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Saccade
A rapid eye movement (with 

speeds of up to 800° 
per second) that brings the 

point of maximal visual acuity 

— the fovea — to the image of 

interest.

Space and time in visual context
Odelia Schwartz*‡, Anne Hsu§ and Peter Dayan§

Abstract | No sensory stimulus is an island unto itself; rather, it can only properly be 

interpreted in light of the stimuli that surround it in space and time. This can result in 

entertaining illusions and puzzling results in psychological and neurophysiological 

experiments. We concentrate on perhaps the best studied test case, namely orientation 

or tilt, which gives rise to the notorious tilt illusion and the adaptation tilt after-effect. 

We review the empirical literature and discuss the computational and statistical ideas 

that are battling to explain these conundrums, and thereby gain favour as more general 

accounts of cortical processing.

“No man”, and concomitantly no sensory stimulus, “is an 
island.” That is, the perception of, and neurophysiological 
responses to, a target input depend strongly on both its 
spatial context (what surrounds a given object or feature) 
and its temporal context (what has been observed in the 
recent past). Psychophysical evidence for contextual 
effects is particularly widespread in vision1, including 
motion2, brightness3,4, orientation5, blur6 and faces7,8. 
However, contextual influences also extend to other 
modalities, such as audition9 and somatosensory process-
ing10. Neurophysiological evidence for contextual influ-
ences is most extensive in the early visual processing of 
orientation and motion11–14, and in the whisking activity 
in the rodent somatosensory cortex15; but context is also 
likely to influence the neural processing of many other 
attributes, including colour16 and border ownership17.

Here, we focus on the contextual modulation of 
visual orientation (see the examples in FIG. 1), a topic 
of broad interest that has given rise to many somewhat 
contentious results and theories. With some recent excep-
tions18–25, spatial and temporal contextual modulation 
of orientation processing have typically been treated 
separately, even being referred to by different names 
(for example, perceptual illusions and after-effects; non-
classical receptive fields and adaptation, respectively). 
Nevertheless, despite quite different demands on the 
neural substrate (for example, horizontal intra-areal 
interactions for spatial context, and memory for temporal 
context), they are closely related both functionally and 
in terms of their impact on vision. We describe some of 
the many results that show the apparent psychophysical 
and electrophysiological parallels between the effects of 
spatial and temporal context (FIG. 2), and provide an over-
view of computational analyses of contextual processing 
that bear on this likeness.

A central issue for this Review is whether there is a 
functionally important commonality between spatial 
and temporal context that underlies the similarities 
between them that are evident in FIG. 2, or whether 
these similarities are mere coincidence. Many, perhaps 
even most, functional characterizations of cortical visual 
areas suggest that their processing either implicitly or 
explicitly reflects the statistical structure of the visual 
inputs. One obvious source of commonality would be 
if these statistics themselves exhibited similar proper-
ties. In fact spatial and temporal context can be seen as 
orthogonal slices through the full spatio-temporal struc-
ture of natural scenes and, indeed, it turns out that these 
slices do have a crucial shared property arising from 
the fact that objects are typically smooth and move or 
change slowly — inputs that are nearby in either space 
or time are typically similar (in some cases even taking 
saccades into account). We will see that many treatments 
of context make explicit or implicit appeal to these prop-
erties. Despite this common underlying foundation, 
the functional goals of contextual effects are still hotly 
debated. The understanding of contextual effects will 
have important implications for understanding normal 
processing of the spatio-temporal world, as well as for 
developing engineering and medical applications tuned 
to a complex changing sensory environment, such as 
adaptive visual and hearing aids.

In the next section, we review experimental data 
describing how single cells and perceptions are affected 
by spatial and temporal context, and describe models 
that link these two datasets. We then consider the 
relationship between these changes and the statisti-
cal properties of natural scenes. We end by discussing 
some of the many gaps in the data and in our theoretical 
understanding of contextual effects.
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a Tilt illusion

c Zollner illusion

d Fraser spiral

b Tilt after-effect

Adapt Test

Orientation tuning
The property of visual neurons 

to only respond to stimuli 

(images) with a certain 

orientation or tilt (for example, 

vertically orientated bars).

Tuning curve
A tuning curve to a feature 

(such as orientation) is the 

curve describing the average 

response of a neuron as a 

function of the feature values.

Rotation invariance
When each input angle is 

treated in the same way; that 

is, when the input rotates, the 

output rotates.

Contextual effects on tilt

We can approach the effect of context on tilt by 
measuring how the electrophysiological responses of 
populations of neurons to local orientation stimuli 
are changed by context (FIG. 2c,d), and by investigating 
the effects of context on the perception of orienta-
tion (FIG. 2a,b). Below we use mechanistic models of 
orientation tuning (FIG. 3) to assess whether the changes 
seen in population responses are consistent with 
experimental findings (FIG. 2). Many experiments indi-
cate marked similarities between spatial and temporal 
context; however, although a good proportion are 
generally accepted, controversy remains even within 
each of the domains. Some of the controversy could 
arise from experimental differences, such as: species; 
anesthetized versus awake subjects; stimulus configu-
rations; timescales of adaptation; or the possibility that 
certain of the stimuli actually impinge on the classical 
receptive field, thus rendering the effects not strictly 
contextual.

Electrophysiology. Many neurons in the primary visual 
cortex (V1) are selective for local orientation within 
spatial receptive fields26, having mean firing rates that 
are conventionally modelled as coming from uni-modal, 
Gaussian-like tuning curves that are defined by three 
parameters: height, width and the ‘preferred orientations’ 
at which they peak. Local orientation is represented 
by a population of such neurons27–29, the orientation 
preferences of which are evenly distributed across the 
range, from –90° to 90°. The first two columns in FIG. 3a 
show the tuning curves of such a neuron population 
and their mean activities induced by presenting a bar at 
an angle of 20°. Note that in the absence of context, we 
assume homogenous processing of orientation (rotation 

invariance) and do not incorporate preference for absolute 
cardinal orientation axes30.

