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Chapter Objectives 

•  To learn the use of the Java API standard sorting 
methods 

•  To learn various sorting algorithms: 
•  Selection sort, bubble sort, insertion sort, Shell sort, 

merge sort, heapsort, and quicksort 
•  To understand the difference among the above sorting 

algorithms 
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The Java Sorting Methods 

•  Java API provides the class Arrays with several 
overloaded sort methods for different array types 

•  The Collections class provides similar sorting methods 
•  Sorting methods for arrays of primitive types are based 

on quicksort algorithm 
•  Method of sorting for arrays of objects and Lists based 

on mergesort 



Generics Declaration 

•  ...public static <T> void foo(…something about E …) 
•  The point here is that T is declared before the return 

class specification 
•  …<? super T>: any class that is a super class of T 
•  …<? extends T>: any class extends T 
•  It is possible to do something like: 

•  ...public static <T> void foo(List<? extends T> lll, 
Comparator<? super T> ccc) 

•  This means that the lll is a list of objects of class that 
extends T, including T itself, and that ccc is a 
comparator for the class that is a super class of T, 
including T itself. Chapter 8: Sorting 4 



Using Java Sorting Method (Arrays) 
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Method sort in Class Arrays Behavior 

 public static void sort(int[] 
items) 

Sorts items in ascending order 

 public static void sort(int[] 
items, int fromIndex, int 
toIndex) 

Sorts items[fromIndex] to items[toIndex] 

 public static void sort(Object[] 
items) 

Sorts the items in ascending order according to the compareTo() 
method. 
All objects in the array are expected to implement the Comparable 
interface and must be mutually comparable  

 public static void sort(Object[] 
item, int fromIndex, int toIndex) 

An index-range-specific version of the above. 

 public static <T> void sort(T[] 
items, Comparator<? super T> 
comp)  

Sorts the items in ascending order according to the comp.compare 
method, which is defined for a class extending T (a wildcard). 
All objects in the array must implement the Comparable interface 
and must be mutually comparable  

public static <T> void sort(T[] 
items, int fromIndex, int 
toIndex, Comparator<? super 
T> comp)  

An index-range-specific version of the above. 



Using Java Sorting Method (Lists) 
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Method sort in Class Arrays Behavior 

 public static <T extends 
Comparable<T>> void sort
(List<T> list) 

Sorts the items in list ascending order according to their natural 
ordering as defined in the compareTo() method. 
All objects in the list must implement the Comparable interface and 
must be mutually comparable  

  public static <T> void sort
(List<T> list, Comparator<? 
super T> comp)  

Sorts the items in list ascending order according to the 
comp.compare method, which is defined for a class extending T (a 
wildcard). 
All objects in the list must be comparable by the comparator. 



Measuring the Complexity of Sorting 
Algorithms 

•  Use the number of comparisons of items in the array. 
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Selection Sort 

•  Selection sort 
•  Keep finding the “next” smallest item 
•  Place the item found in the appropriate position 

•  Efficiency is O(n2) 



Selection Sort Algorithm 
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for fill = 0 to n-2 do 
        pos = the index of the smallest item in the range [fill,n-1] 
        exchange the element at index pos and the element at index fill 

… the slot at fill can be used to maintain the smallest value 
… this yields to 

for fill = 0 to n-2 do 
        for next = fill + 1 to n-1 do 
                if the element at next is smaller than the element at pos  
                then exchange the two 

The number of comparisons is O(n2), so is the number of  
exchanges. 



Selection Sort Example 
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Bubble Sort 

•  Compares adjacent array elements and exchanges their 
values if they are out of order 

•  Smaller values bubble up to the top of the array and 
larger values sink to the bottom 
do 
       for each pair of adjacent array elements 
                if the values in the pair are out of order 
                then exchange the two 
while the array is not sorted 

The last condition can be checked by remembering whether any 
exchange has occurred during the execution of the for-loop. 

The number of comparisons is O(n2). 



Bubble Sort Example 
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Analysis of Bubble Sort 

•  Provides excellent performance in some cases and very 
poor performances in some cases 

•  Works best when array is already nearly sorted 
•  Worst case number of comparisons is O(n2) 
•  Worst case number of exchanges is O(n2) 
•  Best case occurs when the array is already sorted 

•  O(n) comparisons 
•  O(1) exchanges 



Insertion Sort 
•  Sort the elements in range [0,m] for m = 0,…, n−1 
•  No action need for m=0 
•  When going from m to m+1, insert the element in index 

m+1, to its appropriate location 
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For m = 1 to n−1 do 
       // determine the position for the element at index m 
       pos = m−1 
       item = element at position m 
       while (pos >= 0) and (the element at index pos is greater than item) 
                place the element at index pos to index pos+1 
                decrement pos 
       place item at index pos+1 

The number of comparisons is O(n2). 



