Chapter 1, Part4

Nonregular Languages

How can we show that a language is not regular?

Theorem. (Pumping Lemma) Let L be an arbitrary regular language. Then there exists a positive integer p with the following property:

Given an arbitrary member w of L having length at least p (i.e., $|w| \ge p$), w can be divided into three parts, w = xyz, such that

- $|y| \ge 1$ (the middle part is nonempty),
- $|xy| \leq p$ (the first two parts together have length at most p), and
- for each $i \ge 0$, $xy^i z \in L$ (removing or repeating the middle part produces members of L).

Proof of the Pumping Lemma

Let L be an arbitrary regular language. Then there is an FA, say M, that decides L. Let p be the number of states of M.

Let w be an arbitrary member of L having length n with $n \ge p$.

Let q_0, q_1, \ldots, q_n be the states that M on input w. That is, for each i, after reading the first i symbols of w, M is at q_i .

Clearly, q_0 is the initial state of M. Also, because $w \in L$, q_n is a final state of M.

The Pigeonhole Principle

We are placing a number of pigeons in a number of holes.

If there are more pigeons than there are holes, at least one hole should host more than one pigeon.

The Pigeonhole Principle

We are placing a number of pigeons in a number of holes.

If there are more pigeons than there are holes, at least one hole should host more than one pigeon.

Consider q_0, \ldots, q_p (the first p + 1 states that M goes through on input w). By the pigeonhole principle, there exist c and d, $0 \le c < d \le p$, such that $q_c = q_d$.

Pick an arbitrary such pair (c, d).

Proof of the Pumping Lemma (cont'd)

Let $x = w_1 \cdots w_c$, $y = w_{c+1} \cdots w_d$, and $z = w_{d+1} \cdots w_n$. Then

- $|y| \ge 1$,
- $|xy| \le p$,
- M transitions from q_0 to q_c on x,
- M transitions from q_c to q_c on y,
- M transitions from q_c to q_n on z.

Thus, for every $i \ge 0$, M transitions from q_0 to q_n on $xy^i z$, and so $xy^i z$ is a member of L.

Example 1: $B = \{0^n 1^n \mid n \ge 0\}$ is not regular.

Example 1: $B = \{0^n 1^n \mid n \ge 0\}$ is not regular.

Proof Assume that B is regular. Let p be a constant from the pumping lemma for B. Let $w = 0^p 1^p$.

Example 1: $B = \{0^n 1^n \mid n \ge 0\}$ is not regular.

Proof Assume that B is regular. Let p be a constant from the pumping lemma for B. Let $w = 0^p 1^p$.

Then w is in B so it can be divided into w = xyz such that

- $|y| \ge 1$,
- $|xy| \leq p$, and
- for each $i \ge 0$, $xy^i z \in B$.

Example 1: $B = \{0^n 1^n \mid n \ge 0\}$ is not regular.

Proof Assume that B is regular. Let p be a constant from the pumping lemma for B. Let $w = 0^p 1^p$.

Then w is in B so it can be divided into w = xyz such that

- $|y| \ge 1$,
- $|xy| \leq p$, and
- for each $i \ge 0$, $xy^i z \in B$.

Since $|xy| \le p$, both x and y consist solely of 0s. The word xyyz has more 0s than 1s, and thus, not in B. However, by the pumping lemma, $xyyz \in B$, a contradiction. Hence, B is not regular.

Then xz must be a member, but it has fewer 0s than 1s, so it can't be. We thus have a contradiction.

a contradiction.

 $C = \{w \mid w \in \{0,1\}^* \text{ and has an equal number of } 0 \text{s and } 1 \text{s} \}$ is not regular.

 $C = \{w \mid w \in \{0,1\}^* \text{ and has an equal number of } 0 \text{s and } 1 \text{s} \ \}$ is not regular.

Proof Assume, to the contrary, that C is regular. Let p be the constant from the pumping lemma for C.

 $C = \{w \mid w \in \{0,1\}^* \text{ and has an equal number of } 0 \text{s and } 1 \text{s} \ \}$ is not regular.

Proof Assume, to the contrary, that C is regular. Let p be the constant from the pumping lemma for C.

Let $w = 0^p 1^p$. Then w = xyz such that $|xy| \le p$, $|y| \ge 1$, and for every $i \ge 0$, $xy^i z \in C$.

 $C = \{w \mid w \in \{0,1\}^* \text{ and has an equal number of } 0 \text{s and } 1 \text{s} \ \}$ is not regular.