Contextual stimuli lead to suppression or enhance-
ment of firing rates, broadening or sharpening of tuning 
widths, and repulsive or attractive shifts in preferred 
orientation, all depending on the relationship between 
the orientation of the contextual stimuli and the pre-
ferred orientation of the neurons. The first column in 
FIG. 3b–d illustrates archetypal changes to the population 
tuning curves that occur in response to a context (either 
spatial or temporal) orientated at 0°. In reality, the whole 
collection of tuning curves is rarely recorded in single 
experiments and many factors can affect the results.

FIGURE 3b models tuning curve suppression, which 
is maximal for tuning curves that peak at the context 
orientation 0°. Suppression of neural responses has been 
widely observed in spatial contextual studies in the mon-
key31–36 and cat24,37, and in temporal contextual studies in 
the monkey38 and cat24,39,40. Contextual stimuli can also 
facilitate responses in neurons for which the preferred 
stimuli are orthogonal to the spatial or temporal context 
in both monkey and cat31,40,41, although there is variability 
across the population of cells31,40. FIGURE 2c shows 
example experimental data comparing suppression as a 
function of orientation difference between context and 
target, for spatial37 and temporal39 cases. Note that the 
data, unlike the model, do not specify the full tuning 
curves, but rather the amount of suppression at a par-
ticular location on the tuning curve for each orientation 
difference. Empirically, suppression is sometimes asym-
metrical, affecting only the half of the tuning curve that 
contains the contextual orientation42, rather than being 
symmetrical as modelled here.

FIGURE 3c models increases in tuning curve widths (by 
increasing the Gaussian standard deviations), which are 
greatest for the neuron with preferred orientation at 0°, 
and decreases in tuning curve widths, as the difference 
between the preferred and contextual orientations 
grows. Spatial context has not been shown to produce 
systematic tuning width changes43. However, in (tem-
poral) adaptation experiments, cells near the adapted 
orientation showed broadening of this sort39.

FIGURE 3d shows repulsive shifts of population tun-
ing curves in the model away from 0°. The shifts are 
greatest for tuning curves that peak in the vicinity of the 
contextual orientation. Indeed, many experiments have 
shown that the preferred orientation of tuning curves 

Figure 1 | Examples of contextual tilt. a | Tilt illusion. The presence of a surround 

spatial context tilted 15° clockwise from vertical causes the vertical centre target to 

appear repulsed away from the context, that is, tilted counter clockwise. The 

context and the target are separate in space but overlap in time. b | Tilt after-effect. 

The temporal context (adapt) is presented before the target (test) and this causes 

the vertical target to appear repulsed away from the context orientation. To 

induce the tilt after-effect, gaze at the left frame for at least 30 seconds and then 

quickly fixate upon the right frame. The context and test overlap in space but not in 

time. c, d | Two well-known illusions, which partly depend on contextual 

interactions of orientation. c | Zollner illusion. The four horizontal lines are parallel 

but appear tilted, owing to the shorter lines that are overlaid at an angle on top of 

each horizontal line and act as a context. d | Fraser spiral illusion200. The arc 

segments appear to form a spiral, but they are actually a series of concentric circles. 

The illusion is due to the tilted context pattern in the circles, which is augmented by 

the checkerboard pattern.
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Figure 2 | Example experimental data for spatial and temporal context effects. The two columns show the similarity of 

spatial and temporal context effects on perception and neuronal response. a | Tilt illusion (spatial, left) and tilt after-effect 

(temporal, right) biases as a function of the angle difference between context and target orientations. Positive bias 

indicates repulsion and negative bias indicates attraction. b | Orientation discrimination thresholds for spatial and 

temporal data. c | Response suppression in cortical neurons as a function of the angle difference between the target and 

its context. The spatial data apply to 9 out of 32 neurons which showed ‘iso-oriented suppression ’. The temporal data are 

for suppression on the near flank of the tuning curve, which is similar but not identical in behaviour to suppression at the 

original preferred orientation. d | Repulsive tuning shifts in primary visual cortex neurons for space and time, for context-

target differences of 15° (spatial context) and 15° and 30° (temporal context). e | Contrast–response functions for space 

and time in cortical neurons, either without a context (circles), or with a context orientation equal to the test (triangles). 

Modified, with permission, from: a REF. 19 © (2000) Royal Society of london; b (right) REF. 54 © (1985) American Institute 

Of Physics; c (left) REF. 37 © (1997) Springer; c (right) REF. 39 © (2000) Cell Press; d REF. 24 © (2005) Institute Of Physics 

Publishing; e (left) REF. 31© (2002) American Physiological Society; e (right) REF. 40 © (2006) American Physiological 

Society. Data for b (left) from REF. 146.
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of V1 neurons in cats and monkeys shifts away from 
the orientation of the spatial context24,43 or from the 
adapted orientation24,38,39. In the case of adaptation, such 
shifts have been reported after lengths of time as short as 
milliseconds24,38 and have been documented to increase 
in strength for time scales on the order of minutes39. 
Figure 2d shows sample experimental data24 that compare 
the distributions of tuning curve shifts when contextual 
and target orientations differ by 15° (spatial case) and 
by 15° and 30° (temporal context). Repulsive shifts in 
speed selectivity have also been noted in the presence of 
spatial context stimuli44. However, repulsive shifts might 
not be ubiquitous. Indeed, attractive shifts towards 
the contextual stimulus have been found in monkeys 
for cortical areas beyond V1, specifically in the visual 
motion processing middle temporal area in response to 
adaptation to the direction of motion42.

Psychophysics. The most straightforward examples of 
perceptual effects in orientation are two biases, known 
respectively as the tilt illusion, which is induced by spatial 
surround stimuli (FIG. 1a), and the tilt after-effect, which 
is caused by temporal adaptation to uniformly orientated 
textures (FIG. 1b) and which has been studied for time-
scales ranging from seconds to minutes45. Sample data for 
both spatial and temporal context19 are shown in FIG. 2a. 
The two biases depend in strikingly similar ways on the 
relative orientations of the target and the contextual stim-
uli5,18,46. Tilts that are close to the contextual orientation are 
‘repelled’, that is, perceived as tilting further away from the 
contextual orientation (the direct effect), whereas tilts that 
differ greatly from the contextual orientation are attracted 
(the indirect effect, which is weaker).

