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Abstract

The misjudgement of tilt in images lies at the heart of eataimg vi-
sual illusions and rigorous perceptual psychophysics. Altheof find-
ings has attracted many mechanistic models, but few cleapuatational
principles. We adopt a Bayesian approach to perceptuadiiination,
showing how a smoothness prior offers a powerful way of agking
much confusing data. In particular, we faithfully model eat results
showing thatonfidencean estimation can be systematically affected by
the same aspects of images that affect bias. Confidence tisalcem
Bayesian modeling approaches, and is applicable in marer pércep-
tual domains.

Perceptual anomalies and illusions, such as the misjudgsnoé motion and tilt evident
in so many psychophysical experiments, have intriguedarebers for decadés® A
Bayesian vieWr® has been particularly influential in models of motion prebes, treating
such anomalies as the normative product of prior infornmafmften statistically codify-
ing Gestalt laws) with likelihood information from the aatiscenes presented. Here, we
expand the range of statistically normative accounts t@siimation, for which there are
classes of results (on estimation confidence) that are swfavailable for motion.

The tilt illusion arises when the perceived tilt of a centnget is misjudgedi€ biag in
the presence of flankers. Another phenomenon, called Cngydéfers to a loss in the
confidence ieé sensitivity of perceived target tilt in the presence of flankers. Attemp
have been made to formalize these phenomena quantitait#ewding has been modeled
as compulsory feature pooling(@veraging of orientations), ignoring spatial positiri§.
The tilt illusion has been explained by lateral interacsdri?in populations of orientation-
tuned units; and bgalibration.3

However, most models of this form cannot explain a numberwudial aspects of the data.
First, thegeometryof the positional arrangement of the stimuli affects attcacversus
repulsion in bias, as emphasized by Kapagtial* (figure 1A), and others>® Second,
Solomon et al. recently measured basd sensitivity simultaneouslit The rich and
surprising range of sensitivities, far from flat as a functad flanker angles (figure 1B),
are outside the reach of standard models. Moreover, cuesgriianations do not offer a
computational account of tilt perception as the outcomeradranative inference process.

Here, we demonstrate that a Bayesian framework for orientastimation, with a prior
favoring smoothness, can naturally explain a range of segynpuzzling tilt data. We
explicitly consider both the geometry of the stimuli, and thsue of confidence in the esti-
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Figure 1: Tilt biases and sensitivities in visual perceptiqA) Kapadiaet al demonstrated the
importance of geometry on tilt bias, with bar stimuli in the fovea (and similaults in the
periphery). When 5 degrees clockwise flankers are arranged adiintne center target appears
attracted in the direction of the flankers; when flankers are lateral, thet tapgears repulsed.
Data are an average of 5 subjetts(B) Solomonet al measured both biases and sensitivities
for gratings in the visual periphefy. On the top are example stimuli, with flankers tilted 22.5
degrees clockwise. This constitutes the classic tilt illusion, with a repulsisefdgecept. In
addition, sensitivities vary as a function of flanker angles, in a systematjc(ewen in cases
when there are no biases at all). Sensitivities are given in units of thesewéstandard deviation
of the tilt estimate. More detailed data for both experiments are shown inghitgsection.

mation. Bayesian analyses have most frequently been dgplisias. Much less attention
has been paid to the equally important phenomenon of satsiff his aspect of our model
should be applicable to other perceptual domains.

In section 1 we formulate the Bayesian model. The prior igmheined by the principle of
creating a smooth contour between the target and flankerslegdéibe how to extract the
bias and sensitivity. In section 2 we show experimental dakapadiaet aland Solomon
et al, alongside the model simulations, and demonstrate thabtitkel can account for both
geometry, and bias and sensitivity measurements in the @ataresults suggest a more
unified, rational, approach to understanding tilt peraepti

1 Bayesian model

Under our Bayesian model, inference is controlled by thegrms distribution over the
tilt of the target element. This comes from the combinatibm @rior favoring smooth
configurations of the flankers and target, and the likeliressbciated with the actual scene.
A complete distribution would consider all possible angled relative spatial positions of
the bars, and marginalize the posterior over all but theofilthe central element. For
simplicity, we make two benign approximations: conditiiriag over (e clamping) the
anglesof the flankers, and exploring only a small neighborhood efrthositions. We now
describe the steps of inference.

Smoothness prior: Under these approximations, we consider a gaetual configuration
(see fig 2A) of flankerg; = (¢1, x1), fo =(¢2, x2) and center target= (¢, z.), arranged
from top to bottom. We have to generate a prior avgandd; =1 — x. andds =x4 — x,
based on the principle of smoothness. As a less benign appat&n, we do this in two
stages: articulating a principle that determines a singtar@l configuration; and generat-
ing a prior as a mixture of a Gaussian about this optimum andfarn distribution, with
the mixing proportion of the latter being determined by thmsthness of the optimum.

