Machine Learning for Automated Reasoning

Geoff Sutcliffe
University of Miami
geoff@cs.miami.edu

1 Introduction

Automated theorem proving (ATP) is concerned with the development and use of systems
that automate sound reasoning: the derivation of conclusions that follow inevitably from
facts. This project is specifically concerned with ATP for classical first-order logic, which
has well understood and attractive computational properties. ATP lies at the heart of
many important computational tasks, and current ATP systems are capable of solving
non-trivial problems, e.g., EQP [McC] solved the Robbins problem [McC97], NASA uses
ATP systems to certify aerospace software [DFS04], and Microsoft uses ATP to develop
and maintain high-quality software [BDF104]. In practice, however, the search complexity
for finding proofs of most interesting theorems is enormous, and many problems cannot
currently be solved within realistic resource limits. Therefore a key concern of ATP re-
search is the development of more powerful systems, capable of proving more difficult
theorems within the same resource limits.

In recent years the ability of ATP systems to reason over large theories (LTs) — theories
in which there are many functors and predicates, many axioms of which typically only a
few are necessary for proving that a given conjecture is a theorem, and many conjectures
to be proved from a (largely) common set of axioms, has become increasingly important.
LT problems (in the context of this project, an ATP problem consists of axioms and a
conjecture to be proved) are becoming more prevalent as large knowledge bases, e.g.,
ontologies and large mathematical knowledge bases, are translated into forms suitable for
automated reasoning, e.g., [RPGO05, US07, PS07]. The TPTP problem library [SS98],
the standard set of test problems for first-order ATP systems, has enjoyed an increasing
number of contributions of LT problems, which has confirmed the importance and helped
motivate development in this area.

For traditional ATP, LT problems pose several specific challenges, including: system
engineering to load, index, and access the very large numbers of formulae (the axioms
and conjecture to be proved); finding appropriate search strategies for the search spaces
induced by LTs; extracting a small subset of axioms sufficient for proving that a given
conjecture is a theorem; proving multiple theorems from a largely common set of axioms;
and generating proofs objects found in very large search spaces.

The focus of this project is extracting a small subset of axioms sufficient
for proving that a given conjecture is a theorem. Traditional ATP search strategies
are swamped by very large numbers of axioms, and an ability to extract a small sufficient
subset of axioms in advance enables existing ATP techniques to be used more successfully.

Optimally, a minimal sufficient subset of axioms would be extracted, but theoretical con-
siderations show that this is not possible in general (or if so, P = NP). Thus the goal of
this project is to develop a system for extracting a small, but not necessarily minimal,
subset of axioms sufficient for proving that a given conjecture is a theorem. This will be
achieved in the context of multiple conjectures that are to be proved from a common set
of axioms.

2 Project Overview

Goal: Given a large theory with multiple conjectures to be proved from a common set of
axioms, an ATP system, a CPU time limit on each proof attempt, and proofs of some of
the conjectures (i.e., some of the conjectures have already been proved to be theorems,
but the others have not due to the large number of axioms swamping the ATP system’s
search space, making it unable to find a proof within the CPU time limit), iteratively use
machine learning (ML) to learn from existing proofs which axioms are more likely to be
used in proofs of further theorems. The ML is used to suggest small sets of axioms that
are likely (more likely than a random selection) to be sufficient for proving that a given
conjecture is a theorem, so that the ATP system’s search space is reduced, and the system
is thus able to find a proof within the CPU time limit. The ATP system and CPU time
limit may be specified statically in advance, or may be determined dynamically by the
process. The details of implementing this process are given in Section 4.

Two approaches are used for learning and selecting the small sufficient sets of axioms.
The first approach uses a measure of similarity between the given conjecture and previously
proved theorems. Given such a measure, small sets of axioms are formed by combining the
sets of axioms used in the proofs of the previously proved theorems, with preference for
those axiom sets used in proving theorems that are more similar to the given conjecture.
The ML is thus “nearest neighbor” learning. The details of implementing this approach
are given in Section 5. The second approach learns a measure of relevance of axioms to
conjecture features. Given such a measure, small sets of axioms are formed by selecting
axioms that are more relevant to the given conjecture. The measure of similarity is ma-
chine learned using supervised learning on a training set formed from previously proved
theorems. Positive training examples have the features of a proved theorem as input and
the axioms used in its proof as expected output. Negative training examples have the fea-
tures of a proved theorem as input and axioms not used in its proof as expected output.
The details of implementing this approach are given in Section 6.