Such biases have been widely documented for other 
stimulus attributes: the indirect effect has been observed 

Figure 3 | Mechanistic population model for spatial and temporal context. a | Tuning curves in the absence of 

context. b–e | The tuning parameters of the neuronal population are modified, given a context at 0°. Red indicates 

the tuning curve at the orientation equal to that specified by the context. b | Tuning curve suppression occurs when the 

preferred orientation is equal to that of the context, and gradually changes back to baseline as the preferred orientation 

moves further away from that of the context. c | Tuning curve widths decrease for neurons whose preferred orientations 

are further away from the contextual orientation. d | The preferred tuning values of neurons shift away from the contextual 

orientation, with the greatest shifts for values starting closest to the context. e | Example combination of tuning curve 

changes, based on the model of Clifford et al. (REF. 19). Columns left to right: tuning curves; population response (original 

blue; contextually modulated green) to a target orientation of 20°; bias, assuming maximum-likelihood decoding, either 

suffering from the ‘coding catastrophe’ (magenta) or the true maximum likelihood (cyan), correcting for the new tuning 

properties of the neurons. Dashed lines show the standard deviation of the two decoded estimates; and variability of the 

estimators (magenta and cyan) and the inverse of the Fisher information (black). Rows (b–e) also display the baseline for 

the inverse of the Fisher information without any tuning manipulations (black dotted lines). 
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Discrimination threshold
The smallest difference 

between two visual stimuli (for 

example, vertical versus tilted 

bars) that can reliably (that is, 

with a given probability of 

error) be reported by an 

observer.

Population code
Sensory events that are 

encoded by neuronal 

populations rather than by 

individual neurons.

Poisson spiking neuron
A simple model neuron for 

which the number of spikes 

emitted in a given time is 

Poisson distributed about a 

mean firing rate. Spikes are 

assumed to be independent 

both in time and across 

neurons.

Fisher information
Measures how quickly the 

likelihood of the population 

responses changes with 

stimulus parameters, and 

thereby provides a decoder-

independent quantification of 

the potential accuracy of 

decoding (the Cramér-Rao 

lower bound).

Mean square estimation 
error
Estimation error can be 

quantified by the squared 

difference between the 

(population-based) estimate 

and its true value. The mean of 

this over trials is one measure 

of the accuracy of an estimate.

Efficient coding
When information is coded in 

an efficient and non-redundant 

manner, for instance, when the 

outputs of neurons in the 

population are statistically 

independent.

Bayes (Bayesian approach)
A statistical method that allows 

the use of prior information to 

evaluate the posterior 

probabilities of different 

hypotheses.

for motion stimuli47, and the direct effect has been 
reported for motion, colour, faces and blur2,6–8,20,47–49. 
Repulsion and attraction are also affected by factors such 
as timescale and geometry, as discussed later.

Discrimination thresholds for orientation are also 
altered in the presence of spatial context stimuli33,36,50,51, 
and temporal context stimuli ranging from millisec-
onds52 to seconds53 and minutes1,54–56, although some 
of these results are controversial. A notable effect that 
is qualitatively similar for both spatial and temporal 
contexts is that discrimination is impaired if the orien-
tation of context stimuli is different from the orienta-
tion of the test target by 7° to 45° (REFS 50,51,54,56 and 
FIG. 2b). Contextual stimuli that are orthogonal to the 
orient ation of the target stimulus seem to produce little 
or no impairment in discrimination; they might even 
aid discrimination in the case of adaptation39,52,56. Some 
studies50,54,56, although not others36,51,57 , have found a 
modest improvement in discrimination if context tilts 
were equal to the target orientation, for both spatial and 
temporal contexts.

Decoding. In order to link the electrophysiological and 
psychophysical results, we need to understand how 
neuronal population responses are decoded to produce 
perceptual effects. Perceptual decisions involve process-
ing in an extensive and incompletely understood hier-
archy of cortical areas. However, there are many models 
for decoding the sorts of population codes shown in FIG. 3, 
which are at least partly validated by psychological and 
neurophysiological observations.

We focus on maximum-likelihood decoding 
(although other methods yield similar results58): each 
stimulus is associated with a likelihood of responses, 
that is, the probability of the neural responses given 
the stimulus (P(response|stimulus)). The responses 
are based on the neurons’ (context-free) tuning curves; 
the perceived stimulus is the one that maximizes this 
likelihood of responses. Operating under the Poisson 

spiking neuron model (we assume that neurons in the 
population are independent, although correlations 
between neurons might also affect the result; for a 
recent review see REF. 59), the third column of FIG. 3a, 
which averages over 105 trials, shows that decoding is 
normally bias-free. Statistical considerations dictate 
the potential quality of a representation of a stimulus. 
This can be quantified by the Fisher information27–29, 
which, in regular cases such as this, is inversely related 
to the minimum threshold for discriminating two 
orientations or the minimum variance of the decoder. 
Column four of FIG. 3a shows the inverse of the Fisher 
information, which, in the absence of contextual 
stimuli, does not depend on the target orienta-
tions (and therefore neither does the threshold for 
discrimination).

Electrophysiological and perceptual data on con-
textual effects are conventionally linked by what we 
call a coding ‘catastrophe’ or decoding ambiguity60: 
downstream decoding mechanisms are assumed to be 
unaware of the changes in tuning caused by contextual 
stimuli. That is, they simply receive the changed input 

from the previous layer, and do not ‘know’ that changes 
have occurred due to the context and therefore err (for 
instance, in reporting absolute orientation) when such 
changes arise. We will later see that functional advantages 
might be associated with these errors.

Assuming that such a coding catastrophe takes 
place, the third column in FIG. 3b–d shows the biases 
in perceived orientation as a function of the presented 
orientation for the anomalous maximum-likelihood 
decoder (which fails to correct for the changes). Each of 
the physiological phenomena of suppression, broaden-
ing and shifting can lead to perceptual repulsion and/or 
attraction. All of these effects could be combined in 
various ways to lead to the observed perceptual phe-
nomena19,42,58,61. For example, FIG. 3e shows one possible 
combination19 that gives rise to both direct and indirect 
biases (compare with FIG. 2a).