Smoothness has been extensively studied in the compuien literature!’-2° One widely
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Figure 2. Geometry and smoothness for flankefsand f2, and center target,. (A) Example
actual configuration of flankers and target, aligned along ghaxis from top to bottom.(B)
The elastica procedure can rotate the target angk® {f@nd shift the relative flanker and target
positions on ther axis (tod; anddz) in its search for the maximally smooth solution. Small
spatial shifts (up tal /15 the size ofR) of positions are allowed, but positional shift is over-
emphasized in the figure for visibilityC) Top: center tilt that results in maximal smoothness, as
a function of flanker tilt. Boxed cartoons show examples for given 8aitiks, of the optimally
smooth configuration. Note attraction of target towards flankers fotl $lmaker angles; here
flankers and target are positioned in a nearly colinear arrangemets.aléo repulsion of target
away from flankers for intermediate flanker angles. Bottdtfr, f1, f2] for center tilt that yields
maximal smoothness. Theaxis is normalized between 0 and 1.

used principleglastica known even to Euler, has been applied to contour compftion
and other computer vision applicatioh’sThe basic idea is to find the curve with minimum
energy {e, square of curvature). Sharem al® showed that the elastica function can be
well approximated by a number of simpler forms. We adopt &iverthat Leung and
Malik'® adopted from Sharoet al'® We assume that the probability for completing a
smooth curve, can be factorized into two terms:

P[C7 flva} = G(C, fl)G(C, f2) (1)
with the termG(c, f1) (and similarly,G(c, f2)) written as:
Gle ) —exp(——- ~23) where D=+ @ - @B (@
OR a3

and3; (and similarly,3.) is the angle between the orientationfat and the line joining
f1 andc. The distance between the centersfpfindc is given by R. The two constants,
o andog, control the relative contribution to smoothness of thelawgrsus the spatial
distance. Here, we se; = 1, ando = 1.5. Figure 2B illustrates an example geometry,
in which ¢., §,, andd., have been shifted from the actual scene (of figure 2A).

We now estimate the smoothest solution for given configomati Figure 2C shows for
given flanker tilts, the center tilt that yields maximal srttoeess, and the corresponding
probability of smoothness. For near vertical flankers, fgaial lability leads to very weak
attraction and high probability of smoothness. As the flargdegle deviates farther from
vertical, there is a large repulsion, but also lower prolitgtnf smoothness. These obser-
vations are key to our model: the maximally smooth centewill influence attractive and
repulsive interactions of tilt estimation; the probalilaf smoothness will influence the
relative weighting of the prior versus the likelihood.

From the smoothness principle, we construct a two dimeasiprior (figure 3A). One
dimension represents tilt, the other dimension, the ovpaitional shift between target
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Figure 3: Bayes model for example flankers and targg¥) Prior 2D distribution for flankers
set at 22.5 degrees (note repulsive preference for -5.5 dgg(&) Likelihood 2D distribution
for a target tilt of 3 degreeqC) Posterior 2D distribution. All 2D distributions are drawn on
the same grayscale range, and the presence of a larger baseline iiothmpses it to appear
more dimmed. (D) Marginalized posterior, resulting in 1D distribution over tilt. Dashed line
represents the mean, with slight preference for negative aftgjl€or this target tilt, we calculate
probability clockwise, and obtain one point on psychometric curve.

and flankers (called 'position’). The prior is a 2D Gaussigtribution, sat upon a constant
baseliné? The Gaussian is centered at the estimated smoothest tagjetand relative
position, and the baseline is determined by the probalfigmoothness. The baseline, and
its dependence on the flanker orientation, is a key differdram Weisset als Gaussian
prior for smooth, slow motion. It can be seen as a mechanisaidey segmentation (see
Posterior description below). The standard deviation ef@aussian is a free parameter.

Likelihood: The likelihood over tilt and position (figure 3B) is determthby a 2D Gaus-
sian distribution with an added baselitfe The Gaussian is centered at the actual target
tilt; and at a position taken as zero, since this is the agiasition, to which the prior is
compared. The standard deviation and baseline constafrearparameters.

Posterior and marginalization: The posterior comes from multiplying likelihood and
prior (figure 3C) and then marginalizing over position toasbta 1D distribution over tilt.
Figure 3D shows an example in which this distribution is hbilalo Other likelihoods, with
closer agreement between target and smooth prior, giveagtdhdistributions. Note that
the bimodality is a direct consequence of having an addeelibago the prior and likeli-
hood (if these were Gaussian without a baseline, the posteduld always be Gaussian).
The viewer is effectively assessing whether the targetde@ated with the same object as
the flankers, and this is reflected in the baseline, and coestly, in the bimodality, and
confidence estimate. We defineas the mean angle of the 1D posterior distributieg (
value of dashed line on the axis), and3 as the height of the probability distribution at
that mean anglee) height of dashed line). The termis an indication of confidence in
the angle estimate, where for larger values we are moreiceftéhe estimate.

