
Chapter 2, Part 1

Context-free Languages

CSC527, Chapter 2, Part 1 c© 2012 Mitsunori Ogihara 1

Context-free Languages

A context-free grammar is a 4-tuple G = (V,Σ, R, S). Here

1. V is the set of variables (or nonterminals),

2. Σ is the set of terminals,

3. R is the set of substitution rules (or production rules),
each of which is of the form

A → w,

for some nonterminal A and some word w over V ∪ Σ; and

4. S is a nonterminal called the start symbol.

CSC527, Chapter 2, Part 1 c© 2012 Mitsunori Ogihara 2

Substitution

Given a word x ∈ (V ∪Σ)∗ of the form yAz and a rule A → w, x

can be turned into ywz by substituting the A with w.

Note

• If A does not appear in x, the rule has no effect on x.

• If there are multiple rules for substituting A, then you
nondeterministically choose the one you apply.

• If there are multiple occurrences of A, then you
nondeterministically choose the one and the rule is applied.

CSC527, Chapter 2, Part 1 c© 2012 Mitsunori Ogihara 3

Derivation

We write u ⇒ v to mean that v can be produced from u by
applying in sequence production rules; that is, if there is a
sequence [u0, . . . , um] of strings over V ∪Σ and there is a sequence
[r1, . . . , rm] of rules R such that

• u0 = u and um = v;

• for each i, 1 ≤ i ≤ m, ui can be obtained from ui−1 by
applying ri.

We say that G produces w ∈ Σ∗ if S ⇒ w, i.e., w can be obtained

from S by derivation.

CSC527, Chapter 2, Part 1 c© 2012 Mitsunori Ogihara 4

Parse Tree

A parse tree (or derivation tree) is a tree that depicts the process

of derivation.

Since each derivation step substitutes one nonterminal, the series

of substitutions can be visualized using a tree.

S

SS

εa

a

ε

b

b

S S

ε

CSC527, Chapter 2, Part 1 c© 2012 Mitsunori Ogihara 5

Example

The strings over Σ = {a, b} consisting of an equal number of a’s

and b’s.

CSC527, Chapter 2, Part 1 c© 2012 Mitsunori Ogihara 6

Example

The strings over Σ = {a, b} consisting of an equal number of a’s

and b’s.

V = {S} and the derivation rules are S → ǫ | aSbS | bSaS.

CSC527, Chapter 2, Part 1 c© 2012 Mitsunori Ogihara 7

Example

The strings over Σ = {a, b} consisting of an equal number of a’s

and b’s.

V = {S} and the derivation rules are S → ǫ | aSbS | bSaS.

abab is derived as follows:

S ⇒ aSbS ⇒ abSaSbS ⇒ abSabS ⇒ ababS ⇒ abab.

S

SS

εa

a

ε

b

b

S S

ε

CSC527, Chapter 2, Part 1 c© 2012 Mitsunori Ogihara 8

Why Does the Grammar Work?

Let L be the language. For each word over {a, b}, let d(w) be the
number of a’s in w minus the number of b’s in w. We observe:

• For all w, w ∈ L if and only if d(w) = 0.

• d(ǫ) = 0; d(a) = 1; d(b) = −1.

• For all u and v, d(uv) = d(u) + d(v).

So, if w ∈ L and if w1 = a, there exists some k ≥ 2 such that

d(w1 · · ·wk) = 0 and d(w1 · · ·wk−1) = d(w1) = 1. This implies

that w(w2 · · ·wk−1) = d(wk+1 · · ·wn) = 0.

This gives S → aSbS. By exchanging the role between a and b,

we have S → bSaS.

CSC527, Chapter 2, Part 1 c© 2012 Mitsunori Ogihara 9

Ambiguity and Leftmost Derivation

It looks like there are many different ways to produce the same

word w ∈ L(G) for a grammar G.

CSC527, Chapter 2, Part 1 c© 2012 Mitsunori Ogihara 10

Ambiguity and Leftmost Derivation

It looks like there are many different ways to produce the same

word w ∈ L(G) for a grammar G.

Of course, this is true because when multiple nonterminals appear

on an intermediate word, the order in which the nonterminals are

chosen for substitution doesn’t affect the word produced.

