Chapter 0: Fundamental Concepts

Fundamental Concepts

Sets

- $a \in S: a$ is an element of $S ; a$ is a member of S.

Example $1 \in\{1,2,3\}$.

- $S \subseteq T: S$ is a subset of T; S is contained in T. This means that every member of S is a member of T.
Example $\{1,2\} \subseteq\{1,2,3\},\{1,2\} \subseteq\{1,2\}$, and $\{1,4\} \nsubseteq$ $\{1,2,3\}$.
- $S \subset T$: S is a proper subset of T; S is properly contained in T. This means that $S \neq T$ and $S \subseteq T$.
Example $\{1,2\} \subset\{1,2,3\}$ and $\{1,2\} \not \subset\{1,2\}$.
- \emptyset is the empty set, the set without elements.
- 2^{S} is a power set of S; i.e., the set of all subsets of S.

Set Operations

- $S \cap T$: the intersection (meet) of S and T; the set of all common members between S and T.
Example $\{1,2,3\} \cap\{1,2,4\}=\{1,2\}$.
- $S \cup T$: the union (join) of S and T; the set of all members of S or T.
Example $\{1,2,3\} \cup\{1,2,4\}=\{1,2,3,4\}$.
- $S \backslash T$: the set difference of S and T; i.e., the set consisting of all members of S that are nonmembers of T.
Example $\{1,2,3\} \backslash\{1,2,4\}=\{3\}$.
- If $T \subseteq S$, we write $S-T$ to mean $S \backslash T$.

Example $\{1,2,3\}-\{1,2\}=\{3\}$.

- $S \triangle T$: the disjoint union of S and $T . S \triangle T=(S \backslash T) \cup(T \backslash$ S).

Example $\{1,2,3\} \triangle\{1,2,4\}=\{3,4\}$.

Set Operations (cont'd)

- $S \times T$: the Cartesian product of S and T; i.e., $\{(a, b) \mid a \in S$ and $b \in T\}$.

$$
\begin{array}{lcc}
\text { Example } & \{a, b, c\} & \times \\
\{(a, 1),(a, 2),(b, 1),(b, 2),(c, 1),(c, 2)\} .
\end{array}
$$

$$
\{1,2\}
$$

$$
=
$$

- $\|S\|$: the cardinality of the set S; i.e., the number of elements in S.
Example $\|\{a, b, c\}\|=3$.
- Quite often $|\cdot|$ is used for the cardinality.

Alphabet, Strings, Languages, etc.

- An alphabet is any finite set, whose members are called symbols.
- A string (or word) over an alphabet is a sequence of symbols from the alphabet written one after another.
Example $a b a$ is a word over an alphabet $\{a, b\}$
- The length of a word w, denoted by $|w|$, is the number of symbols in it.
Example If $w=a b a$, then $|w|=3$.
- The empty string or null string, denoted by ϵ, is the string with no symbols in it.

Alphabet, Strings, Languages, etc. (cont'd)

- A string z is a substring of w if z appears consecutively within w.

Example Let $z=001111010$. Then 1111 is a substring of z while 11111 is not.

- The concatenation of strings x and y is the string constructed by appending y after x.
Example The concatenation of $a=000$ and $b=111$ is 000111.
- A language is a collection of strings.
- A class is a collection of languages.

Alphabet, Strings, Languages, etc. (cont'd)

- For an alphabet Σ, Σ^{*} is the set of all strings over Σ.
- The complement of a language is the collection of all non-members; for a language L over an alphabet Σ, its complement is $\Sigma^{*}-L$ and is denoted by L^{c} or \bar{L}. Example If $\Sigma=\{a, b\}$ and L is the set of all strings over Σ having an even number of a 's, then \bar{L} is the set of all strings over Σ having an odd number of a 's.

Alphabet, Strings, Languages, etc. (cont'd)

- If Σ is a single-letter alphabet with a as its unique symbol, we often write a^{*} for Σ^{*}.
- For a language L, L^{*} is the set of all strings constructed by concatenating any strings from L in any order. That is, $L^{*}=\{\epsilon\} \cup\left\{x_{1} \cdots x_{m} \mid m \geq 1, x_{1}, \ldots, x_{m} \in L\right\}$.
Example $\{a, a b\}^{*}$ is the set of all strings w over a and b such that either w is empty or (w begins with an a and has no $b b$ as a substring).

Boolean Logic

A Boolean variable takes on one of (FALSE) and 1 (TRUE). The negation of x, denoted by \bar{x} or $\neg x$, is $1-x$.

We will be using six binary Boolean operators:

(x, y)	$(0,0)$	$(0,1)$	$(1,0)$	$(1,1)$
\wedge	0	0	0	1
\vee	0	1	1	1
\rightarrow	1	1	0	1
\leftarrow	1	0	1	1
\leftrightarrow	1	0	0	1
\oplus	0	1	1	0

Boolean Logic (cont'd)

A predicate is a function whose range is \{ TRUE, FALSE \}. A relation is a predicate whose number of arguments is fixed to a constant.

Properties of binary relation R over domain D.

- Reflexive: For all $x \in D, x R x$.
- Symmetric: For all $x, y \in D, x R y \leftrightarrow y R x$.
- Transitive For all $x, y, z \in D, x R y \wedge y R z \rightarrow x R z$.

An equivalence relation is a binary relation that is reflexive, symmetric, and transitive

Proof by Induction

A method for proving a statement P. Divide the statement P into cases $P(n), n=a, a+1, a+2, \ldots$ For the base case, prove $P(a)$. For the induction step, assume that $P(n)$ is true for all values of $n \leq k$ and show that $P(k+1)$ holds.

Graphs

A graph consists of nodes (vertices) and edges. A path is a sequence of edges (or a sequence of nodes) that connects from a node to another. A tree is a connected, undirected graph without cycles.

