Chapter 0: Fundamental Concepts

Fundamental Concepts

<u>Sets</u>

- $a \in S$: a is an element of S; a is a member of S. Example $1 \in \{1, 2, 3\}$.
- $S \subseteq T$: S is a **subset** of T; S is **contained** in T. This means that every member of S is a member of T.

Example $\{1,2\} \subseteq \{1,2,3\}$, $\{1,2\} \subseteq \{1,2\}$, and $\{1,4\} \not\subseteq \{1,2,3\}$.

- S ⊂ T: S is a proper subset of T; S is properly contained in T. This means that S ≠ T and S ⊆ T.
 Example {1,2} ⊂ {1,2,3} and {1,2} ⊄ {1,2}.
- \emptyset is the **empty set**, the set without elements.
- 2^S is a **power set** of S; i.e., the set of all subsets of S.

- S ∩ T: the intersection (meet) of S and T; the set of all common members between S and T.
 Example {1,2,3} ∩ {1,2,4} = {1,2}.
- $S \cup T$: the union (join) of S and T; the set of all members of S or T.

Example $\{1, 2, 3\} \cup \{1, 2, 4\} = \{1, 2, 3, 4\}.$

- S \ T: the set difference of S and T; i.e., the set consisting of all members of S that are nonmembers of T.
 Example {1,2,3} \ {1,2,4} = {3}.
- If $T \subseteq S$, we write S T to mean $S \setminus T$. **Example** $\{1, 2, 3\} - \{1, 2\} = \{3\}.$
- $S \triangle T$: the disjoint union of S and T. $S \triangle T = (S \setminus T) \cup (T \setminus S)$.

Example $\{1, 2, 3\} \triangle \{1, 2, 4\} = \{3, 4\}.$

- $S \times T$: the Cartesian product of S and T; i.e., $\{(a, b) \mid a \in S \text{ and } b \in T\}$.
 - Example $\{a, b, c\} \times \{1, 2\} = \{(a, 1), (a, 2), (b, 1), (b, 2), (c, 1), (c, 2)\}.$
- ||S||: the cardinality of the set S; i.e., the number of elements in S.

Example $||\{a, b, c\}|| = 3.$

 \bullet Quite often $|\cdot|$ is used for the cardinality.

Alphabet, Strings, Languages, etc.

- An **alphabet** is any finite set, whose members are called **symbols**.
- A string (or word) over an alphabet is a sequence of symbols from the alphabet written one after another.
 Example aba is a word over an alphabet {a, b}

• The length of a word w, denoted by |w|, is the number of symbols in it.

Example If w = aba, then |w| = 3.

 The empty string or null string, denoted by ε, is the string with no symbols in it. Alphabet, Strings, Languages, etc. (cont'd)

• A string z is a **substring** of w if z appears consecutively within w.

Example Let z = 001111010. Then 1111 is a substring of z while 11111 is not.

• The **concatenation** of strings x and y is the string constructed by appending y after x.

Example The concatenation of a = 000 and b = 111 is 000111.

- A language is a collection of strings.
- A **class** is a collection of languages.

Alphabet, Strings, Languages, etc. (cont'd)

- For an alphabet Σ , Σ^* is the set of all strings over Σ .
- The complement of a language is the collection of all non-members; for a language L over an alphabet Σ , its complement is $\Sigma^* L$ and is denoted by L^c or \overline{L} .

Example If $\Sigma = \{a, b\}$ and L is the set of all strings over Σ having an even number of a's, then \overline{L} is the set of all strings over Σ having an odd number of a's.

Alphabet, Strings, Languages, etc. (cont'd)

- If Σ is a single-letter alphabet with a as its unique symbol, we often write a^* for Σ^* .
- For a language L, L^* is the set of all strings constructed by concatenating any strings from L in any order. That is, $L^* = \{\epsilon\} \cup \{x_1 \cdots x_m \mid m \ge 1, x_1, \dots, x_m \in L\}.$

Example $\{a, ab\}^*$ is the set of all strings w over a and b such that either w is empty or (w begins with an a and has no bb as a substring).

Boolean Logic

A Boolean variable takes on one of 0 (FALSE) and 1 (TRUE). The negation of x, denoted by \overline{x} or $\neg x$, is 1 - x.

We will be using six binary Boolean operators:

(x,y)	(0,0)	(0, 1)	(1, 0)	(1,1)
\wedge	0	0	0	1
\vee	0	1	1	1
\rightarrow	1	1	0	1
\leftarrow	1	0	1	1
\leftrightarrow	1	0	0	1
\oplus	0	1	1	0

Boolean Logic (cont'd)

A **predicate** is a **function** whose **range** is { TRUE, FALSE }. A **relation** is a predicate whose number of arguments is fixed to a constant.

Properties of binary relation R over domain D.

- **Reflexive**: For all $x \in D$, xRx.
- Symmetric: For all $x, y \in D$, $xRy \leftrightarrow yRx$.
- Transitive For all $x, y, z \in D$, $xRy \wedge yRz \rightarrow xRz$.

An **equivalence relation** is a binary relation that is reflexive, symmetric, and transitive

Proof by Induction

A method for proving a statement P. Divide the statement P into cases $P(n), n = a, a + 1, a + 2, \ldots$ For the base case, prove P(a). For the induction step, assume that P(n) is true for all values of $n \leq k$ and show that P(k + 1) holds.

Graphs

A graph consists of nodes (vertices) and edges. A path is a sequence of edges (or a sequence of nodes) that connects from a node to another. A tree is a connected, undirected graph without cycles.