CSC527, Chapter 2, Part 1 c© 2012 Mitsunori Ogihara 11

Ambiguity and Leftmost Derivation

It looks like there are many different ways to produce the same

word w ∈ L(G) for a grammar G.

Of course, this is true because when multiple nonterminals appear

on an intermediate word, the order in which the nonterminals are

chosen for substitution doesn’t affect the word produced.

But what if you force the order to be always from left to

right, will sill there exist multiple ways to derive the target

word?

CSC527, Chapter 2, Part 1 c© 2012 Mitsunori Ogihara 12

Leftmost Derivation

A leftmost derivation is the derivation in which each production

rule is applied to the leftmost nonterminal at the moment.

CSC527, Chapter 2, Part 1 c© 2012 Mitsunori Ogihara 13

Leftmost Derivation

A leftmost derivation is the derivation in which each production

rule is applied to the leftmost nonterminal at the moment.

For abab in the previous example,

S ⇒ aSbS ⇒ abSaSbS ⇒ abaSbS ⇒ ababS ⇒ abab

is a leftmost derivation,

CSC527, Chapter 2, Part 1 c© 2012 Mitsunori Ogihara 14

Leftmost Derivation

A leftmost derivation is the derivation in which each production

rule is applied to the leftmost nonterminal at the moment.

For abab in the previous example,

S ⇒ aSbS ⇒ abSaSbS ⇒ abaSbS ⇒ ababS ⇒ abab

is a leftmost derivation, while

S ⇒ aSbS ⇒ aSbaSbS ⇒ aSbabS ⇒ aSbab ⇒ abab

isn’t one.

CSC527, Chapter 2, Part 1 c© 2012 Mitsunori Ogihara 15

Ambiguity and Leftmost Derivation

A context-free grammar is unambiguous if it has a unique leftmost

derivation for every word it generates. Otherwise, the grammar is

ambiguous.

There is a context-free language that is inherently ambiguous —

every grammar that produces the language is ambiguous.

CSC527, Chapter 2, Part 1 c© 2012 Mitsunori Ogihara 16

Chomsky Normal Form

A context-free grammar G = (V,Σ, R, S) is in Chomsky normal
form if each rule in R is of the following form:

• S → ǫ (note that S is the start symbol).

• A → BC for some B,C ∈ V − {S} and

• A → a for some a ∈ Σ.

CSC527, Chapter 2, Part 1 c© 2012 Mitsunori Ogihara 17

Chomsky Normal Form

A context-free grammar G = (V,Σ, R, S) is in Chomsky normal
form if each rule in R is of the following form:

• S → ǫ (note that S is the start symbol).

• A → BC for some B,C ∈ V − {S} and

• A → a for some a ∈ Σ.

Theorem. Each context-free language is generated by a

Chomsky normal form grammar.

CSC527, Chapter 2, Part 1 c© 2012 Mitsunori Ogihara 18

Converting an Arbitrary CFG to a CNF Grammar

Let G = (V,Σ, R, S) be an arbitrary CFG and let L = L(G).

We will convert this to a CNF grammar G′ = (V ′,Σ, R′, S0).

CSC527, Chapter 2, Part 1 c© 2012 Mitsunori Ogihara 19

Step 1: Finding All “Nullable” Variables

We need to eliminate all rules of the form A → ǫ.

A variable A of G is nullable if A ⇒ ǫ; that is, the grammar can

produce ǫ from A.

CSC527, Chapter 2, Part 1 c© 2012 Mitsunori Ogihara 20

Finding All “Nullable” Variables

We find all “nullable” variables as follows:

• Initialize a set U as the collection of all variables A such that
A → ǫ is a valid production rule.

• While there is a variable B not in U such that the rule set
Rhas B → A1 · · ·Ak such that A1, . . . , Ak are all variables
and all members of U , update U with U ∪ {B}.

CSC527, Chapter 2, Part 1 c© 2012 Mitsunori Ogihara 21

Does ǫ Belong to L(G)?

After computing U , whether ǫ ∈ L(G) can be tested by examining

whether S ∈ U

S ∈ U ⇔ ǫ ∈ L(G).

If that is the case, we will add later a new rule S0 → ǫ.

CSC527, Chapter 2, Part 1 c© 2012 Mitsunori Ogihara 22

Step 2: Initialization

From this point on we will assume that ǫ 6∈ L(G).