The dashed lines in the graphs in the third col-
umn show the standard deviations (over 105 trials) of 
the maximum likelihood estimator, which suffers from the 
coding catastrophe, and of the true maximum likelihood 
estimator; the equivalent lines in the fourth column 
show the variances. The variability of the true maximum 
likeli hood decoder always follows the Fisher informa-
tion. The different tuning curve manipulations have dif-
ferent impacts on this variability; note how the inverse 
of the Fisher information in the last columns of FIG. 3d,e 
bear some qualitative resemblance to the threshold data 
in FIG. 2b.

One reason for biased orientation inference might 
be that it is accompanied by improved discriminability. 
Indeed, it is a standard statistical manoeuvre to trade 
off bias for variance in estimation, and this can lead to 
a lower overall mean square estimation error. However, 
it appears that for the maximum likelihood estimator, 
which suffers from the coding catastrophe, all the tuning 
curve manipulations due to context (FIG. 3b–e) result in a 
larger mean square estimation error.

Computation. This rather conventional review of the 
electrophysiological and perceptual data presents two 
challenges to functional views of visual processing, 
namely why contextual stimuli should induce percep-
tual biases and altered discriminability, and why these 
perceptual effects, as well as the more general wealth 
of experimental results exemplified in FIG. 2, should be 
so similar for spatial and temporal contexts. To answer 
these questions, we have to elucidate computational 
frameworks for understanding visual processing, and the 
role of context in these frameworks. The coding catas-
trophe is one key to the puzzle — why the visual system 
might organize an adaptive change to tuning curves 
only to then seemingly ignore those changes in down-
stream processing. We discuss the range of functional 
approaches for contextual processing, and argue that 
they variously address, embrace and evade the coding 
catastrophe, although none of the answers they provide 
is yet completely compelling.

It is possible that estimating the orientations in the 
way they appear in the experiments might not be a 
relevant goal. For instance, it has been suggested that 
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the key computation for the primary visual cortex is in 
fact the allocation of salience to image locations based 
on statistical inhomogeneities in space62 or time (for 
example, favouring novelty63), licensing estimation bias 
in favour of boosted salience. Equally, it could be argued 
that estimation is less important than discrimination, 
and therefore biases in estimation are of no importance 
compared with improvements in discriminability. 
However, the improvements in discriminability are argu-
ably modest, and for particular contextual orientations 
there is even a deterioration in performance. Compared 
with the sheer magnitude of the perceptual biases, it has 
therefore been suggested that discriminability may not 
be the main goal64.

After describing the statistical core that is common 
to many functional treatments of visual processing, we 
discuss in detail the two collections of accounts, namely 
efficient coding and Bayesian modelling, that have been 
most popular as models of contextual effects.

Image statistics. Crudely speaking, the job for the areas 
of the brain that process the visual world is to take the 
complete spatio-temporal input Is(t) up to time t; that is, 
the activation of all pixels (or small patches, or orienta-
tions) s at every spatial location up to this time, and 
extract information about the nature and significant 
contents of the scene at time t. Most computational 
models start from the premise that the way the cortex 
decomposes images is influenced by the regularities 
inherent in the statistics of Is(t) associated with the 
input scenes.

The statistical properties of typical natural scenes or 
movies have been extensively analysed65–70. Although 
the full distribution over natural movies P(I) eludes 
exact description, it is known that most objects in 
the visual world have large spatial and temporal foot-
prints71,72, which implies that there are substantial 
low- and high-order correlations between Is1(t1)  and 
Is2(t2)  for inputs s1 and s2 that are spatially near to each 
other and times t1 and t2 that are close. This means that 
the temporal context (I(t1) for t1 <t2, summing over 
space), and/or spatial context ({Is1}s1εS1

 for some subset 
of pixels S1 in the neighbourhood of s2, summing over 
time) will induce strong (and similar) expectations 
about the value Is2(t2) (REFS 73–75), with information 
accruing both dynamically, as in a Kalman filter76 and 
statically, as in a Markov random field77. Subjects’ know-
ledge of these correlations is evident in their ability to 
replace missing pixels in digital images78 based only on 
neighbourhood information.

It has also proved possible to characterize local ori-
entation in small patches of natural scenes (FIG. 4a). For 
instance, if natural scenes are filtered through receptive 
fields that resemble the orientation tuning of cortical 
simple cells, then the filter outputs at neighbouring 
spatial or temporal locations and for similar orientation 
preferences (FIG. 4b) are correlated, and exhibit higher 
order statistical coordination79–84.

Alternatively, we can examine the dominant orien-
tations in two small patches of images that are neigh-
bours in space or time, for instance, by considering a 

Figure 4 | Statistics of natural movies for time and space. a | Gathering image 

statistics24. Magenta corresponds to the target patch and cyan to context patches. 

For spatial statistics, the context is given by patches for eight surrounding spatial 

positions (statistics are averaged over all spatial positions in each frame). For 

temporal statistics, a single context patch of the neighbouring time frame of the 

movie in the same spatial location is collected. Actual statistics were gathered from 

the Catcam movie database201, using 6×6 pixel patches, and model-orientated 

filters202. Images of each frame were pre-processed by subtracting the mean and 

dividing by the standard deviation. b | Joint conditional statistics for target 

‘complex cell’ horizontal filter responses, given a context filter response79,203. 

Intensity is proportional to the bin counts, except that each column is 

independently re-scaled to fill the range of intensities. Note that when the context 

response is near zero, the target response is also near zero; for larger values of the 

context response, the width of distribution of the target response increases. 

c | Orientation statistics (also see REF. 24). For all patches of context that were 

horizontal, the graphs depict the probability that the target patch has a given 

orientation. Orientation of a patch is determined by computing the sum of squares 

of even and odd responses for 16 orientated filters, and taking the maximum over 

all orientations.
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Kalman filter
A recursive formulation that 

estimates the present outcome 

dynamically in time, based on 

prior information and noisy 

measurements.