Insertion Sort Example 
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Analysis of Insertion Sort 

•  Maximum number of comparisons is O(n2) 
•  In the best case, number of comparisons is O(n) 
•  The number of shifts performed during an insertion is 

one less than the number of comparisons or, when the 
new value is the smallest so far, the same as the number 
of comparisons 

•  A shift in an insertion sort requires the movement of only 
one item whereas in a bubble or selection sort an 
exchange involves a temporary item and requires the 
movement of three items 
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Shell Sort: A Divide-and-Conquer Insertion 
Sort 

•  Shell sort is a type of insertion sort but with O(n1.5) or 
better performance. 

•  For p in a decreasing series {q1, q2, …, qk} of gap values, 
execute Insertion Sort on the n/p subarrays consisting of 
the elements at every p-th position. 
•  Choose qk=1 to guarantee correctness. 
•  Use gap values of the form 2k-1, for 1 ≤ k ≤ ceil(log2(n

+1))  



Shell Sort Example with Gaps of 7, 3, 1 
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Merge Sort 
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Sort by merging two already-sorted sequences, itemsA and itemsB of length lenA 
and lenB, respectively, into a new sequence, itemsC 

 Set the indices posA, posB, posC to 0 
 while (posA<lenA) and (posB<lenB) do 
         if (itemsA[posA]<itemsB[posB]) { 
                      itemsC[posC] = itemsA[posA]; 
                      posA = posA + 1; 
         } 
         else { 
                      itemsC[posC] = itemsB[posB]; 
                      posB = posB + 1; 
         } 
         posC = posC + 1; 
 if (posA<lenA-1) { 
         append all the remaining elements of itemsA to itemsC; 
 } 
 else if (posB<lenB-1) { 
         append all the remaining elements of itemsB to itemsC; 
 } 



Merge Example 
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Analysis of Merge 

•  For two input sequences that contain a total of n 
elements, we need to move each element’s input 
sequence to its output sequence 

•  The  number of comparisons is not more than the total 
number of elements. 

•  So, the time for merging is O(n). 



Merge Sort 

•  If an input sequence has size > 1, divide it into left and 
right halves 

•  Use Merge Sort to sort the halves 
•  Merge the two sorted halves. 

•  To sort each half, create its copy and make a recursive 
call to Merge Sort. 

•  To merge, use the two half-size sequences returned by 
the recursive calls 
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Analysis of Merge Sort 
•  Assume the length of the sequence is a power of 2, say 2m. 

•  We can assume that infinitely large elements exist 
beyond the sequence to make its length a power of 2; 
the length will then be at most 2 times the length of the 
original. 

•  Let f(m)=time for merge-sorting a sequence of size 2m.  
•  We have f(m) = 2*f(m-1) + c*2m for some constant c. 
•  We then have: 

•  f(m) = 4*f(m-2)+2c*2m-1 = 8*f(m-3)+3c*2m-1 = …             
= 2m*f(0)+mc*2m.   Thus, f(m) is O(m*2m). 

•  This implies that Merge Sort has efficient of O(nlog n). 



Heapsort 

•  Use a property of the heap that the largest element is at 
the root. 

•  Given n elements, turn them into a heap of size n 
(implementable using an array of size n). 

•  For p = n, …, 2 do the following: 
•  Exchange the element at position 0 (the root) and the 

element at position p. 
•  Enforce the heap property starting from position 0. 
•  (In the next round p is decremented, so the above 

achieves the removal of the root.) 
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Heap Sort 

Initialization of heap and 
extraction of an element 

Extraction of the next two 
elements 
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Heapsort Analysis 

•  Both insertion in the heap and the restructuring after 
removal for maintaining the heap property require time O
(log n). 

•  Since both occur n times, the total time required for 
these is O(n long). 

•  The time required for other operations is O(n). 
•  Thus, Heapsort has the running time of O(nlog n). 
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Quicksort 

•  We’ll assume that the elements are in an array. 

•  Select an element, called pivot, from the array and 
reorder the array so that: 
•  Those smaller than the pivot come first (in any order) 
•  Those larger than the pivot comes last 

•  Recursively sort the two subparts using Quicksort and 
then join them. 

•  Average case for Quicksort is O(n log n) 



Idealized Split in Quicksort 
(the ordering is preserved here for the sake 

of clarity in presentation) 
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Algorithm for Partitioning Array items 
Between Index P and Index Q 

 Set pivot to items[P] 
 Set up to P and down to Q 
 do 

  while (items[up] ≤ pivot) and (up < Q) { up++ } 
  while (items[down] ≥ pivot) and (down > P) { down−− } 
  if (up < down) { swap items[up] and items[down] } 

 while (up < down); 
 swap items[P] and items[down] 
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Practical Partition Algorithm 

•  Quicksort is O(n2) when each split yields one empty 
subarray, which is the case when the array is presorted 

•  This can be avoided by selecting as the pivot value that 
is “less likely to lead to a bad split” 
•  One such a choice is the median of the first, middle, 

and last elements 
•  Another solution is to randomly select a position between 

P and Q and use the element at the position as the pivot 
•  On average, the time is O(n log(n)) 
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Testing the Sort Algorithms 

•  Need to use a variety of test cases 
•  Small and large arrays 
•  Arrays in random order 
•  Arrays that are already sorted 
•  Arrays with duplicate values 

•  Compare performance on each type of array 
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