
Sorting

Chapter 8

Chapter 8: Sorting 2

Chapter Objectives

•  To learn the use of the Java API standard sorting
methods

•  To learn various sorting algorithms:
•  Selection sort, bubble sort, insertion sort, Shell sort,

merge sort, heapsort, and quicksort
•  To understand the difference among the above sorting

algorithms

Chapter 8: Sorting 3

The Java Sorting Methods

•  Java API provides the class Arrays with several
overloaded sort methods for different array types

•  The Collections class provides similar sorting methods
•  Sorting methods for arrays of primitive types are based

on quicksort algorithm
•  Method of sorting for arrays of objects and Lists based

on mergesort

Generics Declaration

•  ...public static <T> void foo(…something about E …)
•  The point here is that T is declared before the return

class specification
•  …<? super T>: any class that is a super class of T
•  …<? extends T>: any class extends T
•  It is possible to do something like:

•  ...public static <T> void foo(List<? extends T> lll,
Comparator<? super T> ccc)

•  This means that the lll is a list of objects of class that
extends T, including T itself, and that ccc is a
comparator for the class that is a super class of T,
including T itself. Chapter 8: Sorting 4

Using Java Sorting Method (Arrays)

Chapter 8: Sorting 5

Method sort in Class Arrays Behavior

 public static void sort(int[]
items)

Sorts items in ascending order

 public static void sort(int[]
items, int fromIndex, int
toIndex)

Sorts items[fromIndex] to items[toIndex]

 public static void sort(Object[]
items)

Sorts the items in ascending order according to the compareTo()
method.
All objects in the array are expected to implement the Comparable
interface and must be mutually comparable

 public static void sort(Object[]
item, int fromIndex, int toIndex)

An index-range-specific version of the above.

 public static <T> void sort(T[]
items, Comparator<? super T>
comp)

Sorts the items in ascending order according to the comp.compare
method, which is defined for a class extending T (a wildcard).
All objects in the array must implement the Comparable interface
and must be mutually comparable

public static <T> void sort(T[]
items, int fromIndex, int
toIndex, Comparator<? super
T> comp)

An index-range-specific version of the above.

Using Java Sorting Method (Lists)

Chapter 8: Sorting 6

Method sort in Class Arrays Behavior

 public static <T extends
Comparable<T>> void sort
(List<T> list)

Sorts the items in list ascending order according to their natural
ordering as defined in the compareTo() method.
All objects in the list must implement the Comparable interface and
must be mutually comparable

 public static <T> void sort
(List<T> list, Comparator<?
super T> comp)

Sorts the items in list ascending order according to the
comp.compare method, which is defined for a class extending T (a
wildcard).
All objects in the list must be comparable by the comparator.

Measuring the Complexity of Sorting
Algorithms

•  Use the number of comparisons of items in the array.

Chapter 8: Sorting 7

Chapter 8: Sorting 8

Selection Sort

•  Selection sort
•  Keep finding the “next” smallest item
•  Place the item found in the appropriate position

•  Efficiency is O(n2)

Selection Sort Algorithm

Chapter 8: Sorting 9

for fill = 0 to n-2 do
 pos = the index of the smallest item in the range [fill,n-1]
 exchange the element at index pos and the element at index fill

… the slot at fill can be used to maintain the smallest value
… this yields to

for fill = 0 to n-2 do
 for next = fill + 1 to n-1 do
 if the element at next is smaller than the element at pos
 then exchange the two

The number of comparisons is O(n2), so is the number of
exchanges.

Selection Sort Example

Chapter 8: Sorting 10

Chapter 8: Sorting 11

Bubble Sort

•  Compares adjacent array elements and exchanges their
values if they are out of order

•  Smaller values bubble up to the top of the array and
larger values sink to the bottom
do
 for each pair of adjacent array elements
 if the values in the pair are out of order
 then exchange the two
while the array is not sorted

The last condition can be checked by remembering whether any
exchange has occurred during the execution of the for-loop.

The number of comparisons is O(n2).

Bubble Sort Example

Chapter 8: Sorting 12

Chapter 8: Sorting 13

Analysis of Bubble Sort

•  Provides excellent performance in some cases and very
poor performances in some cases

•  Works best when array is already nearly sorted
•  Worst case number of comparisons is O(n2)
•  Worst case number of exchanges is O(n2)
•  Best case occurs when the array is already sorted

•  O(n) comparisons
•  O(1) exchanges

Insertion Sort
•  Sort the elements in range [0,m] for m = 0,…, n−1
•  No action need for m=0
•  When going from m to m+1, insert the element in index

m+1, to its appropriate location

Chapter 8: Sorting 14

For m = 1 to n−1 do
 // determine the position for the element at index m
 pos = m−1
 item = element at position m
 while (pos >= 0) and (the element at index pos is greater than item)
 place the element at index pos to index pos+1
 decrement pos
 place item at index pos+1

The number of comparisons is O(n2).

Insertion Sort Example

Chapter 8: Sorting 15

Chapter 8: Sorting 16

Analysis of Insertion Sort

•  Maximum number of comparisons is O(n2)
•  In the best case, number of comparisons is O(n)
•  The number of shifts performed during an insertion is

one less than the number of comparisons or, when the
new value is the smallest so far, the same as the number
of comparisons

•  A shift in an insertion sort requires the movement of only
one item whereas in a bubble or selection sort an
exchange involves a temporary item and requires the
movement of three items

Chapter 8: Sorting 17

Shell Sort: A Divide-and-Conquer Insertion
Sort

•  Shell sort is a type of insertion sort but with O(n1.5) or
better performance.