3 Project Software

The implementation of this project requires a large theory with multiple conjectures to be
proved from a common set of axioms, use of an ATP system, use of a ML system, and a
harness to run the various components.

3.1 The TPTPWorld

The TPTPWorld is a package containing the TPTP problem library, ATP systems, and
tools for processing ATP problems. The TPTPWorld runs in a UNIX environment, and

has been tested on Linux variants, FreeBSD variants, and Mac OS X. The TPTPWorld
is available from http://www.tptp.org/TPTPWorld.tgz. Uses of the various tools in the
TPTPWorld for this project are described in Sections 4 to 6. The selection of suitable
problems and a suitable ATP system are described here.

The TPTP problem library in the TPTPWorld (in the TPTP directory) is the source for
the LT problems. For this project, first-order form (FOF) problems are required, which are
identified by a + sign in the file name. The problems are written in a standard format using
the TPTP language. An introduction to the TPTP problem format, with examples, is
available at http://www.tptp.org/QuickGuide. Each problem has a header that includes
statistics on the problem, such as the number of formulae, numbers of predicate and
function symbols, etc. Problems in the TPTP (in the Problems directory) may use an
include directive to include a common set of axioms (in the Axioms directory). This
project can use any set of problems that have many predicate and function symbols, and
all include that same large set of axioms, of which typically only a few are necessary for
a proof. An example set of suitable LT problems in the TPTP is the set of 422 software
creation problems SWC001+1.p to SWC422+1.p in the SWC domain (in the Problems/SWC
directory). These problems all include the axioms in the SWC001+0.ax axiom file. The
problems have 95 axioms, 20 predicate symbols, and 5 function symbols. State-of-the-art
ATP systems are able to prove around two thirds of them with a 600s time limit on a
2.80GHz Intel CPU, e.g., EP 0.999 [Sch02] proves 297, Vampire 9.0 [RV02] proves 267,
and SPASS 3.0 [WSH'07] proves 250. There are thus sufficient proofs to learn from, and
sufficient unproved conjectures to attempt. The proofs use only a few of the axioms, e.g.,
EP’s 297 proofs use from none to 27 axioms. The unproved conjectures are expected to
also have proofs from a small subset of the axioms.

The ATP system used in this project must be able to produce a proof in the standard
TPTP proof format. This allows use of TPTPWorld tools to extract the information re-
quired for the ML. An introduction to the TPTP proof format, with examples, is available
at http://www.tptp.org/QuickGuide. ATP systems in the TPTPWorld that produce
complete TPTP format proofs are EP [Sch02] and Metis [Hur03].

3.2 The SNoW Machine Learning System

The SNoW (Sparse Network of Winnows) learning system is a multi-class classifier that
is specifically tailored for large scale learning tasks and for domains in which the poten-
tial number of features taking part in decisions is very large, but may be unknown a
priori. It learns a sparse network of linear functions in which the targets concepts (class
labels) are represented as linear functions over a common feature space. The SNoW sys-
tem is available from http://12r.cs.uiuc.edu/ danr/snow.html, and documentation is
online at http://12r.cs.uiuc.edu/ " cogcomp/software/snow-userguide/. Use of the
ML capabilities of SNoW for this project are described in Section 6.

3.3 Programming Tools

Implementation of this project requires working with formulae, ATP problems, and sets
of formulae (the axioms used in a given proof). Additionally it is necessary to execute
programs, e.g., the ATP and ML systems, and capture their standard output. It is recom-

mended that the project be implemented in the scripting language perl, which has strong
string handling, list handling, and process control capabilities.

4 Controlling the Process

The overall process is formalized as follows: Let ConjectureSet = C1 ...C), be the set of
conjectures, and AxiomSet = Axy...Ax, be the common set of axioms from which the
C; are to be proved (if there are any axioms specific to a conjecture, they are added to the
corresponding ATP problem). At any point in the process, let TheoremSet = T;...T, be
the C; that have been proved. Let AxSetT; C AxiomSet be the axioms used in the proof
of T;. The task is then to learn from the information captured in the (T;, AzSetT;) pairs,
to select a small set of axioms sufficient for proving that some Cie, € ConjectureSet, ¢
TheoremSet, is a theorem. If this is achieved then C), is added to TheoremSet, and
the process iterates until no further Cj.,, can be proved. Figure 1 provides the algorithm
for implementing this.