Markov random field
An undirected graphical model 

that represents statistical 

dependencies between a set of 

variables. The Markov property 

is that a variable associated 

with one location in the image 

is only directly influenced by 

variables associated with 

neighbouring locations. 

Linear (or second order) 
de-correlation
Random variables are de-

correlated if the off-diagonal 

elements of their covariance 

matrix (representing the 

second order statistics) are 

equal to zero. De-correlation is 

in general a weaker 

requirement than 

independence, because higher 

order statistics may still exhibit 

dependencies.

Divisive normalization
Strictly speaking, when (for 

example) sum output across a 

population is kept constant by 

dividing each response by a 

(trial-dependent) quantity. 

Looser versions model gain 

control mechanisms in V1 and 

elsewhere.

Gain control
When the (for example) sum 

output across a population is 

used to adjust the gain to an 

appropriate level for a range of 

input signal levels, with higher 

signal levels resulting in 

higher gain and reduced 

response. Stricter versions are 

denoted divisive normalization. 

Anti-Hebbian learning
A learning rule whereby 

whenever two units or neurons 

are active simultaneously, the 

effective connection between 

them becomes less excitatory 

or more inhibitory.

Bayesian inference
Inference according to the 

standard laws of probability, 

notably including Bayes 

theorem. Conclusions are 

based on posterior 

distributions arising from 

combining observations (as 

probabilistic likelihoods) with 

prior information.

population of orientated filters as above, but choosing 
the physical orientation that corresponds to maximal 
activity in the population for each patch24,85–88. Similar 
orientations are notably more likely than different ori-
entations in nearby spatial or temporal patches (FIG. 4c 
and REF. 24). These statistics will be affected by saccades and 
other eye movements. Unfortunately, there has only 
been limited investigation of this88, with the data sug-
gesting that movements are likely to be made to image 
patches with both similar and opposite orientations. 
Although most adaptation experiments are performed 
under conditions of fixation, it is interesting to note that 
subsequent eye movements may affect the strengths of 
the after-effects89,90.

The essential kinship between spatial and tempo-
ral statistics answers the question about similarity; we 
argue below that its form might also explain the biases. 
Of course, there are also some key differences between 
spatial and temporal contexts, which arise from the 
larger number of spatial than temporal dimensions, 
the constraints of temporal causality and the effects of 
spatial geometry.

Computational models. There are two main classes of 
computational accounts, described in detail in the next 
sections, which invoke principles of either efficient 
coding or Bayesian probabilistic inference and model-
ling. In efficient coding terms, the context-mediated 
expectations imply that only some values of Is2(t2)  
are likely, and these are the values on which coding 
and representational resources should be concen-
trated. The strong expectations arise from substantial 
redundancy in the input; efficient coding suggests 
that the contextual effects are a strategy for mitiga ting 
this inefficiency through de-correlation. This can be 
formalized using information theory, based on the 
conditional distribution P (Is2(t2)|Is1(t1) ).

In Bayesian terms, one view is that the expectations 
that are inherent in this conditional distribution should 
be treated as a form of prior evidence, to be combined 
with information associated with Is2(t2)  itself to make 
inferences about the aspects of the visual world that 
determine Is2(t2). In such inference models, noisy and ill-
posed inferences about Is2(t2) can be partially resolved by 
incorporating relevant data from the context. A richer 
but more complicated view is provided by generative 
models. These suggest that the cortex builds a form of 
surrogate model of the way in which images are gener-
ated, and uses it to extract structure in the input. As 
image structures are spatially and temporally extended, 
the entities in such cortical models have to mix target 
and contextual stimuli in a statistically appropriate 
manner. Contextual effects then arise from the nature 
of this mixing.

Efficient coding

The efficient coding hypothesis91–92 (influenced by 
information theory93) posits that neurons should 
use information-efficient, non-redundant codes for 
stimuli. Thus, without contextual information, codes 
should be generally non-redundant (and each neuron 

should be used equally on average). When the context 
provides extra constraints, codes should be reorgan-
ized so that information is not repeated. This idea can 
be expressed in different terms — for instance, codes 
can be reorganized to concentrate on the aspects of the 
signal that are likely in the conditional distribution of 
the stimulus given the context P (Is2(t2)|Is1(t1) ); or to 
maximize information about the stimulus propagated 
by the neurons, given this conditional distribution. 
Although some efficient coding models have focused 
on only temporal or spatial context, it would be 
straightforward to map them onto the other domain. 
In general, however, the status of efficient coding as 
a principle for understanding cortical processing is 
unresolved70,94,95.

Efficient coding models span many levels of detail; 
different models also aim for different degrees of 
efficiency, for instance, settling for linear (or second order) 

de-correlation, instead of the independence between 
neural responses demanded by non-redundancy. Such 
models have been widely suggested to capture neural 
processing at the sensory periphery63,67,70,96–99.

More stringent (although, to our knowledge, not yet 
applied to the contextual phenomena described above) 
are models that seek, but do not necessarily achieve, 
independence (for example, Independent Component 
Analysis69,100). Decreasing the statistical dependence in 
filter outputs depicted in FIG. 4b was the explicit goal 
of models that apply non-linear transformations79,101 
that result in a form of divisive normalization102,103. These 
models can explain contextual phenomena in corti-
cal neurons, such as response suppression, contrast 
gain control and tuning property changes79,101. Efficient 
coding has also been cited as a functional explanation 
for physiological contextual data24,32,38,104, such as the 
repulsive changes in orientation tuning curves produced 
by spatial or temporal contexts24,32,38. Other notions of 
efficiency have also been put forth in the spike rather 
than the mean firing rate domain, suggesting that 
when conditioned on the number of spikes, the neural 
response to the target and its context may be treated 
independently105,106.