•  For p in a decreasing series {q1, q2, …, qk} of gap values,
execute Insertion Sort on the n/p subarrays consisting of
the elements at every p-th position.
•  Choose qk=1 to guarantee correctness.
•  Use gap values of the form 2k-1, for 1 ≤ k ≤ ceil(log2(n

+1))

Shell Sort Example with Gaps of 7, 3, 1

Chapter 8: Sorting 18

Merge Sort

Chapter 8: Sorting 19

Sort by merging two already-sorted sequences, itemsA and itemsB of length lenA
and lenB, respectively, into a new sequence, itemsC

 Set the indices posA, posB, posC to 0
 while (posA<lenA) and (posB<lenB) do
 if (itemsA[posA]<itemsB[posB]) {
 itemsC[posC] = itemsA[posA];
 posA = posA + 1;
 }
 else {
 itemsC[posC] = itemsB[posB];
 posB = posB + 1;
 }
 posC = posC + 1;
 if (posA<lenA-1) {
 append all the remaining elements of itemsA to itemsC;
 }
 else if (posB<lenB-1) {
 append all the remaining elements of itemsB to itemsC;
 }

Merge Example

Chapter 8: Sorting 20

Chapter 8: Sorting 21

Analysis of Merge

•  For two input sequences that contain a total of n
elements, we need to move each element’s input
sequence to its output sequence

•  The number of comparisons is not more than the total
number of elements.

•  So, the time for merging is O(n).

Merge Sort

•  If an input sequence has size > 1, divide it into left and
right halves

•  Use Merge Sort to sort the halves
•  Merge the two sorted halves.

•  To sort each half, create its copy and make a recursive
call to Merge Sort.

•  To merge, use the two half-size sequences returned by
the recursive calls

Chapter 8: Sorting 22

Chapter 8: Sorting 23

Chapter 8: Sorting 24

Analysis of Merge Sort
•  Assume the length of the sequence is a power of 2, say 2m.

•  We can assume that infinitely large elements exist
beyond the sequence to make its length a power of 2;
the length will then be at most 2 times the length of the
original.

•  Let f(m)=time for merge-sorting a sequence of size 2m.
•  We have f(m) = 2*f(m-1) + c*2m for some constant c.
•  We then have:

•  f(m) = 4*f(m-2)+2c*2m-1 = 8*f(m-3)+3c*2m-1 = …
= 2m*f(0)+mc*2m. Thus, f(m) is O(m*2m).

•  This implies that Merge Sort has efficient of O(nlog n).

Heapsort

•  Use a property of the heap that the largest element is at
the root.

•  Given n elements, turn them into a heap of size n
(implementable using an array of size n).

•  For p = n, …, 2 do the following:
•  Exchange the element at position 0 (the root) and the

element at position p.
•  Enforce the heap property starting from position 0.
•  (In the next round p is decremented, so the above

achieves the removal of the root.)

Chapter 8: Sorting 25

Heap Sort

Initialization of heap and
extraction of an element

Extraction of the next two
elements

Chapter 8: Sorting 26

Heapsort Analysis

•  Both insertion in the heap and the restructuring after
removal for maintaining the heap property require time O
(log n).

•  Since both occur n times, the total time required for
these is O(n long).

•  The time required for other operations is O(n).
•  Thus, Heapsort has the running time of O(nlog n).

Chapter 8: Sorting 27

Chapter 8: Sorting 28

Quicksort

•  We’ll assume that the elements are in an array.

•  Select an element, called pivot, from the array and
reorder the array so that:
•  Those smaller than the pivot come first (in any order)
•  Those larger than the pivot comes last

•  Recursively sort the two subparts using Quicksort and
then join them.

•  Average case for Quicksort is O(n log n)

Idealized Split in Quicksort
(the ordering is preserved here for the sake

of clarity in presentation)

Chapter 8: Sorting 29

Algorithm for Partitioning Array items
Between Index P and Index Q

 Set pivot to items[P]
 Set up to P and down to Q
 do

 while (items[up] ≤ pivot) and (up < Q) { up++ }
 while (items[down] ≥ pivot) and (down > P) { down−− }
 if (up < down) { swap items[up] and items[down] }

 while (up < down);
 swap items[P] and items[down]

Chapter 8: Sorting 30

Chapter 8: Sorting 31

Chapter 8: Sorting 32

Practical Partition Algorithm

•  Quicksort is O(n2) when each split yields one empty
subarray, which is the case when the array is presorted

•  This can be avoided by selecting as the pivot value that
is “less likely to lead to a bad split”
•  One such a choice is the median of the first, middle,

and last elements
•  Another solution is to randomly select a position between

P and Q and use the element at the position as the pivot
•  On average, the time is O(n log(n))

Chapter 8: Sorting 33

Testing the Sort Algorithms

•  Need to use a variety of test cases
•  Small and large arrays
•  Arrays in random order
•  Arrays that are already sorted
•  Arrays with duplicate values

•  Compare performance on each type of array

Chapter 8: Sorting 34