1 Let ConjectureSet = C ...C,, be the set of conjectures;

2 Let AxiomSet = Axy ... Ax, be the common set of axioms;

3 Attempt to prove each C; € ConjectureSet from AxiomSet, with MaxC PU Limit;
4 Let TheoremSet =T ...T), be the C; that are proved;

5 Run ML on the positive examples (T;, AzSetT;);

6 Optionally, run ML on the negative examples (T;, AziomSet \ AxSetT;);

7 Let CPU Limit = MinCPU Limit;

8
9

repeat
Mark all C; € ConjectureSet \ TheoremSet as unattempted;

10 Clear records of axiom sets used for all Cj;
11 while There are unattempted C;s do
12 Let Cpey be an unattempted Cj;
13 Mark Cie as attempted;
14 while C),¢,, is not proved and there are unused sets of axioms for Cpep do
15 Select unused set of axioms for Cje;
16 Record axiom set as used for Cj,eq;
17 Attempt to prove Cie, from this set of axioms;
18 if Cpew s proved then
19 Add Cyey to TheoremSet;
20 Run ML on the positive examples;
21 Optionally, run ML on the negative examples;
22 Mark all C; € ConjectureSet \ TheoremSet as unattempted;
23 end
24 end
25 end

26 Increase C'PU Limit;
27 until CPU Limit > MaxCPU Limit or TheoremSet = ConjectureSet ;

Figure 1: Control Algorithm

4.1 Useful Tools

The implementation of the algorithm requires manipulating formulae as items of data —
to select axioms from the common axiom set, combine axioms and a conjecture to form a
problem, etc. The formulae are supplied in the TPTP files in annotated formulae, using
the TPTP language, and formatted so as to be human-readable. Each (annotated) formula
has a unique name that can be used as a handle for manipulating the formula. To extract
a formula with a given name from a file of formulae, the tptp4X tool (in the ServiceTools
directory) is used to reformat each formula onto one line, so that the UNIX grep tool can
be used to select the named formula. After that tptp4X can be used again to reformat
the selected formula into a human-readable form. tptp4X is used with the command line

tptp4X -u machine FormulaFilename
to reformat the formula onto one line, and with the command line

tptp4X -u human FormulaFilename
to reformat into a human-readable form. The FormulaFilename can be —- to apply tptp4X
to the standard input stream. Thus, to extract the formula named i_want from the file
all_formulae, the command line is

tptp4X -u machine all formulae | grep i_want | tptp4X -u human --

Once the required formulae have been manipulated into an ATP problem file, the
problem has to be submitted to the chosen ATP system with the given CPU time limit.
The SystemOnTPTP tool in the TPTPWorld (in the SystemExecution directory) is used
for this. SystemOnTPTP deals with the steps of checking the problem file syntax, adding
axioms of equality if necessary, converting from the TPTP syntax to the syntax of the
ATP system, running the ATP system with the CPU time limit, extracting the result and
output from the system, and converting the output to the TPTP syntax. The command
line format is

SystemOnTPTP [-gN] SystemName---Version TimeLimit [-S] ProblemFilename
e.g., SystemOnTPTP -q4 EP---0.999 30 -S MyProblem.p. The optional -S flag causes
the system output to be converted to a TPTP format proof, if possible. The optional -gqN
flag controls the debug level, with -q0 being most verbose and -q4 least. For this project
-q4 is used so that SystemOnTPTP outputs only the TPTP format proof. The problem in
ProblemFilename must be in TPTP format.