Clifford et al.19 suggested an appealing way of ana-
lysing perceptual contextual effects in terms of efficient 
coding. They considered a summary statistic (called 
the population vector) of the mean population activity 
for each target angle. Normally the distribution of this 
statistic is uniform, and thus maximally efficient across 
the target angle; Clifford and colleagues considered the 
classes of tuning changes (similar to those in FIG. 3e) 
that are necessary to maintain this uniformity in 
the face of biases in the distribution of input angles. 
They related the resulting population model to both 
bias19 and discriminability56. By assuming instead that 
neurons that prefer orientations near the orientation 
specified by the context have greater variance in their 
responses, Wainwright107 adopted the methods of 
efficient coding to suggest that these neurons should 
have comparatively suppressed responses, as in FIG. 3b, 
leading to the biases and changes in discriminability 
evident in the figure.
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Prior
A probability distribution that 

captures the belief or 

expectation about a variable, 

in the absence of observations 

or evidence. Here, priors are 

specified through personal or 

evolutionary experience of 

environmental statistics.

We can directly examine how changes in tuning 
curves due to context affect the correlation statistics of 
the neural population model of FIG. 3. In the example in 
FIG. 5, tuning curve manipulations due to context reduce 
but do not eliminate the correlation dependencies of the 
population model. More mechanistic accounts include 
the suggestion that anti-Hebbian learning could be used 
to realize de-correlation108 and the self-organizing net-
work109,110, which has extensive inhibitory long-range 
lateral connections that serve this function.

The reason for biased inference under all these 
schemes is the coding catastrophe. Furthermore, the 
changed population response results in altered signal-
to-noise ratios, which affects discrimination. Efficient 
coding does not address why the coding catastrophe 
occurs, because it lacks specification as to the computa-
tional goal beyond representation; rather, it embraces it 
without further question.

Bayes

The other main class of functional approaches is asso-
ciated with Bayesian inference and generative models. 
Bayesian methods in general have become popular for 
understanding the functional basis of a wide range of 
psychophysical and neural phenomena111, and several dif-
ferent, and not necessarily mutually exclusive, Bayesian 
ideas about contextual processing have been advocated. 
We discuss inference and generative models in turn.

Inference models. Bayesian inference models112–118, which 
are popular treatments of illusions and biases, start by 
assuming what the visual system might infer from a 
scene, such as local orientation. Two sources of informa-
tion bear on this inference: prior expectations, perhaps 
based on long-run observed statistics, and observations 
about the given visual input (the same likelihood used 
by maximum-likelihood decoding).

The most common inferential Bayesian treatment 
of perceptual biases suggests that they arise from the 
imposition of prior expectations that are inappropriate 
for a particular scene. If spatial and temporal smoothness 
are interpreted as implying a prior that favours the same 
orientation for the target as for the context, Stocker and 
Simoncelli119 point out that this would lead, if anything, 
to a bias favouring attraction rather than repulsion. The 
prior would be particularly important when observations 
are weak (for example, under conditions of uncertainty, 
such as low contrast or noisy target bars), a condition that 
does not seem to have been extensively tested. However, 
repulsion would never normally be expected. Instead, 
Stocker and Simoncelli119 consider a class of the changes 
made in efficient coding that lead to higher likelihoods for 
tilts near to the adapting orientation. In a Bayesian model 
that makes inferences based on the mean of the posterior 
distribution (assuming a flat prior), they show that it is 
possible to capture substantial biases and discriminability 
changes without assuming the coding catastrophe.

Figure 5 | Correlation within a tuning curve population model. The coloured plots show the covariances between all 

neurons averaged over distributions for target orientations that are either flat (a, left column; in the absence of contextual 

information) or when the contextual angle of 0° is favoured (b); and for either the unadapted tuning curves (normal, 

middle column) or tuning curves adapted according to the combined scheme (combination, right column; using the 

adaptation in FIG. 3e). Maximal efficiency mandates only diagonal covariances and equal use of all neurons; however, 

the peaked orientation distribution leads to substantial off-diagonal covariances and under-utilization of some neurons. 

The adaptations to the tuning curves improve these characteristics, but not completely. 
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Decision-theoretic loss 
function
The loss (or cost) associated 

with a particular decision 

about a quantity as a function 

of its true values. Bayesian 

decision theory suggests that 

choices should be made by 

minimizing expected losses 

under posterior distributions. 

Gibson’s normalization
The hypothesis that replusive 

biases arise in the orientation 

domain due to a long-run prior 

favouring absolute cardinal 

axes.

Two alternative inferential Bayesian treatments 
address the coding catastrophe head-on. It has recently 
been observed that apparent repulsive biases can arise 
naturally in models in which there is competition among 
different explanations10,120,121, perhaps in the face of par-
ticular decision-theoretic loss functions. As a simplified 
example, consider the competition between explanations 
of the target: that it is either exactly consistent with the 
context, but suffering from perceptual noise; or that it is 
different. The closer its orientation to that of the context, 
the more likely it is to be seen as being the same; so the 
average perceptual orientation if it is seen as being dif-
ferent will favour values farther from the context, that is, 
repulsion. This idea has yet to be tested systematically on 
the data shown in FIG. 2.

More venerable, but perhaps only applicable to a 
restricted range of data on temporal context122, is the 
notion of Gibson’s normalization5 (not to be confused with 
divisive normalization associated with gain control), error 
correction123 and calibration64. Crudely speaking, the idea 
underlying normalization or calibration is that systematic 
deviations over time in the input should not imply that 
the image contains particular values of I(t1) that indicate 
a changed prior on I(t2) (through the conditional distribu-
tion P (I(t2)|( I(t1))), but rather that the subject’s sensory 
apparatus has fatigued or changed in a way that should be 
corrected in order to make correct inferences. One could 
put into Bayesian inferential terms the Gibsonian correc-
tion5 by assuming that the statistics of the inferred images 
should be the overall long-run prior, and this can lead 
to repulsion. For instance, if the prior distribution indi-
cates that vertical and horizontal tilts are most likely5,30, 
but recent experience has favoured neural responses 
consistent with a slightly off-vertical tilt, then the neural 
responses might need re-calibrating to be consistent with 
the long-run norm, which can lead to perceptual biases. 
This idea is controversial for tilt, given the biases preva-
lent for non-cardinal contexts124, but it has been well aired 
in the face and colour adaptation literature1,125. Webster 
et al.64 go further, and suggest that it can be part of the 
process of regularization in the context of temporally and 
socially consistent communication.