Proof Assume, to the contrary, that C is regular. Let p be the constant from the pumping lemma for C.

Let $w = 0^p 1^p$. Then w = xyz such that $|xy| \le p$, $|y| \ge 1$, and for every $i \ge 0$, $xy^i z \in C$.

Let w' = xz. Then $w' \in C$ but w' has fewer 0s than 1s.

The language $F = \{vv \mid v \in \{0,1\}^*\}$ is not regular (F is the language of all even length strings over $\{0,1\}$ whose first half is identical to the second half).

Proof Assume, to the contrary, that F is regular. Let p be a constant for which the pumping lemma holds for F.

The language $F = \{vv \mid v \in \{0,1\}^*\}$ is not regular (F is the language of all even length strings over $\{0,1\}$ whose first half is identical to the second half).

Proof Assume, to the contrary, that F is regular. Let p be a constant for which the pumping lemma holds for F.

Let $w = 0^p 1^p 0^p 1^p$. Then, w is divided into w = xyz such that |y| > 0, $|xy| \le p$, and $(\forall i \ge 0)[xy^i z \in F]$. Here $y \in 0^*$ since w begins with 0^p .

The language $F = \{vv \mid v \in \{0,1\}^*\}$ is not regular (F is the language of all even length strings over $\{0,1\}$ whose first half is identical to the second half).

Proof Assume, to the contrary, that F is regular. Let p be a constant for which the pumping lemma holds for F.

Let $w = 0^p 1^p 0^p 1^p$. Then, w is divided into w = xyz such that |y| > 0, $|xy| \le p$, and $(\forall i \ge 0)[xy^i z \in F]$. Here $y \in 0^*$ since w begins with 0^p .

Pick i = 0, we have $0^q 1^p 0^p 1^p \in F$, where q < p. This word cannot be decomposed as uu. This is a contradiction.

 $D = \{1^{n^2} \mid n \ge 0\} \text{ is not regular.}$

 $D = \{1^{n^2} \mid n \ge 0\} \text{ is not regular.}$

Proof Assume, to the contrary, that D is regular. Let p be a constant for which the pumping lemma holds for D.

 $D = \{1^{n^2} \mid n \ge 0\} \text{ is not regular.}$

Proof Assume, to the contrary, that D is regular. Let p be a constant for which the pumping lemma holds for D.

Let $w = 1^{p^2}$. Then w = xyz for some x, y, z such that $|y| \ge 1$, $|xy| \le p$, and $(\forall i \ge 0)[xy^i z \in D]$.

 $D = \{1^{n^2} \mid n \ge 0\} \text{ is not regular.}$

Proof Assume, to the contrary, that D is regular. Let p be a constant for which the pumping lemma holds for D.

Let $w = 1^{p^2}$. Then w = xyz for some x, y, z such that $|y| \ge 1$, $|xy| \le p$, and $(\forall i \ge 0)[xy^i z \in D]$.

Let l = |y|. Then $1 \le l \le p$. By plugging in i = 2, we have $1^{p^2+l} \in D$, but $p^2+l \le p^2+p < (p+1)^2$, a contradiction.

 $E = \{0^i 1^j \mid i > j\} \text{ is not regular.}$

 $E = \{0^i 1^j \mid i > j\} \text{ is not regular.}$

Proof Assume, to the contrary, that E is regular. Let p be a constant for which the pumping lemma holds for E.

 $E = \{0^i 1^j \mid i > j\} \text{ is not regular.}$

Proof Assume, to the contrary, that E is regular. Let p be a constant for which the pumping lemma holds for E.

Let $w = 0^{p}1^{p-1}$. Then w = xyz for some x, y, z such that $|y| \ge 1$, $|xy| \le p$, and $(\forall i \ge 0)[xy^{i}z \in E]$. Here $y \in 0^{*}$ since the first p symbols of w are all 0.

 $E = \{0^i 1^j \mid i > j\} \text{ is not regular.}$

Proof Assume, to the contrary, that E is regular. Let p be a constant for which the pumping lemma holds for E.

Let $w = 0^p 1^{p-1}$. Then w = xyz for some x, y, z such that $|y| \ge 1$, $|xy| \le p$, and $(\forall i \ge 0)[xy^i z \in E]$. Here $y \in 0^*$ since the first p symbols of w are all 0.

With i = 0, we have $0^q 1^{p-1} \in E$, where $q \leq p-1$, a contradiction.