5 Selecting Sets of Axioms

For each proof attempt on a C,,¢y, a small set of axioms has to be selected. The process for
selecting sets of axioms for a given Cpe,, is formalized as follows: Let T'Creyp 1 - .. TCrhew,p
be a reordering of the T; € TheoremSet based on their similarity to Chpey, such that
TChew,1 is most similar to Cpeyy down to T'Creyp being least similar to Cpen. Let
AzSetTCrew,t - . . AxSetT Cpey p be the sets of axioms used in the proofs of T'Chrew. 1 - - . T'Crew,p-
The small sets of axioms used for attempting to prove Cpe, are AzSetTChrewi U ... U
AxSetTChew, for | = min...max, for some min > 0 and maxr < p, thus providing
max —min + 1 sets of selected axioms. Figure 2 provides the algorithm for implementing
this.

The limits min and max may be specified statically in advance, or may be determined
dynamically by the process. One possibility is to place limits on the minimal and maximal

=

Compute similarity of each T; € TheoremSet to Chew;

2 Sort TheoremSet in decreasing order of similarity to Cieq to produce
TCnew,l s TCnew,p;

3 Set Selected Axiomsyin = AxSetT Cpew,1 U ... U AxSetT Crew min;

4 for l=min+1...mazx do

5 Set Selected Axioms; = Selected Axioms;_1 U T Cpey i;

6 end

Figure 2: Selecting Sets of Axioms Algorithm

numbers of axioms that can be selected. The selection algorithm is quite fine grained, in
that at each iteration it adds (by union) the axioms used in the proof of only one more
theorem. The algorithm can be coarsened to produce fewer sets of selected axioms, by
amalgamating the steps for the T'Ciey; that have very close (e.g., equal) similarity to

CTLC’LU .

5.1 Similarity Measures

The similarity of the already proved theorems to the new conjecture can be computed in
many ways. The similarity measure suggested for this project is that computed by the
prophet tool (in the ServiceTools directory). Prophet is based on simple information
retrieval techniques (see [Sut07] for a brief description). The input file for prophet must
contain the proven theorems with their role changed from conjecture to axiom, and the
new conjecture. (Use the UNIX stream editor sed to change the roles of a file of formu-
lae.) prophet adds a relevance/l term to the useful information list of each “axiom”,
indicating the similarity (“relevance” in other applications) of that formula to the new
conjecture formulae. A value of 0.0 means no similarity, and 1.0 means very high simi-
larity (the conjecture itself is also given a relevance term, whose value is naturally 1.0).
The command line format is

prophet -p FormulaFilename
The FormulaFilename can be —— to apply prophet to the standard input stream. A file
of formulae with relevance terms can be sorted using the SortByUsefulInfoField tool
(in the ServiceTools/JJUsers directory). The command line format is

SortByUsefulInfoField -f FormulaFilename
The FormulaFilename can be -- to apply SortByUsefulInfoField to the standard input
stream.

5.2 Useful Tools

The axioms used in the proof of a theorem can be extracted from the proof using the

ProofSummary tool (in the ServiceTools/JJUsers directory) with the command line
ProofSummary -parents ProofFilename

The ProofFilename can be —-- to apply ProofSummary to the standard input stream.

6 Selecting Individual Axioms

For each proof attempt on a C,ey, a small set of axioms has to be selected. The process
for selecting individual axioms is formalized as follows: Let features(F') be a vector of
features of the formula F'. For each T; € T'heoremSet, for each AxT; ; € AxSetT;, supply
(features(T;), AxT; ;) as a positive training example to a ML system. Optionally, for each
T; € TheoremSet, AxT;), € AxiomSet\ AxSetT;, supply (features(T;), AxzT;) as a nega-
tive training example to the machine learning system. For a C),ey, supply features(Cpew)
to the trained ML system, whose output is then AxiomSet with each Az; annotated with a
measure of relevance to (the features of) Chey. Let AxChey 1 - .. AZChewn be a reordering
of Az; € AziomSet based on their relevance to Cyey, such that AzCley,1 is most relevant
to Chew down to AxChew,n being least relevant to Ce. The small sets of axioms used
for attempting to prove Cpey are {AzChew,1, - - ., ATChew, }, for I = min ... max, for some
min > 0 and max < n, thus providing max — min + 1 sets of selected axioms. Figure 3
provides the algorithm for implementing this.