Finally, anomalies might also arise not as an inter action 
of priors with likelihoods, but because true Bayesian 
inference is just too computationally complicated, thus 
making approximations necessary. By itself, this argument 
does not seem convincing: the ubiquity of contextual 
effects and specifically repulsion for a whole range of con-
textual attributes1,7,20 would make it strange if such adap-
tations were not amongst the computations to which the 
approximations inherent in visual processing were tailored.

Generative models. A more holistic class of Bayesian 
approaches is associated with analysis-by-synthesis or 
generative models126–129. These suggest that the cortex 
builds a hierarchical statistical generative model of its 
input, with populations of neurons capturing the statisti-
cal regularities of visual inputs and offering a coordinate 
system within which to decompose (represent) new 
examples as a process of the sort of posterior inference 
discussed above. Note that the most efficient code for 

inputs is closely related to the best probability distri-
bution over those inputs. In these generative models, 
contextual processing is built into the nature of the rep-
resentation itself, coming directly from the statistics of 
natural scenes. That is, the correct coordinate system for 
inputs is sensitive to spatially and temporally extended 
visual entities; and so inference is directly influenced by 
contextual manipulations.

One way to evade, rather than address or embrace 
the coding catastrophe, is to consider that the coordinate 
system used by the Bayesian model does not decompose 
the scene in the way the experimenter did. This is related 
to the notion that straightforward orientation estimation 
is not the visual system’s goal. That is, perhaps pure local 
orientation does not form part of the Bayesian model’s 
representational substrate for scenes; so rather than the 
semantics of the model being erroneous, as implied by 
the coding catastrophe, perhaps the semantics are inher-
ently different in the first place. This explanation might 
seem odd, but it is common in discussions of other 
contextual effects such as lightness and brightness illu-
sions3,130,131. There, the idea is that the visual system does 
not act as a veridical photometer, reporting the photon 
flux from different patches of visual space, but rather 
that it is interested in extracting two key properties that 
are associated with the patches — illumination (a global 
property that tends to be statistically coordinated for 
nearby spatial and temporal patches in a scene) and 
surface reflectance (typically a more local property). The 
underlying generative model assumes that the observed 
luminance in a patch is multiplicatively generated by 
these properties. Crudely, brightness illusions arise when 
correct Bayesian inference about these properties is at 
variance with the manner in which particular scenes 
were generated.

It has also been suggested that population responses 
to tilt arise as the output of a Bayesian generative model 
in which signals representing local structure (akin to 
reflectance) are multiplied by signals representing global 
structure (akin to illumination)132–134. The global struc-
ture does not have a direct physical analogue as for illu-
mination, but rather it emerges owing to coordination 
of the orientation statistics of the type shown in FIG. 4b, 
representing structures such as orientated textures or 
edges81,83. Inference about the local structure amounts 
to a form of divisive normalization or gain control, and 
contextual information about the global signal gives rise 
to perceptual repulsion135.

Finally, predictive coding136–138 is a Bayesian 
account which offers another link between hierar-
chical generative Bayesian approaches and efficient 
coding. According to the model of Rao and Ballard136, 
and ideas rooted in Mackay139, units in a downstream 
layer use feedback connections to inform lower layers 
of their current states. Lower layers then reorganize 
their codes (that is, change their population represen-
tation), so that the feed-forward bandwidth is used 
more efficiently to send information to amend the 
high level state, given their own, bottom-up informa-
tion. Embracing the coding catastrophe, this can lead 
to perceptual anomalies.
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Power law synapses
A synaptic adaptation that is 

(time) scale invariant; for 

example, having the same 

response shape at multiple 

timescales. This is in contrast 

to an exponential adaptation 

process with a single time 

constant.

Perspectives and future directions

We have argued that the time is ripe to unify the wealth 
of disparate work on the effects of spatial and temporal 
context on visual processing and perception. We have 
focused on the comparatively simple case of orienta-
tion, discussing the strong similarities between spatial 
and temporal domains in terms of perceptual biases and 
changes in discriminability (FIG. 2a, b), and tuning curve 
and firing rate changes (FIG. 2c,d). These domains were 
putatively linked by mechanistic models of orientation 
processing (FIG. 3), and justified in efficient coding and 
Bayesian accounts by the key statistical properties that 
are shared by spatial and temporal contexts in natural 
scenes (FIG. 4).

Spatial and temporal contexts induce strong and sim-
ilar perceptual biases, even for low-level features of an 
image, such as tilt. The similarity renders less appealing 
explanations that work in one, but not the other, domain, 
such as neural fatigue or Gibsonian regularization in the 
case of temporal context, or the intriguing functional 
account of adaptation, which posits that it preserves soci-
etal norms by ensuring that people exposed to similar 
environments have common perceptual experiences64.

Many current computational accounts appeal to some 
sort of coding catastrophe to explain perceptual bias. 
Some nascent accounts avoid this catastrophe, instead 
suggesting, for example, that the experimenter’s and 
subject’s models of image creation are incommensurate.

Psychophysical issues. There is obviously an inordinate 
range of possible spatio-temporal contexts, allowing 
structurally rich spatial patterns that change in sys-
tematic ways over time. Current psychophysical data 
are thus far from complete, particularly in terms of the 
comparison between, and integration of, spatial and 
temporal contextual effects. Furthermore, some results 
remain controversial.

Four classes of stimuli are of particular interest. One 
involves importing cases that have been well studied in 
one domain to the other domain. For example, studies 
of spatial, but not temporal, context have systematically 
investigated the separation of the target and contextual 
stimuli22,31,46,51,140,141, whereas in adaptation, mostly sim-
pler manipulations of adaptation timescale have been 
tested142–144. Equally, adaptation experiments generally 
use foveal presentation of both context and target stimuli 
(however, see REF. 145), whereas more is known about 
the effects of retinal position on spatial context146.

A second class involves stimuli that couple spatial and 
temporal processing — rich, fast-changing, spatial pat-
terns22,23. In the ‘landing light’ stimuli21, a contour is 
presented sequentially, with interesting effects on ori-
entation estimation147. This can be seen as a temporal 
generalization of a case of spatial contour integration148, 
or a spatial generalization of a simple form of temporal 
adaptation.

