrow \epsilon \mid S_{0} S_{1}$ works for star.

CFLs Capture PDA

Theorem. Every language recognized by PDA is contextfree.

Let L be a language recognized by a PDA $M=\left(Q, \Sigma, \Gamma, \delta, p_{0}, F\right)$.
We can modify M so that:
(*) M has a unique accept state and, when it enters the state, the stack is empty.
(**) In a single move M may not both pop and push.

Unique accept state and Empty Stack Acceptance

Modify M to create an equivalent PDA $N=$ $\left(Q^{\prime}, \Sigma, \Gamma^{\prime}, \delta^{\prime}, q_{0}^{\prime},\left\{q_{f}\right\}\right)$.

Unique accept state and Empty Stack Acceptance

Modify M to create an equivalent PDA $N=$ $\left(Q^{\prime}, \Sigma, \Gamma^{\prime}, \delta^{\prime}, q_{0}^{\prime},\left\{q_{f}\right\}\right)$.
N simulates M after adding a new special symbol \perp to the stack. If M enters a accept state, N may choose to empty the stack until it encounters \perp, when N may accept.

Unique Accept State and Empty Stack Acceptance

Modify M to create an equivalent PDA $N=$ $\left(Q^{\prime}, \Sigma, \Gamma^{\prime}, \delta^{\prime}, q_{0}^{\prime},\left\{q_{f}\right\}\right)$.

- $\Gamma^{\prime}=\Gamma \cup\{\perp\}$.
- Q^{\prime} consists of:
- Q
- a new initial state I,
- a new, unique accept state q_{f},
- a clean-up state C,
- some additional states for achieving the "not both push and pop" requirement.

The use of q_{0}^{\prime} and C as a Bottom Marker

There is just one move in state $q_{0}: \delta^{\prime}\left(q_{0}^{\prime}, \epsilon, \epsilon\right)=\left\{\left(p_{0}, \perp\right)\right\}$.
The transition mean: place a \perp on stack and then proceed to the initial state of M.

The Role of \perp and C

In each accept state p of M, we add (C, ϵ) to $\delta^{\prime}(p, \epsilon, \epsilon)$.
The transition means: from any accept state of F, you may proceed to C.

The Role of \perp and C

We have

- $\delta^{\prime}(C, \epsilon, \perp)=\left\{\left(q_{f}, \epsilon\right)\right\}$ and
- for each $a \in \Gamma, \delta^{\prime}(C, \epsilon, a)=\{(C, \epsilon)\}$.

These transitions allow emptying stack and then entering q_{f}.

No Pop and Push at the Same Time

Suppose we have a permissible transition (q, c) for $\delta(p, a, b)$, where $a \in \Sigma_{\epsilon}$ and $b, c \in \Gamma$. Then we add a new state q^{\prime} exclusively for this particular transition and replace this transition with two transitions:

- $\left(q^{\prime}, \epsilon\right)$ in $\delta(p, a, b)$ and
- (q, c) in $\delta\left(q^{\prime}, \epsilon, \epsilon\right)$.

Construction of Grammar

We say that M can transition from state p to state q on input w while maintaining the minimum stack height if it is possible for M to transition from p to q by processing w so that

- the stack height before reading w is the same as the stack height after finishing to read w and then entering q,
- during these two events the stack height never goes below the stack level at the time M starts processing w.

Construction of Grammar

Construct a CFG $(V, \Sigma, P, S): V=\left\{A_{p q} \mid p, q \in Q\right\}$ and $S=$ $A_{q_{0} q_{f}}$, where q_{0} is the initial state of M and q_{f} is the unique accept state of M.
$A_{p q}$ is the variable corresponding to the set of all strings w that M can process and transition from p to q while maintaining the minimum stack height.

Production rules:

- For every $p \in Q, A_{p p} \rightarrow \epsilon$.

Production rules:

- For every $p \in Q, A_{p p} \rightarrow \epsilon$.
- For all $p, q, r \in Q, A_{p q} \rightarrow A_{p r} A_{r q}$.

Production rules:

- For every $p \in Q, A_{p p} \rightarrow \epsilon$.
- For all $p, q, r \in Q, A_{p q} \rightarrow A_{p r} A_{r q}$.
- For all $p, q, r, s \in Q, b, c \in \Sigma_{\epsilon}$, and $d \in \Gamma_{\epsilon}$, if $(r, d) \in \delta(p, b, \epsilon)$ and $(q, \epsilon) \in \delta(s, c, d)$, then $A_{p q} \rightarrow b A_{r s} c$. This means: one possibility for transition from p to q while maintaining the stack height is to:
- transition from p to r after adding d on top of stack,
- transition from r to s while maintaining the stack height, and
- transition from s to q while popping the d.

PDAs Recognize CFLs

Theorem. Each context-free language is recognized by a PDA.

Given an arbitrary CFL L and want to construct a PDA for L.
We can assume that L is given by a CNF grammar $G=$ (V, Σ, R, S).

We will design a PDA that simulates a leftmost derivation with respect to G.

Simulating Leftmost Derivation

Use symbol \perp to mark the bottom of stack.
After placing a string $S \perp$ (read from top to bottom) on top of stack, repeat the following:

- Pop one symbol X from stack.
- If $X=\perp$ enter a accept state.
- Otherwise, nondeterministically select a rule $X \rightarrow w$.
- If $w=a$ for some terminal a, read one input symbol; if the symbol is a, continue; otherwise, stop.
- If $w=A B$, place $A B$ on top of stack and continue.

Do It in a PDA Way

- If there is a pending job from the previous step, do it and continue.
- If at the initial state, place \perp and continue.
- Choose whether to read input or not; $a \in \Sigma_{\epsilon}$.
- Choose whether to read from stack or not; $X \in \Gamma_{\epsilon}$.
- If $a \neq \epsilon$ and X is a variable with rule $X \rightarrow a$, continue.
- If $a=\epsilon$ and $X=\perp$, enter the accept state.
- If $a=\epsilon, X$ is a variable, and there is a rule of the form $X \rightarrow B C$, select one rule place C on top of stack and in the next step place B.