1 Compute relevance of each Ax; € AriomSet to Chew;

2 Sort AzxiomSet in decreasing order of relevance to Cieq to produce
A‘Tcnew,l e Axcnew,n;

3 Set SelectedAxiomsmin = {AxCrew1, - - - s AZChew min };

4 for I =min+1...max do

5 Set SelectedAzioms; = Selected Azioms;_1 U{AzxCpey,};

6 end

Figure 3: Selecting Individual Axioms Algorithm

The limits min and max may be specified statically in advance, or may be determined
dynamically by the process. One possibility is to place limits on the minimal and maximal
numbers of axioms that can be selected. The selection algorithm is quite fine grained, in
that at each iteration it adds only one more axiom. The algorithm can be coarsened to
produce fewer sets of selected axioms, by amalgamating the steps for the AzCl,ey; that
have very close (e.g., equal) relevance to Cpey.

6.1 Formula Features

There are many possible feature vectors for a formulae. The feature vector suggested for
this project counts the occurrences of predicate and function symbols that occur in the
conjectures. for example, the conjecture of SWC005+1.p has one occur of the function
symbol t1, three of app, five of nil, five occurrences of the predicate symbol neq, eight of
ssList, and six of the equality predicate.

The symbols that occur in a formula can be extracted using the GetSymbols tool (in
the ServiceTools/JJUsers directory) with the command line

GetSymbols Filename

The Filename can be -- to apply GetSymbols to the standard input stream. The output
is a term for each formula in the file, listing the formula name, its function symbols, and its
predicate symbols. Each symbol is listed with its arity and number of occurrences (note
that same named symbols with different arities are distinct). For example, the output

from running GetSymbols on a file containing just the first axiom and the conjecture of
SWCO005+1.p is

symbols(axl, [], [$equal/2/1,neq/2/1,ssItem/1/2]).

symbols(col, [t1/1/1,app/2/3,ni1/0/5], [neq/2/5,$8equal/2/6,ssList/1/8]).
The function symbols in the named formula are listed in the first [Jed list of the term,
and the predicate symbols are listed in the second [Jed list. A summary of all the symbols
that occur in a file of formulae can be extracted with the command line

GetSymbols -all Filename
For example, the output from running GetSymbols -all on a file containing just the first
axiom and the conjecture of SWCO05+1.p is

symbols(all, [nil/0/5,app/2/3,t1/1/1], [ssList/1/8,ssItem/1/2,neq/2/6,%$equal/2/7]) .
This usage can be used to extract all the predicate and function symbols that occur in the
conjectures, by running it on a file containing all the conjectures.

6.2 Using Machine Learning

Machine learning the relevance of the axioms to the features of the theorems can be done
in many ways. The SNoW ML system uses a a sparse network of sparse linear functions,
for which one of several update rules may be used: classical winnow and perceptron,
regularized winnow and perceptron, regression algorithms based on gradient descent, and
the naive Bayes algorithm. Use of the naive Bayes algorithm is described here, although
others might also be suitable for this project.

The input to SNoW is a plain text file of examples, with one example per line. Each
example is a comma separated, colon terminated, list of non-negative integer labels. Each
integer label is optionally followed by a bracketed real strength value. For example

7(1.5), 5, 10(0.6), 13(-3.2):
If no strength value is given the default strength of 1 is assumed. Each integer label
corresponds to a feature of the input or output space. In this project the input features
are the function and predicate symbols of the conjectures, and the output features are
the axioms. It is therefore necessary to map the predicate and function symbols, and the
axioms to integers for use in SNoW - see Section 6.3.

The training examples for this project are built from the T; € TheoremSet — one
example per theorem. Each training example lists the symbols in the theorem, with the
symbols’ strengths being their numbers of occurrences, and all the axioms used in the
proof of the theorem, with their strengths being left at the default value of 1. (In this
manner all the AxT, .4 referred to at the start of Section 6 are collated into a single
training example.) For example, if the symbols in the conjecture and the axioms used in
EP’s proof of SWCO05+1.p (see Section 6.3) are mapped to integers as follows, the training
example is as shown.

t1l/1 — 47, app/2 — 8, nil/0 — 28, neq/2 — 27, $equal/2 — 11, ssList/1 — 53,
ax22 — 522, ax24 — 524, ax78 — 578, ax4 — 504, ax21 — 521, ax82 — 582, ax16 — 516,

ax84 — 584, ax27 — 527, ax26 — 526, ax81 — 581, ax17 — 517, ax28 — 528, ax15 — 515