The third class of stimuli highlights the differences 
between spatial and temporal contexts. For instance, 
geometry has a key role in spatial inference, with iso-
orientated and ortho-orientated contextual surrounds 
having quite different statistical relationships with a 

target, and it lies at the heart of various contextual mod-
els (for example, see REFS 120,149; and see REF. 120 for 
explaining bias and discriminability data). Geometry 
also has a role in contextual effects that are involved in 
linking signals across space in order to bind common 
edges or borders65. There is no clear temporal analogue 
to geometry. Conversely, target figures that are more 
complicated than simple lines, such as faces, may not 
have strong spatial statistical constraints, but they 
do have rich temporal relationships that can lead to 
powerful adaptation.

The final class includes stimuli that are intended 
to distinguish between, and enrich, the modelling 
frameworks. For the statistical models, elucidation 
of the contextual effects on discriminability, and tests of 
the effects of likelihood manipulations are most pressing. 
Under Bayesian accounts, inference under conditions 
of uncertainty, such as low-contrast stimuli116 or stimuli 
with added noise150, are critical. Perception under these 
conditions should depend more heavily on the con-
textual prior, and so constitute a means for testing the 
models. However, the experimental data are controver-
sial. Furthermore, understanding the effects of more 
complex orientation contingencies, such as spatially 
overlapping orientations, could be most informative 
for modelling frameworks151–153.

Finally, we have focused on orientation estimation. 
Data from other orientation-based tasks, such as con-
trast detection140,141,154–157, which concentrate on low 
contrast target stimuli, and contrast discrimination158–161, 
offer windows into different aspects of contextual 
processing. There is also a large body of literature on 
adaptation in the case of motion (the motion after-
effect2,48,49), which closely parallels orientation162, and 
there has been work on illusions in which temporal 
context affects brightness estimation4.

Physiological issues. The neurophysiological data are 
even less comprehensive. Problems include diverse 
responsivity of neurons and the difficulty of interpreting 
results taken at a small number of punctuated locations 
in a complex and hierarchical architecture; differences 
across studies in species and behavioural states (anaes-
thetized versus awake); timescales of adaptation; and for 
spatial context, underestimating the classical receptive 
field, which could mean that it is invaded directly by 
contextual stimuli163.

It would be ideal, although perhaps unrealistic, to be 
able to couple all existing psychophysical results with 
their physiological counterparts. At least some neuro-
physiological data are available from the psychophysical 
protocols mentioned above, such as extensive studies on 
contrast manipulation31,36,40,164–168 (FIG. 2e); coupling spatial 
surround and temporal adaptation experiments168; geom-
etry31,140; timescales39,60; and more complex orientation 
contingencies169,170.

Ultimately, contextual processing needs to be under-
stood under natural viewing conditions. Experimental 
techniques such as spike-triggered analysis and maxi-
mally informative dimensions allow one to present ran-
dom stimuli or natural images, and to characterize the 
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response properties of neurons to these stimuli. These 
techniques could be used to investigate spatial and/or 
temporal context171.

Other experiments, accompanied by mechanistic 
models, investigate the neural substrates in local cor-
tical elements and circuits that underlie spatial and 
temporal context. Changes in local gain are a com-
mon theme in many spatial and temporal contextual 
models, but some of the specific potential mechanisms 
are likely to be different. Adaptation to temporal con-
texts demands memory, and the mechanisms could 
include prefrontal working memory172–175; depressing 
synapses176–178 or power law synapses179,180; and ionic 
currents181–184. Handling spatial contexts requires 
lateral interactions, which might involve horizontal 
intra-areal circuits and feedback connections109,185–192, 
as well as more short-range connectivity193–195, opening 
up the possibility that the location of a neuron on the 
orientation map in V1 might influence the nature of 
contextual effects, and, in turn, the exact implemen-
tational mechanism196. Different substrates might be 
pharmacologically distinguishable — for instance, it 
has been reported that drugs that influence dopamine 
and GABA neurons affect the tilt illusion and tilt after-
effect differently197. It would be desirable to consider 
implementation models that incorporate substrates of 
both space and time, in order to encompass a wider 
range of spatio-temporal effects.

Computational issues. Along with gaps in the perceptual 
data, our knowledge of the spatio-temporal statistics of 
natural movies is incomplete. In particular, there is a 
dearth of data on the coupling between spatial and tem-
poral statistics that will have to be resolved in order to 
make specific hypotheses about the effects of the more 
complex spatio-temporal stimuli urged above.

Issues surrounding the coding catastrophe are 
important for computational frameworks. In some 
systems, the catastrophe may be even less excusable, 
if neurons can report directly, through some long-run 
statistics of their activity, on some aspects of their own 
states of adaptation60 (however, also see REF. 198). We 
briefly mentioned three reasons why the catastrophe 
may in fact be of functional benefit to the system: the 
visual system is really only interested in computations 
other than orientation estimations, such as discrimina-
tion or local salience; the visual system is organized 
in a Bayesian generative model around a different 
variable (as in the case of brightness); or, bias arises 
through inference in the face of a particular sort of loss 
of function. None of these offers a complete account 
that can tie together the physiological and perceptual 
facts into a credible functional explanation.

Most computational models have not yet been 
applied to a whole range of contextual data both at the 
neural and perceptual levels (as in FIG. 2). We are also 
still lacking strong experimental tests to differentiate 
the various functional accounts; for example, there are 
no tests that differentiate between functional models 
based on the conditional distribution of the target 
given the context, and the Gibsonian approach based 
on the long run prior to orientation5. Current models 
are particularly weak in addressing the hierarchical 
organization of sensory processing, although some rel-
evant data have been obtained42,199. In addition, only a 
few models make an evident connection between their 
computational principles and any mechanistic imple-
mentation. Perhaps in the same way that adaptation is 
described as the psychophysicist’s electrode to probe 
sensory processing hierarchies, more general contex-
tual effects might have a similar role for computational 
modellers.
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