Decision of probability clockwise: The probability of a clockwise tilt is estimated from
the marginalized posterior:

P= ! 3)

—a.xk
1 + exp (W)
wherea and S are defined as abové,is a free parameter anga small constant. Free
parameters are set to a single constant value for all flamdecenter configurations. Weiss
et aluse a similar compressive nonlinearity, but without thent@r We also tried a decision

function that integrates the posterior, but the resultingyes were far from the sigmoidal
nature of the data.

Bias and sensitivity: For one target tilt, we generate a single probability andetfoee a
single point on the psychometric function relating tilt ke tprobability of choosing clock-
wise. We generate the full psychometric curve from all tatids and fit to it a cumulative
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Figure 4: Kapadiaet al datal* versus Bayesian model. Solid lines are fits to a cumulative
Gaussian distributior(A) Flankers are tilted 5 degrees clockwise (black curve) or anti-clockwise
(gray) of vertical, and positioned spatially in a colinear arrangement. cEhéer bar appears
tilted in the direction of the flankers (attraction), as can be seen by the attratiift of the
psychometric curve. The boxed stimuli cartoon illustrates a vertical ttargalst the flankers.
(B) Model for colinear bars also produces attractif@®) Data andD) model for lateral flankers
results in repulsion. All data are collected in the fovea for bars.

Gaussian distributioiV (11, o) (figure 3E). The meap of the fit corresponds to the bias,
and% to the sensitivity, or confidence in the bias. The fit to a cuatisé Gaussian and

extraction of these parameters exactly mimic psychophypiocedures!

2 Results: data versus model

We first consider the geometry of the center and flanker corsfiguns, modeling the full
psychometric curve for colinear and parallel flanks (rettedt figure 1A showed summary
biases). Figure 4A;B demonstrates attraction in the dadarardel; that is, the psychome-
tric curve is shifted towards the flanker, because of theraatfismooth completions for
colinear flankers. Figure 4C;D shows repulsion in the dathrandel. In this case, the
flankers are arranged laterally instead of colinearly. Theathest solution in the model
arises by shifting the target estimate away from the flank@tss shift is rather minor,
because the configuration has a low probability of smooth@milar to figure 2C), and
thus the prior exerts only a weak effect.

The above results show examples of changes in the psychiomatve, but do not address
both bias and, particularly, sensitivity, across a whoteyeaof flanker configurations. Fig-
ure 5 depicts biases and sensitivity from Solonetal, versus the Bayes model. The data
are shown for a representative subject, but the qualitaevior is consistent across all
subjects tested. In figure 5A, bias is shown, for the condlitiat both flankers are tilted
at the same angle. The data exhibit small attraction at nexdical flanker angles (this
arrangement is close to colinear); large repulsion atimégliate flanker angles of 22.5 and
45 degrees from vertical; and minimal repulsion at largdesfyom vertical. This behav-
ior is also exhibited in the Bayes model (Figure 5B). Forrnmtediate flanker angles, the
smoothest solution in the model is repulsive, and the efietie prior is strong enough to
induce a significant repulsion. For large angles, the poierts almost no effect.

Interestingly, sensitivity is far from flat in both data andadel. In the data (Figure 5C),
there is most loss in sensitivity at intermediate flankedesgf22.5 and45 degreesig,

the subject is less certain); and sensitivity is higher feamvertical or near horizontal
flankers. The model shows the same qualitative behaviouf€igD). In the model, there
are two factors driving sensitivity: one is the probabilifycompleting a smooth curvature
for a given flanker configuration, as in Figure 2B; this deteas the strength of the prior.
The other factor is certainty in a particular center estiamtthis is determined by, de-

rived from the posterior distribution, and incorporatetbithe decision stage of the model
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Figure 5: Solomonet al datd* (subject FF), versus Bayesian modéh) Data and(B) model
biases with same-tilted flanker&Z) Data and D) model sensitivities with same-tilted flankers;
(E;G) data andF;H) model as above, but for opposite-tilted flankers (note that opposite-tilted
data was collected for less flanker angles). Each point in the figureiiedéy fitting a cum-
mulative Gaussian distributioV (1, o) to corresponding psychometric curve, and setting bias
equal toy and sensitivity to%. In all experiments, flanker and target gratings are presented in
the visual periphery. Both data and model stimuli are averages of tafigooations, on the left
hand side (9 O’clock position) and right hand side (3 O’clock positiome Tonfigurations are

similar to Figure 1 (B), but slightly shifted according to an iso-eccentridegiso that all stimuli
are similarly visible in the periphery.