47(1),8(3),28(5),27(5),11(6) ,563(8) ,522,524,578,504,521,582,584,516,527,526,581,517,528,515:

The SNoW system is trained with the command line
snow —-train -I TrainingFile -F NetFile -B:AxStart-AxEnd
where the TrainingFile contains the training examples, NetFile is an arbitrary name for
a file that stores the trained system parameters, and AxStart and AxXEnd are the integer
values corresponding to the first and last axiom labels (the dependent feature labels).
This instructs SNoW to learn how the axiom labels depend on the symbol labels, i.e., the
relevance of the axioms to the theorem’s symbols.

The query example for a Cey lists the symbols in the conjecture, with the symbols’
strengths being their numbers of occurrences. For example, using the mapping above, the
query example for SWC005+1.p is

47(1),8(3),28(5),9(5),11(6) ,53(8):
The SNoW system is queried with the command line
snow -test -I QueryFile -F NetFile -o allboth
where the QueryFile contains the query example, NetFile is the name of the file con-
taining the trained system parameters, and —o allboth specifies the type of output. The
output (to stdout - it can be redirected to a file using a -R flag) is of the form

Algorithm information:
Naive Bayes: (0.1) Targets: 0-3
Example 1 Not labeled.

527: 1 0.375 0.375 0.28218
547: O 0.25 0.25 0.24903
553: 0 0.25 0.25 0.24903

where the numbers before the colons refer to the axioms in decreasing order of relevance
to the conjecture’s symbols, thus providing the required ordering of the axioms. The real
numbers in the third to fifth column measures the prediction confidence, raw activation,
and softmax normalized activation (see the SNoW documentation for details), which reflect
levels of relevance of the corresponding axiom to the symbols.

The ML described so far uses only positive training examples, and rates the relevance
of all axioms on that basis. The approach can be extended to include negative examples,
and also rate the irrelevance of axioms. This is done by giving each axiom two labels, one
for use and one for non-use. In the training examples, the first label is listed if the axiom is
used in the proof of the theorem, and the second label is listed if the axiom is not used. In
the output the line corresponding to the “use” label measures the relevance of the axiom
to the conjecture’s symbols, and the line corresponding to the “non-use” label measures
the irrelevance of the axiom to the conjecture’s symbols. If the “use” line occurs before
the “non-use” line, then the axiom has been gauged to be more relevant than irrelevant,
and vice versa. The differences in the levels of relevance provide combined indicators of
relevance. For example, if 27 is the “use” label for an axiom, and 28 is it’s “non-use”
label, this output suggests that the axiom is irrelevant to the conjecture and should not
be selected.

Algorithm information:
Naive Bayes: (0.1) Targets: 0-3
Example 1 Not labeled.

28: 1 0.375 0.375 0.28218
42: 0 0.25 0.25 0.24903
36: O 0.25 0.25 0.24903
27: O 0.125 0.125 0.24767

6.3 Useful Tools

The mapping of axioms to integers for use in SNoW can be done simply by mapping the
axioms’ names to integers, using tptp4X and grep as described in Section 4 to extract the
axioms from their file. The ProofSummary tool, whose use for extraction of the axioms
used in a proof is described in Section 5.2, can be used to extract just the names of the
axioms used in a proof. This is done with the command line

ProofSummary -prolog ProofFilename
For example, the output from running ProofSummary -prolog on EP’s proof for SWCO05+1.p
is

proved(col, [ax22,ax24,ax78,ax4,ax21,ax82,ax84,ax16,ax27,ax26,ax81,ax17,ax28,ax15]) .
The names of the axioms used in the proof are in the [Jed list.

7 Deliverables

The deliverables from this project are:

e A perl program that controls the overall process, the selection of sets of axioms,
and the selection of individual axioms. The following should be provided:

— The source code.

— User documentation.

— Technical documentation.

— A document discussing the implementation decisions made, changes that would
improve the implementation, and suggestions for extensions to the implemen-
tation.

e Results from running the system on several sets of LT problems. For each set the
results should provide:

— The configuration of the system - see the next point for the configuration vari-
able that need to be documented.