• Initialize V ′ with the set V .

• Add to R′ all the rules in R of the form B → y such that y
is nonempty, is not equal to B, and has no nullable variables.

• Add a new start variable S0 to V ′ and add a new rule S0 → S.

CSC527, Chapter 2, Part 1 c© 2012 Mitsunori Ogihara 23

Step 3: Elimination of All Nullable Variables

For each rule of the form B → y in R such that a nullable variable
appears in y do the following:

• Create all rules produced from B → y by selecting,
independently at each position in y where the letter is a
nullable variable, whether to keep the variable in place or
replace it with ǫ.

• Add all the rules thus created (which includes the original
B → y) into R′ except for B → ǫ and B → B if such a rule
is at all created.

CSC527, Chapter 2, Part 1 c© 2012 Mitsunori Ogihara 24

Step 4: Elimination of Unit Rules

We will remove unit rules.

While R′ contains a unit rule A → B such that B ∈ V , pick such
a rule r and do the following:

• Remove r.

• For each rule B → w in R′, add A → w to R′ if w 6= A.

CSC527, Chapter 2, Part 1 c© 2012 Mitsunori Ogihara 25

Current Situation

Each rule in R′ is one of the following forms:

• A → b for some b ∈ Σ.

• A → w for some w ∈ (V ∪ Σ)∗ having length ≥ 2.

CSC527, Chapter 2, Part 1 c© 2012 Mitsunori Ogihara 26

Step 5: Normalization Part 1

We will substitute variables on the right-hand side of any rules

having length > 1:

For each terminal d

• add a new variable D,

• add a new rule D → d, and

• for each rule A → u such that |u| ≥ 2 and d appears in u,
replace each occurrence of d with a D.

CSC527, Chapter 2, Part 1 c© 2012 Mitsunori Ogihara 27

Step 5: Normalization Part 1

We will substitute variables on the right-hand side of any rules

having length > 1:

For each terminal d

• add a new variable D,

• add a new rule D → d, and

• for each rule A → u such that |u| ≥ 2 and d appears in u,
replace each occurrence of d with a D.

Now each rule is one of the following forms:

• A → b for some b ∈ Σ.

• A → w for some w ∈ V ∗ having length ≥ 2.

CSC527, Chapter 2, Part 1 c© 2012 Mitsunori Ogihara 28

Step 6: Normalization Part 2

We will substitute a long rule by a series of rules:

For each rule A → w1 . . . wm such that m ≥ 3, do the following:

• Add a new variable X.

• Replace A → w by two rules: A → w1X and X →
w2 · · · wm.

CSC527, Chapter 2, Part 1 c© 2012 Mitsunori Ogihara 29

Step 6: Normalization Part 2

We will substitute a long rule by a series of rules:

For each rule A → w1 . . . wm such that m ≥ 3, do the following:

• Add a new variable X.

• Replace A → w by two rules: A → w1X and X →
w2 · · · wm.

Conversion is complete.

CSC527, Chapter 2, Part 1 c© 2012 Mitsunori Ogihara 30

Example

V = {S},Σ = {a, b}, and R consists of S → ǫ | aSbS | bSaS

Step 1 Add S0 → S | ǫ.

Step 2 Eliminate S → ǫ. The rules are

S0 → S | ǫ,

S → ab | abS | aSbS | aSb |

ba | baS | bSaS | bSa.

STEP 3 Eliminate S0 → S and add

S0 → ab | abS | aSbS | aSb |

ba | baS | bSaS | bSa

CSC527, Chapter 2, Part 1 c© 2012 Mitsunori Ogihara 31

Example (cont’d)

STEP 4 The rules are

S0 → ǫ, A → a, B → b,

S0 → AB | AX1 | AX2 | AX3 | BA | BY1 | BY2 | BY3,

S → AB | AX1 | AX2 | AX3 | BA | BY1 | BY2 | BY3,

X1 → BS, X2 → SX4,

X3 → SB, X4 → BS,

Y1 → AS, Y2 → SY4,

Y3 → SA, Y4 → AS.

Here we are using the same variables X1, . . . , X4 and Y1, . . . , Y3

for S0 and S.

CSC527, Chapter 2, Part 1 c© 2012 Mitsunori Ogihara 32