Sensititvity (1/deg) &
Sensitivity (1/deg) <

©oo0oo0o0o0o

(equation 3). For flankers that are far from vertical, th@iphias minimal effect because
one cannot find a smooth solutioag( the likelihood dominates), and thus sensitivity is
higher. The low sensitivity at intermediate angles arissalise the prior has considerable
effect; and there is conflict between the prior (tilt, pasi), and likelihood (tilt, position).
This leads to uncertainty in the target angle estimatiorr fleakers near vertical, the prior
exerts a strong effect; but there is less conflict betweetikbihood and prior estimates
(tilt, position) for a vertical target. This leads to morenfidence in the posterior estimate,
and therefore, higher sensitivity. The only aspect thatoodel does not reproduce is the
(more subtle) sensitivity difference between 0 and +/- Geedlankers.

Figure 5E-H depict data and model for opposite tilted flask&he bias is now close to zero
in the data (Figure 5E) and model (Figure 5F), as would bea®rggsince the maximally
smooth angle is now always roughly vertical). Perhaps mongrsingly, the sensitivities
continue to to be non-flat in the data (Figure 5G) and modejufé 5H). This behavior
arises in the model due to the strength of prior, and positioncertainty. As before, there
is most loss in sensitivity at intermediate angles.

Note that to fit Kapadiat al, simulations used a constant parametek ef 9 in equation



3, whereas for the Solomon et al. simulatiohss 2.5. This indicates that, in our model,
there was higher confidence in the foveal experiments théreiperipheral ones.

3 Discussion

We applied a Bayesian framework to the widely studied tilision, and demonstrated the
model on examples from two different data sets involvingehand peripheral estimation.
Our results support the appealing hypothesis that perakptisjudgements are not a con-
sequence of poor system design, but rather can be descshmatimal inferencé-® Our
model accounts correctly for both attraction and repulsitatermined by the smoothness
prior and the geometry of the scene.

We emphasized the issue of estimation confidence. The data@sing how confidence

is affected by the same issues that affect btasas exactly appropriate for a Bayesian
formulation; other models in the literature typically dotnicorporate confidence in a

thoroughly probabilistic manner. In fact, our model fits tdomfidence (and bias) data more
proficiently than an account based on lateral interactiomsg a population of orientation-

tuned cellst! Other Bayesian work, by Stocket al,® utilized the full slope of the psycho-

metric curve in fitting a prior and likelihood to motion dabait did not examine the issue
of confidence. Estimation confidence plays a central roledgeBian formulations as a
whole. Understanding how priors affect confidence shoulgt tdirect bearing on many

other Bayesian calculations such as multimodal integnéfio

Our model is obviously over-simplified in a number of waygsEiwe described it in terms
of tilts and spatial positions; a more complete version &hawrk in the pixel/filtering do-
main’®1® We have also only considered two flanking elements; the misdmttendible
to a full-field surround, whereby smoothness operates adorange of geometric direc-
tions, and some directions are more (smoothly) dominamt tihers. Second, the prior
is constructed by summarizing the maximal smoothnessrirdtion; a more probabilisti-
cally correct version should capture the full probabilifysmoothness in its prior. Third,
our model does not incorporate a formal noise representadimwvever, sensitivities could
be influenced both by stimulus-driven noise and confidenceirtk, our model does not
address attraction in the so-called indirect tilt illusitmought to be mediated by a different
mechanism. Finally, we have yet to account for neurophggiohl data within this frame-
work, and incorporate constraints at the neural implentimdevel. However, versions
of our computations are oft suggested for intra-areal ardldack cortical circuits; and
smoothness principles form a key part of the associatiod iehnection scheme in L#$
dynamical model of contour integration in V1.

Our model is connected to a wealth of literature in compuision and perception. No-
tably, occlusion and contour completion might be seen agxtreme example in which
there is no likelihood information at all for the center tairga host of papers have shown
that under these circumstances, smoothness principlassatasticaand variants explain
many aspects of perception. The model is also associatbdwaihy studies on contour in-
tegration motivated by Gestalt principl&s2® and exploration of natural scene statistics and
Gestalt?”- 2 including the relation to contour grouping within a Bayesfeamework?®:30
Indeed, our model could be modified to include a prior fronuredtscenes.

There are various directions for the experimental test afidement of our model. Most
pressing is to determine bias and sensitivity for differegmiter and flanker contrasts. As
in the case of motion, our model predicts that when there ierancertainty in the center
element, prior information is more dominant. Another iatting test would be to design
a task such that the center element is actually part of ardiffdigure and unrelated to the
flankers; our framework predicts that there would be minibia, because of segmenta-
tion. Our model should also be applied to other tilt-baskegibns such as the Fraser spiral



and Zliner. Finally, our model can be applied to other percelptiganains®' and given
the apparent similarities between the tilt illusion andtiiafter-effect, we plan to extend
the model to adaptation, by considering smoothness in tsweedl as space.
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