— Information about the axioms and the conjectures - numbers of function and
predicate symbols, number of conjectures, number of theorems provable from
all the axioms, number of theorems proved from a selected set of axioms.

— Data showing the progression of new proofs with respect to previous proofs,
e.g., numbers of examples learned from, accumulated CPU time for learning
and proving, etc.

— Data regarding the numbers of axioms used in the proofs.

e A report analyzing the results, indicating how choices made in the implementation
affect the results. Variation of some of the following aspects should be analyzed:

The ATP system.

The CPU time limit.

Axiom selection - sets vs. individuals.

Axiom selection coarseness - degrees of amalgamation of selection steps.
Alternative similarity measures - prophet vs. others.

Alternative formula features - symbols vs. others.

Use of SNoW - Bayes vs. other other update rules; positive vs. positive and
negative learning.

References

[BDF+04]

[DFS04]

[Hur03)]

[McC]

[McC97]

[PS07]

[RPGO5]

[RV02]

M. Barnett, R. DeLine, M. Fahndrich, K. Rustan, M. Leino, and W. Schulte.
Verification of Object-oriented Programs with Invariants. Journal of Object
Technology, 3(6):27-56, 2004.

E. Denney, B. Fischer, and J. Schumann. Using Automated Theorem Provers
to Certify Auto-generated Aerospace Software. In M. Rusinowitch and
D. Basin, editors, Proceedings of the 2nd International Joint Conference on
Automated Reasoning, number 3097 in Lecture Notes in Artificial Intelligence,
pages 198-212, 2004.

J. Hurd. First-Order Proof Tactics in Higher-Order Logic Theorem Provers.
In M. Archer, B. Di Vito, and C. Munoz, editors, Proceedings of the 1st Inter-
national Workshop on Design and Application of Strategies/Tactics in Higher
Order Logics, number NASA /CP-2003-212448 in NASA Technical Reports,
pages 56-68, 2003.

W.W. McCune. EQP: Equational Prover. http://www-
unix.mes.anl.gov/AR/eqp/.

W.W. McCune. Solution of the Robbins Problem. Journal of Automated
Reasoning, 19(3):263-276, 1997.

A. Pease and G. Sutcliffe. First Order Reasoning on a Large Ontology. In
J. Urban, G. Sutcliffe, and S. Schulz, editors, Proceedings of the CADE-21
Workshop on Empirically Successful Automated Reasoning in Large Theories,
2007.

D. Ramachandran, Reagan P., and K. Goolsbey. First-orderized ResearchCyec:
Expressiveness and Efficiency in a Common Sense Knowledge Base. In Shvaiko
P., editor, Proceedings of the Workshop on Contexts and Ontologies: Theory,
Practice and Applications, 2005.

A. Riazanov and A. Voronkov. The Design and Implementation of Vampire.
AI Communications, 15(2-3):91-110, 2002.

[Sch02]

[SS08]

[Sut07]

[US07]

[WSH*07]

S. Schulz. E: A Brainiac Theorem Prover. Al Communications, 15(2-3):111—
126, 2002.

G. Sutcliffe and C.B. Suttner. The TPTP Problem Library: CNF Release
v1.2.1. Journal of Automated Reasoning, 21(2):177-203, 1998.

G. Sutcliffe. TPTP, TSTP, CASC, etc. In V. Diekert, M. Volkov, and
A. Voronkov, editors, Proceedings of the 2nd International Computer Science
Symposium in Russia, number 4649 in Lecture Notes in Computer Science,
pages 7-23. Springer-Verlag, 2007.

J. Urban and G. Sutcliffe. ATP Cross-verification of the Mizar MPTP Chal-
lenge Problems. In N. Dershowitz and A. Voronkov, editors, Proceedings of
the 14th International Conference on Logic for Programming, Artificial Intelli-

gence, and Reasoning, number 4790 in Lecture Notes in Artificial Intelligence,
pages 546-560, 2007.

C. Weidenbach, R. Schmidt, T. Hillenbrand, R. Rusev, and D. Topic. SPASS
Version 3.0. In F. Pfenning, editor, Proceedings of the 21st International Con-
ference on Automated Deduction, number 4603 in Lecture Notes in Artificial
Intelligence, pages 514-520. Springer-Verlag, 2007.

